A remote data acquisition and transmission system and method are disclosed. A plurality of application controllers are interfaced with remote beverage dispensing equipment from which operation data is acquired by the application controllers. The application controllers communicate with an application host via a local area network, and the application host can communicate with a network operations center using a wide area network interface.
|
1. A remote data acquisition and transmission system for beverage dispensing equipment, comprising:
first and second application controllers, the first application controller interfacing with a first beverage dispensing device to acquire operation data from the first beverage dispensing device, and the second application controller interfacing with a second beverage dispensing device to acquire operation data from the second beverage dispensing device;
an application host communicating with at least one of the first and second application controllers via a local area network (lan) to receive the operation data from the first and second beverage dispensing devices;
a wide area network (wan) interface in the application host for communicating with a network operations center;
the first and second application controllers and the application host operable to autoconfigure the local area network;
a first transceiver in the first application controller that transmits the operation data from the first beverage dispensing device to the second beverage dispensing device;
a second transceiver in the second application controller that receives the operation data from the first beverage dispensing device and relays the operation data from the first beverage dispensing device to the application host on behalf of the first application controller, wherein the second transceiver also transmits the operation data from the second beverage dispensing device to the application host;
the network operations center communicating with the application host via the wan to receive the operation data acquired by the first and second application controllers; and
the network operations center transmitting data for the first and second beverage dispensing devices via the wan to the application host, the application host transmitting the data to at least one of the first and second application controllers via the lan, and the first and second application controllers providing the data to the first and second beverage dispensing devices, respectively.
15. A remote data acquisition and transmission system for beverage dispensing devices, comprising:
at least first and second application controllers, the first application controller interfacing with a beverage dispensing controller associated with a beverage dispensing device from which operation data is acquired by the first application controller, and the second application controller interfacing with a beverage dispensing controller associated with a beverage dispensing device from which operation data is acquired by the second application controller;
an application host communicating with at least one of the application controllers via at least one local area network to receive the operation data from the associated beverage dispensing devices, the application host comprising a wide area network interface for communicating with a network operations center;
the network operations center communicating with the application host via the wide area network to receive the operation data acquired by the first and second application controllers from the associated beverage dispensing devices;
the first and second application controllers and the application host operating to autoconfigure the local area network upon initialization;
the first application controller operating as a relay when necessary to establish communication between the application host and the second application controller, such that the first application controller relays the operation data from the associated beverage dispensing device to the application host on behalf of the second application controller;
the network operations center maintaining a database storing the operation data from the associated beverage dispensing devices and providing third party access to the database;
the network operations center communicating with the application host via the wide area network to transmit operation data to the first and second application controllers for the associated beverage dispensing devices, the operation data including configuration information, firmware and other information used to operate the associated beverage dispensing devices; and
the network operations center having at least one device monitoring and control unit.
2. The system of
the lan is supported by wireless transmissions;
the application host and each of the first and second application controllers comprises a wireless lan transceiver for communicating via the lan; and
the application host comprises a hand-held portable computer.
3. The system of
the local area network is supported by wire-line transmissions; and
the application host and each application controller comprise a wire-line lan transceiver for communicating via the local area network.
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
11. The system of
13. The system of
14. The system of
16. The system of
the local area network supported by wireless transmissions; and
the application host and each application controller comprise a wireless lan transceiver for communicating via the local area network.
17. The system of
the local area network supported by wire-line transmissions; and
the application host and each application controller comprise a wire-line lan transceiver for communicating via the local area network.
18. The system of
19. The system of
20. The system of
21. The system of
22. The system of
23. The system of
24. The system of
25. The system of
|
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/224,097 filed Aug. 9, 2000 and entitled “System and Method for Monitoring and Control of Beverage Dispensing Equipment”; and
This application is a continuation-in-part of U.S. patent application Ser. No. 09/267,254 filed Mar. 12, 1999 entitled “Remote Data Acquisition and Transmission System” which claims priority to U.S. Provisional Patent Application Ser. No. 60/078,645, filed Mar. 19, 1998, and entitled “Remote Data Acquisition and Transmission System for the Monitoring and Control of Vending Machines” and U.S. Provisional Patent Application Ser. No. 60/099,434, filed Sep. 8, 1998, and entitled “Remote Data Acquisition and Transmission System.”
The present invention relates generally to the field of remote data acquisition. More particularly, the present invention relates to a remote data acquisition and transmission system and method for the monitoring and control of beverage dispensing equipment.
Over the past decade, beverage dispensing equipment manufacturers have developed new and innovative beverage dispensing equipment in response to market needs and beverage equipment operator demands. These innovations have been, for the most part, adopted by the beverage dispensing industry. This trend has generally been influenced by the accelerating rate of technological innovation in the electronic and electro-mechanical component industry. The availability of new technologies has given beverage dispensing equipment manufacturers the tools to address many of the requirements of beverage dispensing operators. Advances in electronics are now enabling the use of computer controlled mixing of fountain drinks in some beverage dispensing equipment. Some of the latest liquor dispensing devices now make it possible for operators to download sales, inventory, and machine health information on-site onto portable computers. Although these computerized systems make it easier for operators to gather and analyze data, they generally do not provide real time capabilities that are needed to make a major impact on the overall business of using, maintaining and monitoring beverage dispensing equipment.
In accordance with the present invention, a remote data acquisition and transmission system is disclosed that provides advantages over previously developed remote data acquisition systems. In one embodiment, the remote data acquisition and transmission system may be used for monitoring and control of beverage dispensing equipment. The remote data acquisition and transmission system preferably allows beverage dispensing equipment operators to gather data from the field without having to manually retrieve the data from the beverage dispensing equipment and to transmit data to the field such as price changes without having to visit each beverage dispensing device. This ability generally leads directly to improved sales, lower operational costs and better equipment performance by enhancing a manager's ability to direct operations and react quickly in order to correct problems.
According to one aspect of the present invention, the system preferably includes one or more application controllers and an application host. The application controller or controllers are preferably interfaced with remote beverage dispensing equipment from which operation data may be acquired and information transmitted thereto by each application controller. Each application controller may communicate with an application host via a local area network, and the application host may communicate with a network operations center preferably using a wide area network interface. The system may include a local area network (LAN) with one unit and its associated application host or multiple units and associated application hosts.
