In order to support connectivity requirements for today's pervasive devices, the present invention provides an asymmetric two-way request-response communication protocol in which the end user or application is an active participant in the power management scheme. No power is consumed until a user-initiated client request is made. At that time, the client activates its transceiver and attempts to connect to the server; if it succeeds, it requests information, receives its response, and disconnects again, totally shutting down the transceiver. The server's transceiver always stays in a listening mode and waits for a client request. The protocol does not provide a direct method for the server to send unsolicited messages to the client.

Patent
   7016710
Priority
Jul 31 2001
Filed
Jul 31 2001
Issued
Mar 21 2006
Expiry
Dec 09 2023
Extension
861 days
Assg.orig
Entity
Large
48
8
all paid
1. An asymmetric, two-way request-response communication method for providing communication between a client transceiver and a server transceiver, the method comprising the steps of:
maintaining the client transceiver in a power-off state for a defined length of time;
maintaining the server transceiver in a listening mode;
the client transceiver switching from the power-off state to a power-on state and initiating a client communication with the server transceiver, said client communication requesting information from the server transceiver;
the server transceiver receiving said request, and in response to receiving said request, the server transceiver sending to the client transceiver a server communication including the requested information:
if the client transceiver receives said server communication, the client transceiver than switching back to the power-off state;
providing the client transceiver with a timer having a time-out period;
if the client transceiver does not receive said server communication within said time-out period, the client transceiver then resending said client communication to the server transceiver;
when said time-out period ends, the client transceiver entering the power-on state and transmitting a client communication to the server transceiver;
wherein the step of providing the client transceiver with a timer having a time-out period includes the steps of:
i) providing the client transceiver with a default time-out value,
ii) the server transceiver providing the client transceiver with a server provided time-out value in the server communication,
iii) the client transceiver comparing the default time-out value with the server provided time-out value and, on the basis of the comparison, selecting one of said values as the time-out period,
iv) a user of the client transceiver providing a user specified value for the time-out period,
v) at first times, the user of the client transceivers overriding the server specified time-out value, and setting the time-out period to a different time-out value, and
vi) at second times, the server overriding the user specified time-out value, and setting the time-out period to a different time-out value;
wherein the step of the client transceiver initiating a client communication includes the step of said client transceiver communicating the request for information with a plurality of different servers; and
the step of the server transceiver sending to the client transceiver a server communication includes the steps of:
i) each of said plurality of different servers replying to the client request for information, and
ii) the client transceiver selecting one of said plurality of different servers to be addressed in an interactive remote control protocol.
2. A method according to claim 1, wherein the client transceiver is part of a client having a touch screen, and comprising the further steps of:
providing feedback to the user on remaining power on the client transceiver;
said feedback supplying a number of interactions still available for the user on the client transceiver;
displaying a parameter, determined based on the user specified value for the time-out period, specifying a time or date until which the client transceiver can still operate;
the user, based on said displayed parameter, increasing the user specified value for the time-out period to achieve a longer working period for the client transceiver.
3. A method according to claim 2 for use with a multitude of clients consisting of powered badges, wireless toys, wireless sensors, wireless information access devices, digital cell phones, WAP phones, two-way pagers, interactive remote controls, personal digital assistants, and mobile computers.

1. Field of the Invention

The present invention relates generally to wireless communications devices and technologies, and more particularly pertains to a communications protocol for small hand-held wireless devices that effectively minimizes the power consumption of the hand-held wireless devices. More particularly, the present invention relates to a power optimized request response communication protocol which provides a natural protocol that allows a user device to make tradeoffs between power consumption and other scarce and expensive resources and functions (e.g. bandwidth, transmission range, latency, etc.).

2. Discussion of the Prior Art

Today's communications protocols were generally not designed specifically to support small, limited power, wireless, mobile devices. In particular, they do not give the user effective control over power consumption.