According to another aspect of the present invention, a remote data acquisition and transmission system is provided for beverage dispensing equipment. This system preferably includes a plurality of application controllers. Each application controller preferably interfaces, via a serial interface to a beverage dispensing controller, with a beverage dispensing device from which operation data may be acquired by the application controller. The system may also include an application host that communicates with the application controllers via a local area network. The application host preferably includes a wide area network interface for communicating with a network operations center. The network operations center preferably communicates with the application host via a wide area network to receive the operation data acquired by the application controllers and to manage outgoing messages and/or data. Further, the application controllers and the application host may operate to autoconfigure the local area network upon initialization, and the application controllers may operate as relays when necessary to establish communication between the application host and other application controllers. In addition, the network operation center may maintain a database storing the operation data and providing secure third party access to the database.
According to a further aspect of the present invention, a method is provided for remote data acquisition and transmission. The method preferably includes interfacing a plurality of application controllers with remote beverage dispensing equipment from which operation data may be acquired by the application controllers. The method preferably further includes communicating between an application host and the application controllers via a local area network, and communicating between the application host and a network operations center using a wide area network interface.
In another aspect of the present invention, remote data acquisition and transmission system for beverage dispensing equipment is provided. The system preferably includes an application controller and an application host operably coupled to the application controller. In addition, the application controller is preferably coupled to and preferably interfaces with remote beverage dispensing equipment from which operating data may be acquired by the application controller. A wide area network interface for communicating with a network operations center is preferably included on the application host in such an aspect.
Technical advantages of the present invention may include the use of local wire-line and/or local-area wireless transmissions to implement a local area network (LAN) between multiple beverage dispensing devices. This provides a remote data acquisition system for beverage dispensing equipment that overcomes the limitations of current beverage dispensing systems by establishing a low-cost LAN that can then communicate externally using a long-range wireless or wire-line communication system. For example, a narrowband PCS wireless link (e.g., wireless two-way paging network) can be used between a remote beverage dispensing equipment LAN and a network operations center to establish an efficient and low-cost wide area network (WAN) which connects remote LANs together to form a larger network. The present invention provides systems and methods to manage devices that collect data from distributed corporate assets such as beverage dispensing equipment. The systems and methods preferably further collect desired data from such devices, store and/or archives such data and allows generation of selected reports to optimize performance of the corporate assets.
Additional technical advantages should be readily apparent from the drawings and description.
A more complete understanding of the present invention and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
The preferred embodiment of the present invention and its advantages are best understood by referring to
According to the present invention, each beverage dispensing device 14 may include an application controller 18 coupled to and interfacing with beverage dispensing hardware and inventory 16. Many beverage dispensing devices 14 are equipped with electronics for controlling beverage dispensing operations as well as tracking some beverage dispensing events such as money received, change given and quantity of dispenses from each selection. Application controllers 18 may communicate with such embedded electronics as well as be equipped to directly sense other beverage dispensing events and beverage dispensing equipment parameters (e.g. compressor performance, carbon dioxide level, mixture ratios, temperature of dispenses, etc.). Such monitoring of beverage dispensing equipment enables the present invention to manage syrup and other beverage ingredients, mechanical problems with the beverage dispensing equipment, etc. in an attempt to ensure product and/or equipment availability. Application controllers 18 may also communicate with one another and the application host 22 preferably via onboard wire-line interfaces or wireless transceivers using wire-line or wireless transmissions respectively.
The term “wire-line transmissions” may be used to refer to all types of electromagnetic communications over wires, cables, or other types of conduits. Examples of such conduits include, but are not limited to, metal wires and cables made of copper or aluminum, fiber-optic lines, and cables constructed of other metals or composite materials satisfactory for carrying electromagnetic signals. Wire-line transmissions may be conducted in accordance with teachings of the present invention over electrical power lines, electrical power distribution systems, building electrical wiring, conventional telephone lines, T-1 lines, T-3 lines, ISDN lines, ADSL, etc.
The term “wireless transmissions” may be used to refer to all types of electromagnetic communications which do not require a wire, cable, or other types of conduits. Examples of wireless transmissions for use in local area networks (LAN) include, but are not limited to, radio frequencies, especially the 900 MHZ and 2.4 GHz bands, infra-red, and laser. Examples of wireless transmissions for use in wide area networks (WAN) include, but are not limited to, narrowband personal communications services (PCS), broadband PCS, circuit switched cellular, and cellular digital packet data (CDPD),and wide area wireless data, etc.
Together, application controllers 18 and application host 22 form a LAN that may be supported by wire-line and/or wireless transmissions 20. In addition, application controllers 18 may also act as repeaters in situations where application host 22 cannot directly communicate with a particular application controller 18 while another application controller 18, which does have an established communication link with application host 22, may directly communicate.
Application host 22 preferably acquires data captured by application controllers 18 and can package and communicate that data across an external network 24 using a wide area network (WAN) interface. Application host 22 may be installed together with application controller 18 inside a beverage dispensing device 14 or housed separately in another location. In the event that the application host 22 is placed inside a beverage dispensing device 14 together with an application controller 18, it may be possible to share some of the electronic components between them, the LAN transceiver for example, in order to reduce the cost of the hardware. In such an embodiment, the application host 22 and application controller 18 inside the same beverage dispensing device 14, may communicate with each other over a hardwired interface between the two components. Alternatively, the application host 22 and application controller 18 may be designed to be a single integrated component within a beverage dispensing device 14. Furthermore, an application host 22 may be used whose function may include monitoring the application controllers 18. For example, such an application host 22 could take the form of a hand-held portable computer 23 to be carried by service or delivery personnel in order to query the application controllers 18 without having to interact via the WAN interface.
The WAN interface 22 may be implemented in one of a number of ways. In particular, WAN interface 22 may be designed to support a wide area network 24 that can be implemented via wire-line or wireless transmissions. If a wireless narrowband PCS paging network is used to implement the WAN, messages from application host 22 may be communicated as digital messages through the pager network and stored in one or more dedicated message mailboxes provided by the wireless network operator. These mailboxes may be securely accessed, for example, through an Internet-based connection.
As shown in
In the embodiment of
At network operations center 26, a client access point 32 preferably provides access from a client interface subsystem (CI) 34 across external network 24. In one implementation, client access point 32 may be implemented as a web-based interface allowing user access from a client computer across a network such as the Internet. Other implementations may include providing a direct-dial connection between client interface subsystem 34 and client access point 32. Once connected, a user may use client interface subsystem 34 to obtain information from database 30 based upon data acquired from beverage dispensing sites 12. Further, users may be provided with extended services such as trend information developed by mining and analyzing database 30.
According to the present invention, system 10 of
Application controller 18 preferably interfaces with beverage dispensing hardware 16. As shown, this interface may include a serial interface 56 (e.g., Multi-Drop Bus or DEX Port) that communicates with BMC 54 using a standard data protocol (e.g. DEX/UCS) implemented by many conventional vending machines. The interface may also include direct sensing of components 50 using digital sensors 58 and analog sensors 60. Analog sensors 60 may be coupled to analog-to-digital (A/D) converters 62 to convert analog measurements to digital signals. A central microprocessor or microcontroller 64 may be coupled to and interface with serial interface 56, digital sensors 58 and A/D converters 62 to acquire data relating to the operation of beverage dispensing hardware 16. Application controller 18 may also include RFID transceiver device 65 which is preferably operable to directly scan inventory 16 to obtain inventory readings. For example, RFID 65 may generate a radio signal that to be received by passive transponders attached to inventory items. These transponders can then reply with unique product identifiers and inventory status data to the application controller 18 such that inventory levels may be determined for each product. Inventory levels may be obtained without the use of RFID 65. For example
Microprocessor 64 is preferably operable to communicate inventory, event and other data using a wire-line or wireless LAN transceiver 66 that sends the data via wire-line or wireless transmissions respectively. As discussed above, microprocessor 64 may transmit/receive data to/from an application host located at beverage dispensing site 12 or to/from a hand-held portable computer acting as an application host. Microprocessor 64 may also communicate with an electronic lock driver 69 which is preferably operable to interface with an electronic lock 71. In the event that an application controller is collocated with an application host within a beverage dispensing device 14, then the two may communicate using a hardware interface bus 67 which allows the two devices to share electronic components, for example, the LAN transceiver 66.
Further, as shown, application controller 18 may include various types of memory units such as random access and read-only memory (RAM/ROM) 70, FLASH memory and/or Electrically Erasable/Programmable read-only-memory (Flash memory/EEPROM) 72 for storing application code and beverage dispensing data. The Flash memory 72 may be remotely programmed using the LAN and/or the WAN in the event that its data becomes corrupted or requires upgrade. The present invention is not limited to any specific type of memory unit. Further, application controller 18 may include a power supply 68, a backup battery 74 as well as a heater 76 (if needed).
Microprocessor 80 is preferably operable to receive data captured by application controllers 18, process the data and store the data in a mass storage device 86 (e.g., hard drive, solid-state recorder, FLASH memory). Microprocessor 80 may then retrieve data from storage device 86 and communicate data externally using a WAN wireless transceiver 92 or WAN wire-line interface 94 communicating via wireless or wire-line transmissions respectively. In particular, wireless transceiver 92 may be used to implement a digital paging network based communication scheme across a narrowband PCS network as mentioned above or a wide area wireless network. Application host 22 may also include random access and read-only memory (RAM/ROM) 96 and/or FLASH memory 98 for storing application code and beverage dispensing data. Flash memory 72 may be remotely programmed using a WAN in the event that its data becomes corrupted or requires upgrade. The present invention is not limited to any specific type of memory unit. Further, application host 22 may include a power supply 104, a back-up power source 100 (e.g., battery) as well as a heater 102 (if needed). Some of the components of application host 22 may be unnecessary if application host 22 and an application controller 18 are interfaced directly inside a beverage dispensing device 14.
According to the present invention, beverage dispensing device 15 preferably includes an application controller 19, similar in form and function to application controller 18, coupled to and interfacing with beverage dispensing hardware and inventory 16. Many beverage dispensing devices 15 are equipped with electronics for controlling beverage dispensing operations as well as tracking some beverage dispensing events such as money received, change given and quantity of dispenses from each selection. As described above, application controllers 18 and/or 19 may communicate with such embedded electronics as well as be equipped to directly sense other beverage dispensing events and beverage dispensing equipment and inventory parameters (e.g. compressor performance, carbon dioxide level, mixture ratios, temperature of dispenses, pressure, weight and any other parameters used with beverage dispensing equipment). Such monitoring of beverage dispensing equipment enables the present invention to manage syrup and other beverage ingredients, mechanical problems with the beverage dispensing equipment, etc. in an attempt to ensure product and/or equipment availability from single or multiple beverage dispersing device dispensing sites 12.
An application host 25, similar in form and function to application host 22, is preferably installed together with application controller 19 inside beverage dispensing device 15. As mentioned above, in the event that an application host 25 is placed inside a beverage dispensing device 15 together with an application controller 19, it may be possible to share some of the electronic components between them to reduce the cost of the hardware. In such an embodiment, the application host 25 and application controller 19 inside the same beverage dispensing device 15, may communicate with each other over a hardwired interface between the two components, via wireless transceivers and transmissions, as well as via other communication schemes. Alternatively, application host 25 and application controller 19 may be designed to be a single integrated component within beverage dispensing device 15. Application host 25, similar to application host 22, preferably acquires data captured by application controller 19 and may package and communicate that data across an external network 24 using a wide area network (WAN) interface. Furthermore, an application host 25 may be used whose function may include monitoring the application controllers 19. For example, a hand-held portable computer 23 carried by service or delivery personnel may be employed to query the application controllers 19.
Similar to the discussion concerning WAN interface 22 above, WAN interface 25 may be implemented in one of a number of ways. In particular, WAN interface 25 may be designed to support a wide area network 24 that can be implemented via wire-line or wireless transmissions. If a wireless narrowband PCS paging network is used to implement the WAN, messages from application host 25 may be communicated as digital messages through the pager network and stored in one or more dedicated message mailboxes provided by the wireless network operator. These mailboxes may be securely accessed, for example, through an Internet-based connection.