Existing communications protocols for mobile client devices, such as pagers, use synchronized time slots to wait for unsolicited messages from a server. In such protocols, the client goes into a low power mode from which it is periodically woken up to listen for server messages. This monitoring process often consumes power continuously, because it is implemented at the network level with no convenient user or application control to permit intelligent tradeoffs between power consumption and frequency of polling.

The following is a brief description of the main activities in prior art wireless communications along with their advantages and disadvantages with respect to power consumption.

The IEEE 802.11 committee has defined a standard for Wireless LAN [IEEE 802.11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, November 1997]. The standard supports both ad-hoc networking, in which peer nodes communicate directly, and infrastructure networking, in which nodes called access points (AP) are interconnected over a distribution system. Wireless LAN implementations require continuous connection to the network and are, therefore, inefficient in power utilization. Although power conservation modes exist, even advanced implementations can only work up to 12 hours using of the shelf battery before recharging is needed. Another disadvantage is that Wireless LAN (WLAN), devices are very expensive and large in size, hence are not suitable for small hand-held devices.

Bluetooth is a standard for low-cost, low-power, radio frequency connectivity for various devices, such as PDAs, cellular phones, and other cost-sensitive information appliances [J. C. Haartsen, “The Bluetooth Radio Sytem”, IEEE Personal Comm., February 2000, pp. 28–36]. Bluetooth was originally designed to enable mobile devices, in proximity with each other, to establish an ad-hoc cell called picocell and exchange information. In summary, the high frequency hopping (FH) rate, the need for synchronization between master and slave, and other design problems limit the ability to achieve really low power consumption using the Bluetooth standard.

Mobile Telephone Systems are widely used all over the world. The penetration of cellular phones into the marketplace has been incredibly fast and continues to grow. MTS is a Wide Area Network (WAN) in nature and it is meant to be able to supply coverage for wide areas with an assumed distance of a few thousand meters between the mobile unit and the base station [W. C. Y Lee, “Mobile Cellular Telecommunications Systems”, McGraw-Hill, N.Y., 1989]. In summary, the need for a circuit switched network for best support of voice, and the need to continuously listen for incoming calls, in addition to the assumption about the distance between the access point and the mobile device, do not allow the proposed power conservation scheme particularly not to totally shut of the client transceiver.

Accordingly, it is a primary object of the present invention to provide a power optimized request response communication method and protocol which allows a user to make tradeoffs between power and other scarce and expensive resources and functions (e.g. bandwidth, transmission range, latency, etc.).

The present invention provides an asymmetric two-way request-response communication protocol in which the end user or client transceiver is an active participant in the power management scheme. No power is consumed until a user-initiated client request is made. At that time, the client activates its transceiver and attempts to connect to the server; if it succeeds, it requests information, receives its response, and disconnects again, totally shutting down the transceiver.

The server's transceiver always stays in a listening mode and waits for a client request. The protocol does not provide a direct method for the server to send unsolicited messages to the client. However, indirectly the server can set the client to send a request after a time-out period, if no other request is generated due to user interaction. This has the effect of an unsolicited message passing. This allows the application designer to control how often to update client information, thereby controlling the client's power consumption, since power consumption is related to communication intervals. If user customization is provided, a user can override the application settings, and set different time periods; thereby giving the user control over power consumption.

This solution provides a method of power management that is superior to existing protocols because it establishes a natural correspondence between user requests and transmit/receive power consumption. With appropriate feedback on remaining power on the device, the user can learn to manage use of the scarce power resource. Such feedback can even supply the number of interactions still available for the user. Given the known timer interval set by the user, an ‘until-when’ parameter can be displayed, specifying the time or date until which the device can still operate. This will also allow the user to increase a default timer setting to achieve a longer working period. The extension allows an application to use a timer service to send a poll request, allows the protocol to be either server or client driven, within timing established by the user or by the application designer, which can in turn consider power and critical resources (i.e. bandwidth, latency).