As shown in
In the embodiment of
Similar to
Application controller 19 preferably interfaces with beverage dispensing hardware 16. As shown, this interface may include a serial interface 56 (e.g., Multi-Drop Bus or DEX Port) that communicates with BMC 54 using a standard data protocol (e.g. DEX/UCS) implemented by many conventional vending machines. The interface may also include direct sensing of components 50 using digital sensors 58 and analog sensors 60. Analog sensors 60 may be coupled to analog-to-digital (A/D) converters 62 to convert analog measurements to digital signals. A central microprocessor or microcontroller 64 may be coupled to and interface with serial interface 56, digital sensors 58 and A/D converters 62 to acquire data relating to the operation of beverage dispensing hardware 16.
Microprocessor 64 is preferably operable to communicate inventory, event and other data using a wire-line or wireless transceiver (not expressly shown) that sends the data via wire-line or wireless transmissions respectively. As discussed above, microprocessor 64 may transmit/receive data to/from an application host 25 as well as to/from a hand-held portable computer 23 acting as an application host 25. For some applications microprocessor 64 may also communicate with an electronic lock driver 69 which is preferably operable to interface with an electronic lock 71. For other applications an electronic lock and electronic lock driver may not be used with beverage dispensing equipment. In the event that an application controller 19 is collocated with an application host 25 within a beverage dispensing device 15, then the two may communicate using a hardware interface bus 67 which allows the two devices to share electronic components, for example, a transceiver.
Further, as mentioned above, application controller 19 may include various types of memory units such as random access and read-only memory (RAM/ROM) 70, FLASH memory and/or Electrically Erasable/Programmable read-only-memory (Flash memory/EEPROM) 72 for storing application code and beverage dispensing data. The Flash memory 72 may be remotely programmed using the LAN and/or the WAN in the event that its data becomes corrupted or requires upgrade. The present invention is not limited to any specific type of memory unit. Further, application controller 19 may include a power supply 68, a backup battery 74 as well as a heater 76 (if needed).
Microprocessor 80 is preferably operable to receive data captured by application controllers 19, process the data and store the data in a mass storage device 86 (e.g., hard drive, solid-state recorder, FLASH memory). Microprocessor 80 may then retrieve data from storage device 86 and communicate data externally using a WAN wireless transceiver 92 or WAN wire-line interface 94 communicating via wireless or wire-line transmissions respectively. In particular, wireless transceiver 92 may be used to implement a digital paging network based communication scheme across a narrowband PCS network as mentioned above. Application host 25 may also include random access and read-only memory (RAM/ROM) 96 and/or FLASH memory 98 for storing application code and beverage dispensing data. Flash memory 72 may be remotely programmed using a WAN in the event that its data becomes corrupted or requires upgrade. The present invention is not limited to any specific type of memory unit. Further, application host 25 may include a power supply 104, a back-up power source 100 (e.g., battery) as well as a heater 102 (if needed). Some of the components of application host 25 may be unnecessary if application host 25 and an application controller 19 are interfaced directly inside beverage dispensing device 15.
User terminal 132 is preferably operable to provide a local user with a graphical user interface 143 to accomplish a connection to client access point 32 of network operations center 26. Database 134 may locally store information obtained from network operations center 26 regarding the user's beverage dispensing device operations. Further, user applications and database middleware 142 may allow communication with existing legacy applications that the user may have. Further, graphical user interface 143 may include a web browser-type interface. In this case, user terminal 132 may be a computer with a web browser and an Internet connection provided by the network interface 130.
In
Creation and maintenance of the network by application host 152 may be conducted in any number of ways. One such straightforward approach is discussed below. At activation, application host 152 may transmit a broadcast signal requesting all application controllers 154, 156 and 158 to respond. Application host 152 may then build a table of application controllers 154, 156 and 158 in communication range. Application host 152 may then send a broadcast message requesting that each application controller 154, 156 and 158 in turn transmit a broadcast message requesting a response from all other application controllers 154, 156 and 158 in their communication range such that each of the application controllers 154, 156, and 158 may create its own table. The information in these tables will preferably be transmitted to application host 152. Application host 152 may then compare its initial table with all the tables sent in by the individual application controllers 154, 156 and 158. Application host 152 may then identify any application controllers 154, 156 and 158 that are not within its own primary network perimeter (communication range) and may build a routing table for application controllers 154, 156 and 158 not in communication range. This routing information will then be transmitted to each application controller 154, 156 and 158 on a relay (routing) path. From then on, data being transmitted to an application controller 154, 156 and 158 outside of application host 152's primary network perimeter will contain appropriate routing information, and vice-versa. This type of network does not preclude the possibility of any single application controller 154, 156 and 158 being totally out of network coverage but does provide for a plug-and-play network creation process for those machines within primary and secondary network boundaries. Application controllers 154, 156 and 158 completely out of range may need to be moved to a more suitable location.
One example of multiple relay capabilities provided by the present invention is shown in
In architecture 150 of
In general, the present invention provides a remote data acquisition system for monitoring and control of beverage dispensing equipment that includes a computer controlled application host located at beverage dispensing sites 12. The host may include a wire-line interface or wireless transceiver through which a communication link with a remote computer can be established. The host may also include a wire-line interface and/or wireless transceiver through which the host can communicate with a plurality of beverage dispensing devices 14 and/or a single beverage dispensing device 15 at the beverage dispensing site 12. Each beverage dispensing device 14 and/or 15 may include a microprocessor controlled set of electronics that performs the actual data acquisition functions from the beverage dispensing device 14 and/or 15 and that interfaces with a wire-line interface or wireless communication transceiver for establishing a link to the beverage dispensing site host computer.
In the above embodiments, an application host preferably controls operations at each beverage dispensing site 12. In general, the application host can be implemented by software executing on a computer system that interfaces both to the beverage dispensing devices 14 and/or 15 on the LAN and/or the external network. In one embodiment, the software will preferably have a number of software modules or objects that perform the various functions of the application host. The application controllers may also be implemented by executing software which will have a number of software modules or objects that perform the various functions of the application controllers.
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made thereto without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
10005657, | Nov 01 2011 | PepsiCo, Inc. | Dispensing system and user interface |
10059581, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for dispensing consumable products |
10121306, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for facilitating consumer-dispenser interactions |
10212877, | Dec 08 2010 | BAYER CROPSCIENCE LP | Seed treatment facilities, methods, and apparatus |
10235644, | Dec 08 2010 | BAYER CROPSCIENCE LP | Retail point seed treatment systems and methods |
10435285, | Nov 01 2011 | PepsiCo, Inc. | Dispensing system and user interface |
10579958, | Nov 20 2013 | KOHL S, INC | Dispenser and associated tracking application |
10699512, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for providing dynamic ingredient matrix reconfiguration in a product dispenser |
10762469, | Nov 20 2013 | KOHL S, INC | Dispenser and associated tracking application |
10789605, | Dec 12 2012 | WeissBeerger Ltd. | Systems and methods for analysis of beverage dispensing data |
10934149, | Nov 01 2011 | PepsiCo, Inc. | Dispensing system and user interface |
11148927, | Jul 27 2018 | HYDRATION LABS, INC | Beverage dispensing |
11373140, | Nov 20 2013 | Kohl's, Inc. | Dispenser and associated tracking application |
11845643, | Sep 30 2015 | HYDRATION LABS, INC. | Beverage dispensing |
7591421, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
7710275, | Mar 16 2007 | Promega Corporation | RFID reader enclosure and man-o-war RFID reader system |
7748513, | Dec 21 2004 | T-ARTS COMPANY, LTD | Vending machine |
7784689, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
7791479, | Feb 21 2002 | Promega Corporation | RFID point of sale and delivery method and system |
7938326, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
7942321, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of disturbing products |
7967199, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
8015088, | Mar 03 2008 | The Coca-Cola Company | Methods for implementing a loyalty program |
8025228, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
8031072, | Mar 16 2007 | Promega Corporation | RFID reader enclosure and man-o-war RFID reader system |
8113425, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
8121917, | Mar 03 2008 | The Coca-Cola Company | Systems for implementing a loyalty program |
8231053, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
8234007, | Mar 18 2009 | Method and apparatus for use in a vending machine | |
8251258, | Sep 06 2007 | The Coca-Cola Company | Systems and methods of selecting and dispensing products |
8258961, | Mar 16 2007 | Promega Corporation | RFID reader enclosure and man-o-war RFID reader system |
8306655, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for providing portion control programming in a product forming dispenser |
8314965, | Mar 18 2010 | EMERGE HOLDINGS, LLC | Patrol device field installation notification method and system |
8330984, | Mar 18 2010 | EMERGE HOLDINGS, LLC | Field metering patrol system and method for metering and monitoring printers |
8340815, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for facilitating consumer-dispenser interactions |
8380347, | Oct 13 2008 | Method and apparatus for use in a vending machine | |
8463447, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for monitoring and controlling the dispense of a plurality of product forming ingredients |
8631093, | Mar 19 1998 | CRANE MERCHANDISING SYSTEMS, INC | Remote data acquisition, transmission and analysis system including handheld wireless equipment |
8645273, | Feb 21 2008 | The Coca-Cola Company | Systems and methods for providing a vending network |
8744618, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for facilitating consumer-dispenser interactions |
8744939, | Mar 03 2008 | The Coca-Cola Company | Methods for implementing a loyalty program |
8751037, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for dispensing consumable products |
8755932, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for facilitating consumer-dispenser interactions |
8788341, | Apr 27 2010 | CANTALOUPE, INC | Vending machine systems using standard inventory control system components |
8825538, | Mar 03 2008 | The Coca-Cola Company | Systems for implementing a loyalty program |
8851329, | Sep 06 2007 | The Coca-Cola Company | Systems and methods of selecting and dispensing products |
9014846, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for providing portion control programming in a product forming dispenser |
9051162, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for facilitating consumer-dispenser interactions |
9218704, | Nov 01 2011 | FIRSTBORN MULTIMEDIA CORP | Dispensing system and user interface |
9262377, | Oct 13 2008 | Method and apparatus for use in a vending machine | |
9378607, | May 14 2013 | IVP Holdings III LLC | Dynamic product presentation system and commerce platform |
9460440, | Feb 21 2008 | The Coca-Cola Company | Systems and methods for providing electronic transaction auditing and accountability |
9499382, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for monitoring and controlling the dispense of a plurality of product forming ingredients |
9670047, | Sep 06 2007 | The Coca-Cola Company | Systems and methods for providing dynamic ingredient matrix reconfiguration in a product dispenser |
9721060, | Apr 22 2011 | PROTAGONIST; PepsiCo, Inc | Beverage dispensing system with social media capabilities |
9861027, | Dec 08 2010 | BAYER CROPSCIENCE LP | Seed treatment systems and methods |
9877424, | Dec 08 2010 | BAYER CROPSCIENCE LP | Seed treatment facilities, methods and apparatus |
9918425, | Dec 08 2010 | BAYER CROPSCIENCE LP | Seed treatment facilities, methods, and apparatus |
9959511, | Dec 08 2010 | BAYER CROPSCIENCE LP | Retail point seed treatment systems and methods |
D748196, | Aug 27 2014 | COINSTAR SPV GUARANTOR, LLC; COINSTAR FUNDING, LLC; Coinstar Asset Holdings, LLC | Consumer operated kiosk for sampling products |
ER1226, | |||
ER1440, | |||
RE46326, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
RE47599, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
Patent | Priority | Assignee | Title |