The present invention allows better usage of small, power limited devices by introducing an efficient power conservation protocol. Use of the subject invention makes wireless pervasive devices more practical by extending their ‘listen’ time and can contribute to the proliferation of pervasive devices with wireless connections.

The present invention can be widely used in the many new, small wireless and mobile communications devices being created, and in the wide variety of systems being built to support them and provide them with content.

The power consumption method and protocol of the present invention has application to many small portable wireless devices such as powered badges, wireless toys, wireless sensors, wireless information access devices, digital cell phones, WAP phones, 2-way pagers, interactive remote controls, personal digital assistants, laptops and other mobile computers, intelligent objects and other pervasive devices.

An interactive remote control protocol and context awareness can greatly expand the utility of the present invention. For example, if a request for information from a user transceiver was received by several nearby server transceiver devices, such as a TV set, an information Kiosk and a soda vending machine, the protocol can provide the user with a choice about which server transceiver device should be addressed in a universal interactive remote control protocol.

The foregoing objects and advantages of the present invention for a power optimized, request response communication protocol with timer mechanism to enforce client to generate request may be more readily understood by one skilled in the art with reference being had to the following detailed description of several preferred embodiments thereof, taken in conjunction with the accompanying drawings wherein:

The FIGURE illustrates a logic flow diagram for a preferred embodiment of a power-optimized, asymmetric two-way request-response communication protocol or method for providing communication between at least one client transceiver and at least one server while providing power management and conservation of power at the client transceiver.

The Figure illustrates a logic flow diagram for a preferred embodiment of a power-optimized request response communication protocol with timer mechanism to enforce client to generate request. The logic flow diagram illustrates an asymmetric two-way request-response communication protocol or method for providing communication between at least one client transceiver and at least one server while providing power management and conservation of power at the client transceiver.

The client transceiver is maintained in a power-off state until the client transceiver initiates a request at 10 for a communication with the server and enters a power-on state at 12. The server transceiver transmits the requested information to the client transceiver which receives the requested information, and then returns to a power-off state at 14. The server reply can specify a time-out period at 16, and if not, the procedure ends at 18.

The server transceiver stays in a listening mode and waits for a client request for information, and the server transceiver does not transmit unsolicited messages to the client transceiver.

If the client transceiver has a time-out period, and the time-out period expires before another user request for transmission at 26, then a timer event at 28 initiates the transmission of a communication to the server.

If the user/application specifies a time-out period, then at 20 the client transceiver checks if the server specified time-out period is less than the user/application-specified time-out period. If not, the time-out period is set to the server-specified time-out period at 24. If yes, the time-out period is set to the user/application-specified time-out period at 22. With either the server-specified or the user/application-specified time-out period, if the time-out period expires before another user request for transmission at 26, then a timer event at 28 transmits a request to the server. If the time-out period has not expired, the user can initiate a further request at 10.

In alternative embodiments, the client can define the time-out period, or the server can define the time-out period or the user/application can define the time-out period. In different embodiments, the user can override the time-out period defined by the server and set a different time-out period, or the server can override the time-out period defined by the user and set a different time-out period.

The method can also employ an interactive remote control protocol wherein the client transceiver can communicate with one of a plurality of different servers and the client selects one of the pluralities of servers that replied to the client transceiver request for information. This option is indicated in parentheses in block 12.

A working prototype has been implemented based on a simple narrow band transceiver. The transceiver has a serial interface through which it receives data that is being sent from the device to the air interface and transfers information received from the air interface back to the device. The transceiver is connected to a device through the serial interface. For Server, another transceiver is connected to one of the PC's COM ports.

The protocol works as follows:

The prototype system's client device is very efficient in its power consumption because the client shuts down its transceiver immediately after receiving a response from the server. The client device, working on a small off-the-shelf battery, was able to receive about 10 MB of data from the server. It is estimated that such amount of data will take a typical application a month or more to utilize.