3784737, | |||
4369442, | Sep 06 1977 | KASPER WIRE WORKS, INC | Code controlled microcontroller readout from coin operated machine |
4412292, | Feb 17 1981 | The Coca-Cola Company | System for the remote monitoring of vending machines |
4454670, | Mar 17 1981 | The Coca-Cola Company | Vending machine display panel with utility module therein |
4553211, | Aug 29 1979 | FUJI ELECTRIC CO , LTD | Vending machine with doors |
4661862, | Apr 27 1984 | RCA CORPORATION A CORP OF DE | Differential PCM video transmission system employing horizontally offset five pixel groups and delta signals having plural non-linear encoding functions |
4677565, | Feb 15 1985 | Brother Kogyo Kabushiki Kaisha | Automatic vending system |
4766548, | Jan 02 1987 | PEPSICO INC , A CORP OF NORTH CAROLINA | Telelink monitoring and reporting system |
4850009, | May 12 1986 | MCKESSON INFORMATION SOLUTIONS INC | Portable handheld terminal including optical bar code reader and electromagnetic transceiver means for interactive wireless communication with a base communications station |
4926996, | Dec 06 1983 | MEI, INC | Two way communication token interrogation apparatus |
4954697, | Oct 05 1985 | Sanden Corporation | Vending apparatus for self-service store |
5029098, | Jan 27 1989 | Coin Acceptors, Inc. | Vend space allocation monitor means and method |
5077582, | May 17 1988 | INTERNATIONAL PRINTER CORP | Photocopy monitoring system |
5090589, | Jun 22 1984 | The Coca-Cola Company | Coin-operated vending machine |
5091713, | May 10 1990 | Universal Automated Systems, Inc. | Inventory, cash, security, and maintenance control apparatus and method for a plurality of remote vending machines |
5117407, | Feb 11 1988 | Vending machine with synthesized description messages | |
5184179, | Apr 20 1989 | MONITEL PRODUCTS CORPORATION, A CORP OF DE | Photocopy monitoring system and method for monitoring copiers |
5207784, | Mar 09 1989 | Vending Management Services Limited | Vending machine with monitoring system |
5239480, | Feb 12 1991 | AIS Infonetics Inc. | Automatic ticket dispensing system |
5255819, | Feb 09 1990 | PECKELS, ARGANIOUS E | Method and apparatus for manual dispensing from discrete vessels with electronic system control and dispensing data generation on each vessel, data transmission by radio or interrogator, and remote data recording |
5282127, | Nov 20 1989 | SANYO ELECTRIC CO , LTD , A CORP OF JAPAN | Centralized control system for terminal device |
5337253, | Dec 07 1990 | Kaspar Wire Works, Inc. | Vending machine data processing system |
5339250, | Jun 15 1990 | Inn Room Systems, Inc. | Interactive network for remotely controlled hotel vending systems |
5371348, | Oct 16 1992 | Khyber Technologies Corporation | Portable device for handsfree data entry with variably-positionable display/scanner module detachable for handheld use |
5386360, | May 09 1989 | I O PORT SYSTEMS PARTNERSHIP | Peripheral data acquisition, monitor, and adaptive control system via personal computer |
5400246, | May 09 1989 | I O PORT SYSTEMS PARTNERSHIP | Peripheral data acquisition, monitor, and adaptive control system via personal computer |
5418945, | May 18 1992 | Freescale Semiconductor, Inc | File based and highly available hybrid database |
5445295, | Jan 17 1992 | Automated vending machine system for recorded goods | |
5505349, | Feb 09 1990 | PECKELS, ARGANIOUS E | Electronic dispensing heads |
5507411, | Feb 09 1990 | PECKELS, ARGANIOUS E | Electronic dispensing heads |
5561604, | Dec 08 1988 | HALLMARK CARDS, INC , A CORP OF MISSOURI | Computer controlled system for vending personalized products |
5608643, | Sep 01 1994 | General Programming Holdings, Inc.; GENERAL PROGRAMMING HOLDINGS, INC | System for managing multiple dispensing units and method of operation |
5620079, | Sep 04 1992 | Coinstar, LLC | Coin counter/sorter and coupon/voucher dispensing machine and method |
5649308, | Apr 12 1993 | Northrop Grumman Systems Corporation | Multiformat auto-handoff communications handset |
5671362, | Apr 04 1995 | Materials monitoring systems, materials management systems and related methods | |
5701252, | Aug 02 1993 | Distribution network system for products and information | |
5708223, | Jan 25 1996 | Leer Limited Partnership | Remote sensing ice merchandiser |
5769269, | Apr 28 1994 | Vending system | |
5787149, | Nov 16 1995 | Equitrac Corporation | Method and apparatus for managing remotely located document producing machines by using cellular radios |
5794144, | Mar 11 1994 | NUMEREX CORP | Methods and apparatus for communicating data via a cellular mobile radiotelephone system |
5805997, | Jan 26 1996 | Verizon Patent and Licensing Inc | System for sending control signals from a subscriber station to a network controller using cellular digital packet data (CDPD) communication |
5815652, | May 31 1995 | Hitachi, Ltd. | Computer management system |
5818603, | Mar 29 1996 | Ricoh Corporation | Method and system for controlling and communicating with machines using multiple communication formats |
5822216, | Aug 17 1995 | VENDONET, INC | Vending machine and computer assembly |
5841866, | Sep 30 1994 | Microchip Technology Incorporated; INTENCO S A | Secure token integrated circuit and method of performing a secure authentication function or transaction |
5842597, | Dec 10 1996 | CIGAR VENDING CORP | Environmentally controlled vending machine for humidity sensitive products |
5844808, | Mar 30 1994 | USA TECHNOLOGIES, INC | Apparatus and methods for monitoring and communicating with a plurality of networked remote vending machines |
5850187, | Mar 27 1996 | Intermec IP Corporation | Integrated electronic tag reader and wireless communication link |
5860362, | Sep 13 1996 | PEPC WORLDWIDE NV | Newspaper vending machine with online connection |
5862517, | Jan 17 1997 | SPORTSMEDIA TECHNOLOGY CORPORATION | System for re-registering a sensor during a live event |
5867688, | Feb 14 1994 | Metrologic Instruments, Inc | Data acquisition and retrieval system with wireless handheld user interface |
5892758, | Jul 11 1996 | QUALCOMM INCORPORATED, A DELAWARE CORPORATION | Concentrated subscriber wireless remote telemetry system |
5898904, | Oct 13 1995 | General Wireless Communications, Inc.; GENERAL WIRELESS COMMUNICATIONS INC | Two-way wireless data network having a transmitter having a range greater than portions of the service areas |
5905442, | Feb 07 1996 | Lutron Technology Company LLC | Method and apparatus for controlling and determining the status of electrical devices from remote locations |
5905882, | Feb 06 1995 | Sony Corporation | Electronic-equipment control apparatus, electronic-equipment control method and electronic-equipment control system |
5907491, | Aug 23 1996 | COMPUTATIONAL SYSTEMS, INC | Wireless machine monitoring and communication system |
5909183, | Dec 26 1996 | Google Technology Holdings LLC | Interactive appliance remote controller, system and method |
5915207, | Jan 22 1996 | Hughes Electronics Corporation | Mobile and wireless information dissemination architecture and protocols |
5918213, | Dec 22 1995 | Verizon Patent and Licensing Inc | System and method for automated remote previewing and purchasing of music, video, software, and other multimedia products |
5924081, | Nov 14 1995 | Audit Systems Company | Vending machine audit monitoring system with matrix interface |
5930770, | Dec 02 1996 | Portable computer and printer for tracking inventory | |
5930771, | Dec 20 1996 | Inventory control and remote monitoring apparatus and method for coin-operable vending machines | |
5941363, | Jul 31 1996 | CIMETRICS, INC | Vending data collection system |
5943042, | Oct 07 1994 | IBM Corporation | Control method and system for objects on a computer |
5949779, | May 08 1997 | Ericsson, Inc. | Multiprotocol adaptor for communication between CEBus devices and remote controllers over an ATM-based broadband access network |
5956487, | Oct 25 1996 | Hewlett-Packard Company; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P ; Agilent Technologies, Inc | Embedding web access mechanism in an appliance for user interface functions including a web server and web browser |
5957262, | Apr 27 1995 | Coinstar, LLC | Coin counter dejamming method and apparatus |
5959536, | Oct 15 1996 | U S PHILIPS CORPORATION | Task-driven distributed multimedia consumer system |
5959869, | Dec 03 1996 | The Coca-Cola Company | Vending machine controller and system |
5979757, | Sep 05 1996 | Symbol Technologies, LLC | Method and system for presenting item information using a portable data terminal |
5982325, | Nov 24 1997 | Racom Corporation | Method for tracking real time road conditions |
5982652, | Jul 14 1998 | American Power Conversion | Method and apparatus for providing uninterruptible power using a power controller and a redundant power controller |
5986219, | Jan 14 1998 | BAR BEVERAGE CONTROL, INC | Method of inventorying liquor |
5991749, | Sep 11 1996 | 736 Partners, LLC | Wireless telephony for collecting tolls, conducting financial transactions, and authorizing other activities |
5997170, | Nov 03 1997 | IDENT, INC | System and method for reporting vending status |
6003070, | Feb 25 1997 | IntervVoice Limited Partnership | E-mail system and interface for equipment monitoring and control |
6005850, | Apr 21 1995 | Hybrid Patents Incorporated | Hybrid access system with remote device monitoring scheme |
6012041, | Mar 01 1996 | I.S.R. (Logistics) Limited; I S R LOGISTICS LIMITED | Apparatus for the control of inventory |
6021324, | Jun 08 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | System and apparatus for controlling an appliance situated within a premises using premises recording unit |
6021437, | Jul 17 1996 | BULL S A | Process and system for real-time monitoring of a data processing system for its administration and maintenance support in the operating phase |
6029143, | Jun 06 1997 | BRIGHTPOINT, INC | Wireless communication product fulfillment system |
6032202, | Jan 06 1998 | Sony Corporation | Home audio/video network with two level device control |
6038491, | Nov 26 1997 | CRANE PAYMENT INNOVATIONS, INC | Monitoring and reporting system using cellular carriers |
6052667, | Mar 21 1997 | Inventor Holdings, LLC | Method and apparatus for selling an aging food product as a substitute for an ordered product |
6052750, | Jan 06 1998 | Sony Corporation | Home audio/video network for generating default control parameters for devices coupled to the network, and replacing updated control parameters therewith |
6056194, | Aug 28 1995 | USA Technologies, Inc. | System and method for networking and controlling vending machines |
6057758, | May 20 1998 | Koninklijke Philips Electronics N V | Handheld clinical terminal |
6061668, | Nov 10 1997 | Control system for pay-per-use applications | |
6068305, | Jul 09 1997 | CompX International Inc | Lock assembly for vending machines and method for locking and unlocking same |
6070070, | Jan 20 1998 | AERIS COMMUNICATIONS, INC | Method and apparatus for remote telephony switch control |
6072521, | Jun 15 1995 | Intel Corporation | Hand held apparatus for simulating two way connectivity for one way data streams |
6084528, | Sep 05 1996 | Symbol Technologies, LLC | Intranet scanning terminal system |
6085888, | Nov 10 1997 | Walker Digital, LLC | Method and apparatus for establishing and managing vending machine subscriptions |
6119100, | Sep 04 1996 | PayPal, Inc | Method and apparatus for managing the sale of aging products |
6124800, | Aug 21 1996 | Intermec IP CORP | Radio-frequency LAN and WAN communication system for route delivery applications or the like |
6131399, | Dec 04 1997 | M & E MANUFACTURING COMPANY, INC | Refrigerated vending machine |
6161059, | Sep 14 1998 | Inventor Holdings, LLC | Vending machine method and apparatus for encouraging participation in a marketing effort |
6163811, | Oct 21 1998 | HANGER SOLUTIONS, LLC | Token based source file compression/decompression and its application |
6181981, | May 15 1996 | Vending Management Services Limited | Apparatus and method for improved vending machine inventory maintenance |
6185545, | Nov 17 1998 | NOVENTIS, INC | Electronic payment system utilizing intermediary account |
6199753, | Sep 05 1996 | Symbol Technologies, LLC | Method and system for presenting item information using a portable data terminal |
6230150, | Oct 09 1997 | Inventor Holdings, LLC | Vending machine evaluation network |
6272395, | Nov 03 1997 | Ident, Inc. | System and method for reporting vending status |
6289453, | Apr 08 1996 | CERTIFIED MEASUREMENTS, LLC; CERTIFIED MEASUREMENT, LLC | Method and apparatus for secure measurement certification |