One embodiment of such client is a Smart Card form factor device with a touch screen, a simple and inexpensive microcontroller, and a transceiver. A good power conservation scheme is essential for mass deployment in the consumer market. Ideally a device could operate for months without battery replacement, or even completely without a battery using solar cells for example.

While several embodiments and variations of the present invention for a power optimized request response communication protocol with timer widget to enforce client to generate request are described in detail herein, it should be apparent that the disclosure and teachings of the present invention will suggest many alternative designs to those skilled in the art.

Cohen, Benjamin M., Carmeli, Boaz

Patent Priority Assignee Title
10292120, Nov 05 2002 Microsoft Technology Licensing, LLC User-input scheduling of synchronization operation on a mobile device based on user activity
7809968, Jul 11 2007 International Business Machines Corporation Method and system for managing ecosystem sleep
8060064, Jun 07 2004 Microsoft Technology Licensing, LLC System and method for optimizing network communication in response to network conditions
8129866, May 23 2007 VEGA Grieshaber KG Mass coupling at clocked HF-elements
8200209, Feb 16 2005 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Power consumption debugging in mobile terminals
8224295, Apr 01 2005 Microsoft Technology Licensing, LLC System and method for optimizing network communication in response to network conditions
8412205, Nov 28 2007 Deutsche Telekom AG Method of reducing the power consumption in a mobile radio network with at least two supply layers
8498623, Jun 07 2004 Microsoft Technology Licensing, LLC System and method for optimizing network communication in response to network conditions
8621075, Apr 27 2011 Seven Metworks, Inc. Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
8688826, Nov 30 2009 Google Technology Holdings LLC Mobile computing device and method with intelligent pushing management
8700728, Nov 01 2010 Seven Networks, Inc. Cache defeat detection and caching of content addressed by identifiers intended to defeat cache
8750123, Mar 11 2013 Seven Networks, Inc. Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network
8761756, Jun 21 2005 SEVEN Networks International Oy Maintaining an IP connection in a mobile network
8762489, Apr 27 2011 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
8774844, Jun 01 2007 SEVEN NETWORKS INC Integrated messaging
8775631, Jul 13 2012 Seven Networks, Inc Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
8782222, Nov 01 2010 Seven Networks Timing of keep-alive messages used in a system for mobile network resource conservation and optimization
8799410, Jan 28 2008 SEVEN NETWORKS INC System and method of a relay server for managing communications and notification between a mobile device and a web access server
8805425, Jun 01 2007 Seven Networks, Inc Integrated messaging
8811952, Jan 08 2002 Seven Networks, Inc. Mobile device power management in data synchronization over a mobile network with or without a trigger notification
8812695, Apr 09 2012 Seven Networks, Inc Method and system for management of a virtual network connection without heartbeat messages
8832228, Apr 27 2011 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
8838744, Jan 28 2008 Seven Networks, Inc Web-based access to data objects
8838783, Jul 26 2010 Seven Networks, Inc Distributed caching for resource and mobile network traffic management
8839412, Apr 21 2005 Seven Networks, Inc. Flexible real-time inbox access
8843153, Nov 01 2010 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
8849251, Jun 07 2004 Microsoft Technology Licensing, LLC System and method for optimizing network communication in response to network conditions
8862657, Jan 25 2008 Seven Networks, Inc Policy based content service
8868753, Dec 06 2011 Seven Networks, Inc. System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
8874761, Jan 25 2013 Seven Networks, Inc.; Seven Networks, Inc Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
8903954, Nov 22 2010 Seven Networks, Inc. Optimization of resource polling intervals to satisfy mobile device requests
8909759, Oct 10 2008 Seven Networks, Inc Bandwidth measurement
8934414, Dec 06 2011 Seven Networks, Inc. Cellular or WiFi mobile traffic optimization based on public or private network destination
8977755, Dec 06 2011 Seven Networks, Inc. Mobile device and method to utilize the failover mechanism for fault tolerance provided for mobile traffic management and network/device resource conservation
9002828, Jan 02 2009 Seven Networks, Inc Predictive content delivery
9009250, Dec 07 2011 Seven Networks, Inc Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation
9021021, Dec 14 2011 Seven Networks, Inc Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system
9037173, Nov 05 2002 Microsoft Technology Licensing, LLC User-input scheduling of synchronization operation on a mobile device based on user activity
9043433, Jul 26 2010 SEVEN NETWORKS INC Mobile network traffic coordination across multiple applications
9049179, Jul 26 2010 Seven Networks, Inc Mobile network traffic coordination across multiple applications
9065765, Jul 22 2013 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
9084105, Apr 19 2011 Seven Networks, Inc. Device resources sharing for network resource conservation
9173128, Dec 07 2011 Seven Networks, LLC Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
9208123, Dec 07 2011 Seven Networks, Inc Mobile device having content caching mechanisms integrated with a network operator for traffic alleviation in a wireless network and methods therefor
9325662, Jan 07 2011 Seven Networks, Inc System and method for reduction of mobile network traffic used for domain name system (DNS) queries
9608968, Jan 08 2002 Seven Networks, LLC Connection architecture for a mobile network
9838985, Nov 05 2002 Microsoft Technology Licensing, LLC User-input scheduling of synchronization operation on a mobile device based on user activity
9843638, Aug 15 2013 Fujitsu Limited Information processing system, information processing apparatus, and computer-readable recording medium having stored therein control program for information processing apparatus
Patent Priority Assignee Title
4817131, Jun 20 1986 BADGER METER, INC , 4545 WEST BROWN DEER ROAD, MILWAUKEE, WI , 53223, A CORP OF WI Automatic meter reading system
5423045, Apr 15 1992 INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NY System for distributed power management in portable computers
6470290, Aug 31 1999 ANPA INC Device having an improved apparatus and method for setting power management mode
6604045, Nov 01 2001 Nissan Motor Co., Ltd. Navigation system, data server, traveling route establishing method and information providing method
6665802, Feb 29 2000 MEDIATEK INC Power management and control for a microcontroller
6745937, Jun 07 1995 MOCE SOLUTIONS LIMITED LIABILITY COMPANY Low-power hand-held transaction device
6775687, Oct 12 1999 SNAP INC Exchanging supplemental information fields between a client and a server
6775772, Oct 12 1999 LENOVO INTERNATIONAL LIMITED Piggy-backed key exchange protocol for providing secure low-overhead browser connections from a client to a server using a trusted third party
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 31 2001International Business Machines Corporation(assignment on the face of the patent)
Dec 10 2001CARMELI, BOAZInternational Business Machines CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0125500280 pdf
Dec 10 2001COHEN, BENJAMIN M International Business Machines CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0125500280 pdf
Dec 30 2013International Business Machines CorporationTWITTER, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0320750404 pdf
Oct 27 2022TWITTER, INC MORGAN STANLEY SENIOR FUNDING, INC SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0618040001 pdf
Feb 20 2025MORGAN STANLEY SENIOR FUNDING, INC X CORP F K A TWITTER, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0706700857 pdf
Date Maintenance Fee Events
Jan 10 2006ASPN: Payor Number Assigned.
Jul 17 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 01 2013REM: Maintenance Fee Reminder Mailed.
Feb 27 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 27 2014M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
Sep 21 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 21 20094 years fee payment window open
Sep 21 20096 months grace period start (w surcharge)
Mar 21 2010patent expiry (for year 4)
Mar 21 20122 years to revive unintentionally abandoned end. (for year 4)
Mar 21 20138 years fee payment window open
Sep 21 20136 months grace period start (w surcharge)
Mar 21 2014patent expiry (for year 8)
Mar 21 20162 years to revive unintentionally abandoned end. (for year 8)
Mar 21 201712 years fee payment window open
Sep 21 20176 months grace period start (w surcharge)
Mar 21 2018patent expiry (for year 12)
Mar 21 20202 years to revive unintentionally abandoned end. (for year 12)