6304895, | Aug 22 1997 | AVOCENT REDMOND CORP | Method and system for intelligently controlling a remotely located computer |
6324520, | Jan 22 1998 | PayPal, Inc | Method and apparatus for collecting and applying vending machine demand information |
6338149, | Jul 31 1998 | WESTINGHOUSE ELECTRIC CO LLC | Change monitoring system for a computer system |
6339731, | Sep 03 1999 | CRANE PAYMENT INNOVATIONS, INC | Configurable vending machine audit module |
6341271, | Nov 13 1998 | SABIC INNOVATIVE PLASTICS IP B V | Inventory management system and method |
6356794, | Mar 13 1998 | GTech Corporation | Item dispensing system network |
6385772, | Apr 30 1998 | Texas Instruments Incorporated | Monitoring system having wireless remote viewing and control |
6437692, | Jun 22 1998 | SIPCO, LLC | System and method for monitoring and controlling remote devices |
6442532, | Nov 13 1995 | CITICORP CREDIT SERVICES, INC USA | Wireless transaction and information system |
6457038, | Mar 19 1998 | CRANE MERCHANDISING SYSTEMS, INC | Wide area network operation's center that sends and receives data from vending machines |
6462644, | Nov 19 1998 | COCA-COLA COMPANY, THE | Network of vending machines connected interactively to data-base building host |
6467685, | Apr 01 1997 | Cardis Enterprise international N.V.; CARDIS ENTERPRISE INTERNATIONAL N V | Countable electronic monetary system and method |
6502131, | May 27 1997 | EMC IP HOLDING COMPANY LLC | Directory enabled policy management tool for intelligent traffic management |
6505095, | Jun 19 2001 | CANTALOUPE, INC | System for providing remote audit, cashless payment, and interactive transaction capabilities in a vending machine |
6525644, | Aug 12 1998 | STAR LOCK SYSTEMS, INC | Electro-mechanical latch assembly |
6550672, | Sep 05 1996 | Symbol Technologies, LLC | Method and system for presenting item information using a portable data terminal |
6553336, | Jun 25 1999 | TELEMONITOR, INC | Smart remote monitoring system and method |
6581986, | Nov 21 2000 | TRITEQ LOCK AND SECURITY, L L C | Bayonet locking system and method for vending machines and the like |
6584309, | Dec 16 1999 | The Coca-Cola Company | Vending machine purchase via cellular telephone |
6604086, | Jul 20 1998 | USA Technologies, Inc.; USA TECHNOLOGIES, INC | Electronic commerce terminal connected to a vending machine operable as a telephone |
6604087, | Jul 20 1998 | USA Technologies, Inc.; USA TECHNOLOGIES, INC | Vending access to the internet, business application software, e-commerce, and e-business in a hotel room |
6606602, | Jul 20 1998 | USA Technologies, Inc.; USA TECHNOLOGIES, INC | Vending machine control system having access to the internet for the purposes of transacting e-mail, e-commerce, and e-business, and for conducting vending transactions |
6606605, | Jul 20 1998 | USA Technologies, Inc. | Method to obtain customer specific data for public access electronic commerce services |
6609113, | May 03 1999 | CHASE MAHATTAN BANK, THE | Method and system for processing internet payments using the electronic funds transfer network |
6704714, | May 03 1999 | CHASE MANHATTAN BANK, THE | Virtual private lock box |
6712266, | May 25 2001 | RADEMACHER, DARRELL G | Network transaction and cash-accepting add-value station |
6714977, | Oct 27 1999 | American Power Conversion Corporation | Method and system for monitoring computer networks and equipment |
6738811, | Mar 31 2000 | SUPER MICRO COMPUTER INC | Method and architecture for monitoring the health of servers across data networks |
6748296, | Apr 25 2002 | PayPal, Inc | Automated vending |
6772048, | Oct 03 2001 | Coin Acceptors, Inc. | Vending machine system |
6837436, | Sep 05 1996 | Symbol Technologies, LLC | Consumer interactive shopping system |
6867685, | May 10 1999 | Star Lock Systems, Inc. | Electro-mechanical lock assembly |
6900720, | Dec 27 2001 | Micro Enhanced Technology, Inc. | Vending machines with field-programmable locks |
20010002210, | |||
20020024420, | |||
20020169539, | |||
20030003865, | |||
20030009313, | |||
20030013482, | |||
20030128101, | |||
20040207509, | |||
20050161953, | |||
20050179544, | |||
DE4140450, | |||
EP564736, | |||
EP602787, | |||
EP817138, | |||
EP999529, | |||
EP1096408, | |||
FR2755776, | |||
JP10105802, | |||
JP4253294, | |||
JP6296335, | |||
JP9198172, | |||
WO219281, | |||
WO4475, | |||
WO4476, | |||
WO31701, | |||
WO8907807, | |||
WO9504333, | |||
WO9505609, | |||
WO9709667, | |||
WO9845779, | |||
WO9923620, | |||
WO9927465, | |||
WO9936751, | |||
WO9948065, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 03 2001 | DEFOSSE, ERIN M | Isochron Data Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012057 | /0592 | |
Aug 06 2001 | Isochron, LLC | (assignment on the face of the patent) | / | |||
Aug 24 2004 | Isochron Data Corporation | Isochron, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015098 | /0047 | |
Nov 10 2006 | Isochron, LLC | ISOCHRON, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018573 | /0384 | |
Dec 01 2008 | ISOCHRON INC | STREAMWARE CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022259 | /0175 | |
Dec 22 2009 | STREAMWARE CORPORATION | CRANE MERCHANDISING SYSTEMS, INC | MERGER SEE DOCUMENT FOR DETAILS | 024262 | /0932 |
Date | Maintenance Fee Events |
Sep 28 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 08 2013 | REM: Maintenance Fee Reminder Mailed. |
Mar 28 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 28 2014 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Nov 06 2017 | REM: Maintenance Fee Reminder Mailed. |
Apr 23 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 28 2009 | 4 years fee payment window open |
Sep 28 2009 | 6 months grace period start (w surcharge) |
Mar 28 2010 | patent expiry (for year 4) |
Mar 28 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 28 2013 | 8 years fee payment window open |
Sep 28 2013 | 6 months grace period start (w surcharge) |
Mar 28 2014 | patent expiry (for year 8) |
Mar 28 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 28 2017 | 12 years fee payment window open |
Sep 28 2017 | 6 months grace period start (w surcharge) |
Mar 28 2018 | patent expiry (for year 12) |
Mar 28 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |