A shred resistant, ultra-high molecular weight polyethylene, micromesh interproximal device produced by fibrillating and slitting stretched polyethylene film having a tensile-strength from between about 0.7 gpa and about 5 gpa, where said polyethylene has an intrinsic viscosity of from between about 5 and about 50 dl/g and wherein said resultant micromesh tape is coated with an oral care substance at from between about 10 and about 120 mg/yd.

Patent
   7025986
Priority
Feb 11 2002
Filed
Feb 11 2002
Issued
Apr 11 2006
Expiry
Jul 30 2023
Extension
534 days
Assg.orig
Entity
Large
13
79
EXPIRED
9. An ultra-high molecular weight polyethylene micromesh tape suitable for use as an interproximal device, wherein the dispensing means for said tape is selected from the group consisting of bobbin based dispensers and single dose dispensers. #5#
22. A method for treating interproximal and subgingival areas of the oral cavity with stannous fluoride, comprising regularly flossing with a micromesh interproximal device compression loaded with a saliva-soluble, crystal-free coating containing abrasives and between about 1 and about 3 of stannous fluoride. #5#
21. A method for treating interproximal and subgingival areas of the oral cavity with chlorhexidine comprising regularly flossing with a micromesh interproximal device compression loaded with a saliva-soluble, crystal-free coating containing abrasives and between about 0.2 and about 2.0 mg/yd of chlorhexidine. #5#
10. A shred-resistant, ultra-high molecular weight polyethylene, micromesh interproximal device produced by fibrillating stretched polyethylene tape having a tensile strength from between about 0.7 gpa and about 5 gpa, where said polyethylene has an intrinsic viscosity of from between about 5 and about 50 dl/g; and wherein said device is coated with a saliva-soluble, substantially crystal-free coating at a load from between about 10 and about 120 mg/yd. #5#
20. A method of cleaning interproximal and subgingival areas of the oral cavity comprising regularly flossing with a shred-resistant, ultra-high molecular weight polyethylene micromesh interproximal device produced by fibrillating stretched polyethylene tape having a tensile strength from between about 0.7 gpa and about 5 gpa, where said polyethylene has an intrinsic viscosity of from between about 5 and about 50 dl/g; and wherein said device is coated with an oral care substance at a load from between about 10 and about 120 mg/yd. #5#
1. An ultra-high molecular weight polyethylene film: having a tensile strength from between about 0.7 gpa and about 5 gpa where said polyethylene has an intrinsic viscosity from between about 5 and about 50 db/g; that is stretched, fibrillated and slit into a micromesh tape suitable for use as an interproximal device having: #5# a fibrillation density from between about 5% and about 90% of the total tape surface,
a width from between about 0.035 and about 0.12 inches,
a thickness from between about 0.001 and about 0.004 inches, and
a denier from between about 200 and about 600;
wherein said micromesh interproximal device is coated with an oral care substance at from between about 10 and about 120 mg/yd and which, during flossing, releases substantial amounts of said coating while demonstrating ultra shred resistance and an entrapment factor of at least about two;
and where said oral care substance is selected from the group consisting of hedonic agents, cleaners, chemotherapeutic agents, abrasives, and mixtures thereof.
2. The ultra-high molecular weight polyethylene film according to claim 1, wherein said stretching is achieved by a drawing means, wherein the total draw ratio is from between about 80- and about 200-fold. #5#
3. The ultra-high molecular weight polyethylene film according to claim 1, wherein said fibrillating is achieved by fibrillating devices selected from the group consisting of a tapping screw-like fibrillator and a file-like fibrillator. #5#
4. The coated ultra-high molecular weight polyethylene micromesh interproximal device according to claim 1, wherein said coating with an oral care substances, is achieved by a coating means selected from the group consisting of: compression loading, injection loading and contact loading, and combinations thereof. #5#
5. The coated ultra-high molecular weight polyethylene micromesh interproximal device according to claim 1, wherein said oral care coating substance further comprises a composition selected from the group consisting of: high melt viscosity mixtures, high melt viscosity emulsions, medium melt viscosity mixtures, medium melt viscosity emulsions, low melt viscosity mixtures and low melt viscosity emulsions, and combinations thereof. #5#
6. The coated ultra-high molecular weight polyethylene micromesh interproximal devices according to claim 5, wherein said high melt viscosity mixtures and high melt viscosity emulsions are compression loaded into said micromesh at levels from between about 10 and about 120 mg/yd and said high melt viscosity mixtures and emulsions comprise saliva soluble, substantially crystal-free coatings containing oral care substances selected from the group consisting of hedonic agents, cleaners, chemotherapeutic agents, abrasives, and mixtures thereof. #5#
7. The coated ultra-high molecular weight polyethylene micromesh interproximal devices according to claim 5, wherein said medium melt viscosity mixtures and medium melt viscosity emulsions are injection loaded into said micromesh at levels from between about 10 and about 120 mg/yd and said medium melt viscosity mixtures and emulsions comprise coatings selected from the group consisting of: #5# (a) saliva soluble, substantially crystal-free coatings containing oral care substances selected from the group consisting of hedonic agents, cleaners, chemotherapeutic agents, abrasives, and mixtures thereof;
(b) saliva gelling, slowly soluble mixtures containing oral care substances selected from the group consisting of hedonic agents, cleaners, chemotherapeutic agents, abrasives and mixtures thereof; and mixtures of (a) and (b).
8. The coated ultra-high molecular weight polyethylene micromesh interproximal devices according to claim 5, wherein said low melt viscosity emulsions are contact loaded onto said micromesh at levels from between about 10 and 120 mg/yd and said low melt viscosity mixtures and emulsions comprise coatings selected from the group consisting of: #5# (a) saliva soluble coatings
(b) saliva insoluble coatings, and
(c) mixtures of (a) and (b).
11. A method of manufacturing the micromesh interproximal device of claim 1, wherein said stretched polyethylene tape is run at a transfer speed from between about 1 and about 1000 m/min and said fibrillating is carried out simultaneously with a rotary fibrillator positioned in fibrillating contact with said polyethylene tape and run at a rotational line speed from between about 10 and about 3000 m/min and said coating is carried out at between about 1 and about 5 yards per second. #5#
12. A method of manufacturing the micromesh interproximal device of claim 11, wherein said fibrillated tape is compression loaded by passing said fibrillated tape through a coating chamber and thereafter passing said coated fibrillated tape between juxtapositioned heated rollers under compression conditions. #5#
13. A micromesh interproximal device according to claim 5, wherein said oral care coating substance contains cleaners selected from the group consisting of: #5# sodium lauryl sulfate,
sodium lauryl sarcosinate,
polyethylene glycol stearate,
polyethylene glycol monostearate,
coconut monoglyceride sulfonates,
sodium alkyl sulfate,
sodium alkyl sulfoacetates,
block copolymers of polyoxyethylene and polyoxybutylene,
allylpolyglycol ether carboxylates,
polyethylene derivatives of sorbitan esters,
propoxylated cetyl alcohol,
block copolymers comprising a cogeneric mixture of conjugated polyoxypropylene and polyoxylethylene compound having as a hydrophobe a polyoxypropylene polymer of at least 1200 molecular weight,
soap powder,
and mixtures thereof.
14. A micromesh interproximal device according to claim 5, wherein said oral care coating substance contains Formula Modifiers selected from the group consisting of: #5# saliva-insoluble formula modifiers, including:
microcrystalline waxes
paraffin wax
carnuba, beeswax and other natural waxes
animal and vegetable fats and oils
low-melt point, orally suitable polymers and copolymers;
saliva-soluble formula modifiers include so-called water soluble waxes, including:
liquid polyethylene glycols
solid polyethylene glycols
liquid polypropylene glycols
solid polypropylene glycols,
triacetin, and
low melt temperature, water-soluble polymers, including:
hydroxyethylcellulose
hydroxypropylcellulose
carboxy derivatives of cellulose and
orally suitable saliva gelling or water-soluble copolymers of various resins.
15. A micromesh interproximal device according to claim 5, wherein said oral care coating substance contains chemotherapeutic ingredients selected from the group consisting of: #5# anti-tartar substances, an emulsion of polydimethyl siloxane and polyoxypropylene-polyoxyethylene block copolymers, a high shear mixture of high molecular weight block copolymers of ethylene oxide and propylene oxide with high viscosity polydimethylsiloxane polymers, tetrasodium pyrophosphate (TSPP), tetrapotassium pyrophosphates, and mixtures thereof;
first generation anti-biofilm agents, oxygenating compounds, quaternary ammonium compounds, phenolic compounds and plant alkaloids selected from the group consisting of:
benzethonium chloride and cetylpyridinium chloride,
thymol and eucalyptol in a mixture of methyl salicylate, benzoic acid and boric acid and phenol,
flavor oils,
sanguinaria extract with zinc chloride, and
triclosan;
(3) second generation anti-biofilm agents, chlorhexidine, alexidine, octenidine and stannous fluoride;
(4) desensitizing agents, NSAIDs, antibiotics, anti-thrush agents, anti-caries agents, antimicrobials, COX-2 agents;
(5) dry mouth relieving agents;
(6) NSAIDs;
(7) antibiotics; and
mixtures thereof.
16. A micromesh interproximal device according to claim 5, wherein said oral care coating substance contains abrasives selected from the group consisting of: #5# dicalcium phosphate (DCP),
pumice,
aluminum silicate,
silica,
glass beads,
titanium oxide,
rice flour,
sodium hexametaphosphate,
quartz,
novaculite,
silicon carbide,
alumina zirconia,
alumina,
polishing alumina,
calcined aluminum oxide,
silicon zirconium oxide, and
mixtures thereof.
17. A micromesh interproximal device according to claim 1, where said micromesh structure is selected from the group of structures illustrated in #5# FIGS. 1a through 1f and combinations thereof.
18. A micromesh interproximal device according to claim 6, wherein the additive responsible for maintaining said coating substantially crystal-free and free from substantial flaking is an aliphatic long chain, fatty alcohol selected from the group consisting of: #5#
1-decanol 1-heptadecanol 1-pentacosanol
1-undecanol 1-octadecanol 1-hexacosanol
1-dodecanol 1-nonadecanol 1-heptacosanol
1-tetradecanol 1-eicosanol 1-octacosanol
1-pentadecanol 1-heneicosanol 1-nonacosanol
1-hexadecanol 1-tricosanol 1-triacosanol
1-tetracosanol, and mixtures thereof.
19. A micromesh interproximal device according to claim 6, wherein the additive responsible for maintaining said coating crystal-free is a liquid surfactant having the general formula: ##STR00002## #5#
wherein R1, R2, R3, R4 are H or aliphatic acyl groups having from between 10 and 30 carbon atoms, and the sum of w, x, y, and z is from between 20 and 80.

The present invention relates to coated interproximal devices produced from ultra-high molecular weight, polyethylene film that has been stretched, fibrillated and slit, to produce a micromesh, honeycomb or web-type tape structure distinct from multifilament and monofilament interproximal devices, wherein this micromesh tape is coated with an oral care substance which, during flossing, releases said coating while demonstrating ultra-shred resistance and the capacity to entrap and remove loosened debris from interproximal and subgingival areas.

Proper use of dental floss is necessary to clean the considerable area on the interproximal surfaces of teeth which cannot be reached by the bristles of a toothbrush.

The purpose of dental floss is:

The concept of the use of dental floss for cleansing interproximal spaces appears to have been introduced by Parmly in 1819 (“Practical Guide to the Management of the Teeth”,” Collins & Croft, Philadelphia Pa.). Parmly suggested the use of waxed silk to clean teeth of persons subject to gingival inflammation. Numerous types of floss were developed and used for cleaning, until finally in 1948 Bass established the optimum characteristics of dental floss [Dental Items of Interest, 70, 921–34, (1948)].

Surprisingly, multifilament and monofilament floss marketers have ignored Bass for the past 50 plus years. Bass warned that dental floss treated with sizing, binders and/or wax produces a “cord” effect that reduces flossing efficiency dramatically. Almost all multifilament floss sold today including unwaxed floss contains binders and/or sizing substances. These “sticky” substances are used to keep the floss twists from falling off a spool during dispensing by holding the floss together.

Additionally, most multifilament floss sold at retail today is also “waxed” to assist penetration to interproximal regions. The resulting “cord” effect described by Bass often makes the floss bundle difficult to force between closely spaced teeth.

The optimum characteristics of dental floss as described by Bass in 1948 have been ignored by most interproximal device manufacturers. Specifically, Bass suggests that these waxed and sized flosses produce an undesirable “cord” effect as discussed above as distinguished from the desirable “spread effect” of unwaxed, unsized floss which flattens out and widens, with the filaments spread out. The potential for separate mechanical action of spread out filaments is nullified by this “cord” effect. Also sacrificed are the spaces between the filaments, which according to Bass are necessary to receive, hold and remove the microscopic material dislodged during flossing. Thus, the mechanical cleaning attributed to spread filaments and essentially all of the evacuation of microscopic materials from the interproximal spaces by entrapment by these spread-out filaments is impaired or sacrificed with waxed and/or sized flosses, as well as with monofilament tapes, because of this “cord” effect.

It is not surprising that shred resistance has been the basic claim of several dental tape marketers. The introduction of Gore's Glide®, with its monofilament construction, was proposed as the ultimate shred resistant floss. Historically, the typical response to shredding was to develop a “tighter” bonded and smaller diameter floss that did not spread out and did not shred. It is not difficult to see how the “ultimate cord”, i.e. monofilament tape construction, evolved from this approach. Clearly, the monofilament floss is easier to use than traditional bonded multifilament flosses, because of this no-shredding feature. However, shred resistance is achieved with a sacrifice in entrapment and removal of material dislodged during flossing.

It is generally accepted that floss is not a “user-friendly” product, i.e. it is difficult to do. It causes pain and bleeding and it results in a bad taste in the mouth. Most market researchers agree that anything that can be done to make flossing more positive should be implemented to encourage more frequent flossing and more wide spread floss use. The addition to floss of various coatings including those: saliva-soluble, crystal-free coatings of the present invention which contain chemotherapeutic ingredients, mouth conditioning substances such as silicones, cleaners and Soft Abrasives™ that leave a “clean, just brushed feeling” as taught by the present invention are all sources of positive feed back to the flosser that would be considered encouraging and supportive. To achieve these advances requires basic changes in floss construction and in physical chemistry of floss additives as well as coating technology that avoids the “cord” effect characteristic of waxed floss and monofilament tape and is particularly responsive to the need for entrapment and removal of material dislodged during flossing.

Shred-resistant monofilament interproximal devices are described and claimed in U.S. Pat. No. Re 35,439; 3,800,812; 4,974,615; 5,760,117; 5,433,226; 5,479,952; 5,503,842; 5,755,243; 5,845,652; 5,884,639; 5,918,609; 5,962,572; 5,998,431; 6,003,525; 6,083,208; 6,148,830; 6,161,555 and 6,027,592. These monofilament dental tapes generally have serious shortcomings in: gentleness, delivering coatings during flossing, being handled easily and conveniently during flossing and entrapping and removing material dislodged during flossing.

Shred-resistant, polytetrafluoroethylene (PTFE) based monofilament interproximal devices are described in: U.S. Pat. Nos. 5,209,251; 5,033,488; 5,518,012; 5,911,228; 5,220,932; 4,776,358; 5,718,251; 5,848,600; 5,787,758 and 5,765,576. To date, no commercial versions of these monofilament tapes have been coated effectively, nor can they be used to deliver active ingredients, interproximally and subgingivally during flossing, nor can monofilament tapes entrap and remove materials from interproximal spaces. Handling during flossing is difficult. Most have to be folded to provide a consumer acceptable edge. Many are plagued with serious dimensional inconsistency problems, as well.

Multifilament, interproximal devices are described and claimed in U.S. Pat. Nos. 5,033,365; 3,943,949; 6,080,481; 5,830,495; 2,667,443; 4,638,823; 4,029,113; 2,772,205; 4,627,975; 4,414,990; 3,699,979; 3,897,795; 3,838,702; 4,776,358; 5,718,251; 5,603,921; 5,558,901; 5,423,337; 5,357,990; 4,986,288; 3,897,795; 3,928,618; 5,433,226 and 4,033,365. Most of these flosses would not be classified as shred resistant.

The Hill, et al., patents, namely U.S. Pat. Nos. 4,911,927; 5,098,711; 5,165,913 and 5,711,935, describe compression loaded multifilament flosses. All multifilament interproximal devices pose major consumer problems in the areas of shredding, breaking, etc., with the texturized multifilament dental flosses exhibiting even greater shredding and breaking shortcomings. It is these shortcomings of the multifilament flosses in general that were instrumental in the commercial success of shred-resistant PTFE and other monofilament devices.

The production of ultra-high molecular weight, stretched polyethylene film that has been slit into various tapes of varying width and thickness, which is then fibrillated, i.e. penetrated with various cutting means, to produce these micromesh tapes suitable for compression loading to produce interproximal devices of the present invention is described and claimed in U.S. Pat. Nos. 4,879,076; 4,998,011; 5,002,714; 5,091,133; 5,106,555; 5,106,558; 5,200,129; 5,598,373; 5,693,708 and 5,723,388. Specific methods of fibrillating films are described in U.S. Pat. Nos. 2,185,789; 3,214,899; 2,954,587; 3,662,930 and 3,693,851 and Japanese Patent Publication Nos. 13116/1961 and 16909/1968. Suitable fibrillating tools include fibrillating rollers, various needle bars, separating cones, needle rings and ceramic blades and are available from Burckhardt AG, Basel, Switzerland. Particularly preferred fibrillating tools for producing the micromesh interproximal tapes suitable for coating according to the present invention include: needle bars, tapping screw-like fibrillators or file-like fibrillators. The latter two are illustrated in FIGS. 3 and 4 of the drawings. The fibrillator illustrated in FIG. 4, described as a file-like fibrillator, is the subject of Japanese Utility Model No. 38980/1976.

All of the foregoing references are hereby incorporated by reference.

Effective oral hygiene requires that three control elements be maintained by the individual:

Physical removal of stains, plaque (biofilm) and tartar. This is accomplished in the strongest sense by scraping and abrasion in the dentist's office. Self administered procedures are required frequently between visits and range from tooth brushing with an appropriate abrasive toothpaste, through flossing and water jet action, down to certain abrasive foods and even the action of the tongue against the tooth surface.

Surfactant Cleansing, where the source of the surfactant is generally: toothpaste, mouth rinse and/or dental floss. This is required to remove: food debris and staining substances before they adhere to the tooth surfaces; normal dead cellular (epithelial) material which is continually sloughed off from the surfaces of the oral cavity and microbial degradation products derived from all of the above. Besides the obvious hygienic and health benefits related to simple cleanliness provided by surfactants, there is an important cosmetic and sense-of-well-being benefit provided by surfactant cleansing. Research has shown that the primary source of bad breath is the retention and subsequent degradation of dead cellular material sloughed off continuously by the normal, healthy mouth or dislodged from interproximal surfaces by flossing and not subsequently entrapped and removed by the interproximal device.

Frequency of Cleansing. This is perhaps the most difficult to provide in today's fast-paced work and social environment. Most people recognize that their teeth should be brushed at least 3 times a day and flossed at least once a day. The simple fact is that most of the population brush once a day, some brush morning and evening, but precious few carry toothbrush and dentifrice to use the other three or four times a day for optimal oral hygiene. Consumer research suggests that the population brushes an average of 1.3 times a day. Most surprising, less than 10% of adults floss regularly. Reasons offered for not flossing: difficult to do, painful, does not appear to be working, inconvenient and leaves a bad taste. Overall, floss is not perceived as a “consumer friendly” product.

FIGS. 1a through 1f are illustrations of uncoated micromesh tapes suitable for the present invention produced by various rotary fibrillations of stretched, ultra-high molecular weight polyethylene tapes.

FIGS. 2a through 2c are actual photographs of uncoated micromesh tapes of the present invention. FIGS. 2d and 2e are photographs of uncoated monofilament dental tape and uncoated multifilament dental floss, respectively.

FIGS. 3a and 3b are actual photographs of coated micromesh tapes of the present invention where the tapes are at two different levels of fibrillation.

FIGS. 4a through 4c are actual photographs of micromesh tape. FIG. 4a is the tape uncoated. FIGS. 4b and 4c show the tape coated.

FIG. 5 is an example of a tapping screw-like fibrillator which is hexagonal in shape with 15–35 screw threads per inch.

FIG. 6 is an example of a file-like fibrillator having a rough surface similar to the surface of a round file in combination with spiral grooves.

FIG. 7 is a schematic diagram of coated micromesh interproximal device of the present invention scrubbing Soft Abrasives™, released from the device coating during flossing, across a tooth surfaces to remove biofilm and tartar deposits.

FIG. 7A is a schematic diagram of a “spent” micromesh interproximal device of the present invention, after flossing, showing the dislodged substances entrapped in the device and removed from interproximal and subgingival areas.

FIGS. 8 through 10 illustrate several injection coating means suitable for coating the micromesh interproximal devices of the present invention.

FIGS. 11 through 12 illustrate compression coating means suitable for coating the micromesh interproximal devices of the present invention.

FIG. 13 illustrates contact coating means suitable for coating the micromesh interproximal devices of the present invention.

For the purposes of the present invention:

“Ultra-high molecular weight polyethylene” is described as having an intrinsic viscosity between about 5 and about 50 dl/g as measured at 135° C. in decalin. These correspond to viscosity-average molecular weights of from between about 1,200,000 and about 6,000,000. These can be obtained by homopolymerizing ethylene or copolymerizing ethylene and an alpha-olefin of 3 or more carbon atoms in the presence of an appropriate catalyst as described in U.S. Pat. No. 5,578,373. Preferably the alpha-olefin has 3 to 12 carbon atoms. See also U.S. Pat. Nos. 4,879,076; 4,998,01; 5,002,714; 5,091,133; 5,106,555; 5,106,558; 5,200,129; 5,598,373; 5,695,708 and 5,723,388. This ultra high molecular weight polyethylene is compressed into films that are stretched and have a tensile strength from between about 0.7 GPa and about 5 GPa.

“Fibrillating” is generally defined as a means of converting various high tensile strength, stretched film stocks including tapes to various mesh constructions such as illustrated in FIGS. 1a through 1f and shown in photographs in FIGS. 2 through 4 by subjecting the stretched tapes to contact with various rotary fibrillator means such as shown in FIGS. 5 and 6 as well as described in U.S. Pat. No. 5,578,373; 2,185,789; 3,214,899; 2,954,587; 3,662,930; 3,693,851 and Japanese Publications: 13116/1961 and 16909/1968. During fibrillating, the transfer speed of the stretched polyethylene tape is from between about 1 and about 1000 m/min and the rotational line speed of the fibrillator means in contact with the stretched polyethylene tape is from between about 10 and about 3000 m/min. These fibrillating conditions produce fibrillated tapes suitable for various types of coating including compression loading for use as interproximal devices. See FIGS. 1a through 1f and photographs in FIGS. 2 through 4.

“Fibrillation density” is generally defined as the level of perforations in the interproximal device as determined on the basis of the percent of the device surface that is perforated. Perforations between from about 5% and about 90% of the total tape surface area are suitable for purposes of the present invention. There appears to be a correlation between “fibrillating density” and the capacity of the device to entrap and remove loosened substances from interproximal and subgingival areas, i.e. the “entrapment factor”.

“Entrapment factor” is generally defined as the level of biofilm, tartar, debris, etc., which has been dislodged from tooth surfaces during flossing and subsequently entrapped by the micromesh interproximal device after various coating substances have been released from the “spent” interproximal device. The “entrapment factor” is determined by a visual comparison of the spent micromesh interproximal device with a spent commercial monofilament tape used by the same subject at the alternative interproximal site. The micromesh interproximal devices of the present invention generally exhibit entrapment factors from between about 2 and about 10 which indicates a two-fold to ten-fold increase in entrapped debris, biofilm, etc., over the commercial monofilament tape. “Stretched polyethylene tape” is obtained by various drawing methods where the total draw ratio, which is the sum of the draw ratio upon rolling and that upon stretching, is from between about 80 and about 200 fold. See also U.S. Pat. No. 5,578,373.

“Coating” is generally defined as the process of introducing oral care substances onto the micromesh interproximal device by: compression, injection or contact loading means and/or combinations thereof.

“Compression loading” is described as the means for coating various micromesh interproximal devices where the coating substance is generally a high melt viscosity mixture or emulsion which is either doctored onto and/or compressed into the device as it is passed over or between heated rollers with the coating forced into the various interstices of the micromesh tapes being loaded before the excess coating is removed. See FIGS. 11 and 12. All of these methods are collectively described as compression loading, which specifically includes forcing the high melt viscosity mixture or emulsion throughout the micromesh structure. Loaded high melt viscosity coatings from between about 10 and about 120 mg/yd are quite common with the devices of the present invention depending on the particular structure of the tape being “loaded”. Compression loading of micromesh tape between heated rollers is particularly effective when Soft Abrasives™ are involved. See the photographs in FIGS. 3 and 4.

“Injection loading” is described as the means for coating various micromesh interproximal devices where the coating substance is generally a medium melt viscosity mixture or emulsion which is injected onto and/or into the device as it is passed through various injection loading means such as illustrated in FIGS. 8 through 10.

“Contact loading” is described as the means for coating various micromesh interproximal devices where the coating substance is generally a low melt viscosity mixture or emulsion which is contact loaded onto and/or into the device as it is passed through various contact loading means such as illustrated in FIG. 13.

“Shred resistant” describes the propensity of various interproximal devices to resist shredding, breaking or otherwise becoming discontinuous during flossing. Multifilament devices and particularly texturized multifilament devices tend to be more prone to having individual filaments break and/or shred during flossing than the monofilament tapes. On the other hand, monofilament tapes including PTFE tapes and various extruded monofilament tapes such as Fibaclean Tape™ tend to resist shredding and/or breaking during flossing due to their single monofilament construction combined with the low surface energy property of the tape. That the micromesh devices of the present invention exhibit ultra shred resistant properties is totally surprising and unexpected considering the random: mesh, web or honeycomb construction of these devices as illustrated in FIGS. 1a through 1f and the photographs shown in FIGS. 2 through 4. The ultra high molecular weight and exceptional tensile strength of the fibrillated micromesh polyethylene tape, combined with the “lubricants” in the compression loaded saliva-soluble, crystal-free coatings of the devices is believed to be primarily responsible for the exceptional shred resistance of the devices of the present invention.

“Micromesh” is described as a random: net, web or honeycomb-type, integrated structure as distinguished from the more orderly monofilament and multifilament or woven structures used heretofore for interproximal devices. These micromesh structures are produced at low cost by integrating a rotating fibrillator device into a flat, stretched film or tape producing operation such as described in U.S. Pat. No. 5,578,373. A wide range of fibrillators are available to produce an almost endless array of micromesh structures including those illustrated in FIGS. 1a through 1f and further shown in Photographs, FIGS. 2 through 4. All of these are suitable for use as interproximal devices of the present invention. The fibrillating density of these micromesh interproximal devices is defined above.

“Coatings” are generally described as various oral care substances suitable for compression loading, injection loading and/or contact loading which include high, medium and low melt viscosity mixtures and emulsions as described in Tables 1 through 6.

“High melt viscosity mixtures and emulsions” are generally described as those oral care substances generally loaded onto and/or into the micromesh interproximal devices of the present invention using compression loading means such as illustrated in FIGS. 11 and 12 and further described in detail in Tables 1 through 4.

“Medium melt viscosity mixtures and emulsions” are generally described as those oral care substances generally loaded onto and/or into the micromesh interproximal devices of the present invention using injection loading means such as illustrated in FIGS. 8 through 10 and further described in detail in Table 5.

“Low melt viscosity mixtures and emulsions” are generally described as those oral care substances generally loaded onto and/or into the micromesh interproximal devices of the present invention using contact loading means such as illustrated in FIG. 13 and further described in detail in Table 6.

“MICRODENT®” and “ULTRAMULSION®” are emulsions of polydimethylsiloxane at various molecular weights in various poloxamer surfactants as described and claimed in U.S. Pat. Nos. 4,911,927; 4,950,479; 5,032,387; 5,098,711; 5,165,913; 5,538,667; 5,645,841; 5,561,959 and 5,665,374. These mouth conditioners are preferably included in the various crystal-free coatings of the present invention.

“Saliva-soluble, crystal-free coatings” include those compression loaded, high melt viscosity mixture and emulsion coatings that release from the micromesh devices of the present invention during flossing when exposed to saliva in the oral cavity. These coatings can include Soft Abrasives™ that are dispersed and not solubilized in said coatings. These Soft Abrasives™ remain insoluble when delivered between teeth and below the gum line during flossing. Additionally, saliva-soluble coatings preferably contain surfactants, mouth conditioners, chemotherapeutic ingredients and flavors that are released from the micromesh devices into the oral cavity during flossing. See photographs in FIGS. 3 and 4 and the schematic illustration set out in FIG. 7.

“Crystal-free” is defined as a smooth surface as distinguished from rough surface typical of crystalline coatings when observed through a 30× stereo zoom microscope. Examples of suitable coating formulations are detailed in Examples 9 through 26 in Table 3 below.

“Soft Abrasives™” include saliva-soluble and saliva-insoluble abrasive substances suitable for cooperating with the micromesh structure of the devices of the present invention to scrub biofilm, tartar and stained pellicle from tooth surfaces. Soft Abrasives™ include tetra sodium pyrophosphate, calcium carbonate, dicalcium phosphate, silica, glass beads, polyethylene and polypropylene particles, pumice, titanium oxide, alumina, quartz, aluminum silicate, etc., at various particle sizes suitable for use in oral care.

“Whitening agents” for extrinsic stains include: those which function by means of oxidation such as carbamide peroxide and hypochlorites; those which function by interfering with calcium complex deposits such as tetrasodium phosphate or sodium hexametaphosphate and various chelating agents and the “Soft Abrasives™” described above for stained pellicle removal.

“Cleaners” include essentially all surfactants suitable for use in the oral cavity and suitable for coating the micromesh structure of the interproximal devices of the present invention.

“Chemotherapeutic ingredients” include those substances suitable for addition to the coatings of the present invention that impart therapeutic effects to the oral cavity including antimicrobials; anti-tartar and anti-plaque substances; remineralizing, desensitizing, NSAID and antibiotic ingredients; and the like. Specific chemotherapeutic ingredients suitable for the present invention include: stannous fluoride, potassium nitrate, cetylpyridinium chloride (CPC), triclosan, metronidazole, chlorhexidine, aspirin and doxycycline.

“Substantially flake-free” refers to the propensity of the coatings of the present invention to resist flaking off micromesh dental flosses during flexure. Flaking resistance is based on the reduction by weight of the crystal-free coating after flexing, under suitably controlled and reproducible conditions, where an 18-inch piece of the coated micromesh floss is flexed for 30 seconds.

“Release value” is measured after 18-inches of the micromesh floss is thoroughly flossed for 60 seconds. The percent of the coating removed from the micromesh floss during flossing establishes the release value.

“Formula modifiers” are those ingredients which are otherwise inactive as cleaners, abrasives or chemotherapeutic agents. Formula Modifiers allow convenient control of the desired melt viscosity of the coating, help provide the desired release rate in the mouth, help provide for desired dispersability properties in the manufacturing process and improve mouthfeel for consumer acceptance.

The present invention relates to innovative interproximal devices that are distinct from and superior over multifilament dental flosses, as well as monofilament dental tapes. These superior performing interproximal devices are neither multifilament nor monofilament in structure. Rather, they are characterized by a unique micromesh honeycomb or web-type structure, hereinafter described as a micromesh structure. These micromesh devices are not produced from a bundle of fibers like multifilament dental flosses nor are they produced by slitting shred-resistant films used to manufacture PTFE tape or by extrusion used to manufacture elastomeric monofilament tapes and/or the extrusion and slitting processes used to make typical high density polypropylene or polyethylene tapes. Rather, these ultra shred-resistant micromesh devices are produced by fibrillating and slitting high-tensile strength, ultra-high molecular weight, stretched, polyethylene films. This fibrillation of stretched polyethylene films produces various micromesh structures such as illustrated in FIG. 1 of the drawings and further depicted in the photographs in FIGS. 2 through 4. The photographs in FIG. 2 compare typical uncoated multifilament and monofilament devices with uncoated micromesh tapes of the present invention. The Photographs in FIG. 3 show coated micromesh interproximal devices at two different levels of fibrillation. The photographs in FIG. 4 illustrate a micromesh tape coated and uncoated.

The micromesh structure is an ideal substrate for loading with various coatings using compression, injection and contact loading processes as described in detail below and illustrated in FIGS. 8 through 13. These “loaded” micromesh devices exhibit minimum flaking yet readily release their coatings during flossing.

Saliva-soluble, substantially crystal-free coatings such as described in detail below are particularly preferred when compression loaded onto these micromesh tapes using the compression loading technology described below.

More specifically, the present invention relates to an ultra-shred resistant, high-molecular weight polyethylene micromesh interproximal device produced by:

1. fibrillating and slitting stretched polyethylene film having a tensile strength between about 0.7 GPa and about 5 GPa, wherein the polyethylene has an intrinsic viscosity of from between about 5 and about 50 dl/g, wherein the fibrillation uses various rotary fibrillator devices such as those shown in FIGS. 5 and 6 to produce a micromesh structure, such as shown in FIGS. 1a through 1f and the photographs shown in FIGS. 2 through 4, and

2. compression, injection or contact loading said micromesh structure with one of the various coatings described in Tables 1 through 6 below. Preferably this coating comprises cleaners, chemotherapeutic substances, mouth conditioners and Soft Abrasives™ at from between about 10 and about 120 mg/yd.

Referring to FIGS. 8 through 13:

In FIG. 8, which is a side view of an injector coating means, 4 and 41, suitable for coating the micromesh interproximal device, 1, with medium melt viscosity coating mixtures or emulsions, 2 and 21, to produce injection coated interproximal device, 3.

Interproximal device, aluminum injector coating means, 4 and 41, are provided with rod-type heating elements means, 5 and 51, to heat coatings, 2 and 21.

Coatings, 2 and 21, are pumped under pressure through manifold means, 6 and 61, flowing between laminar flow means, 7 and 71, filling the chamber, 8 and 81, defined by metering plate means, 9 and 91, and flow control plate means, 10 and 101.

Coatings, 2 and 21, are pumped through chambers, 8 and 81, counter to the movement of interproximal device, 1, to optimize shear. Adjustment of the gap between metering plate means, 9 and 91, controls the level of coatings, 2 and 21, on device, 1, that emerges from coating means, 4 and 41, as injection coated interproximal device, 3. Injection loader means, 4 and 41, can accommodate coating up to 32 interproximal devices simultaneously.

In FIG. 9 which is a cross-sectional side view of a single line injection coating means, 20 and 201, comprises aluminum body means, 21 and 211, provided with heating means, 22 and 221.

Coating liquids, 23 and 231, are pressure fed to manifolds, 24 and 241, and then forced into channel means, 25, counter to the movement of micromesh device, 26, to produce the injection coated micromesh device, 27. Metering plate means, 25 and 251, allow for adjusting plate means, 28 and 281, to control injection coating levels.

The use of channel means, 25, keeps micromesh device, 26, separated physically so that any breakage is contained and does not affect neighboring device lines.

FIG. 10 is a detailed cross-sectional view of channel arrangement means, 25, shown in FIG. 9. Injection coating supply manifolds, 30 and 301, deliver coating liquids, 23 and 231, to channel means, 25, under pressure in a direction counter to the movement of micromesh device, 26.

FIGS. 11 and 12 are cross-sectional views of schematic compression loading means, 40 and 50, suitable for coating micromesh interproximal devices, 41 and 51 respectively, with high melt viscosity mixtures or emulsions, 42 and 52 respectively.

Referring to FIG. 11, the high melt viscosity emulsion, 42, to be loaded into micromesh tape, 41, is maintained between heated nip roller means, 43a and 43b. Nip roller, 43b, is provided with adjustable tension means, 44, which controls the compression on micromesh tape, 41, while avoiding damage to tape during loading. These nip rollers provide some of the pulling force and impart sufficient tension to assist driving coating, 42, onto and into micromesh tape during the compressing/loading step. Loaded micromesh tape, 45, is wound on take up means, 46.

The compression force obtained with the nip rollers is sufficient to load substantial quantities of coating, 42, while passing through this system at speeds between 2 and 20 ft/sec. Six to 10 ft. sec is a convenient speed. Various guides, 47a and 47b, are positioned to assist and guide floss, 21, through the system.

Generally, coatings, 42, are maintained in a molten state at temperatures ranging from between about 180° F. and about 250° F. By controlling the viscosity of coating, 42, the flow of these coatings into nip rollers, 43a and 43b, can be maintained.

Preparations suitable for loading include those set out in Tables 1 through 4 below.

Referring to FIG. 12, high melt viscosity emulsion coating, 52, is heated in tip applicator, 53, which maintains coating, 52, in a liquid state. Coating, 52, is metered onto compressing means, 53, comprising heated nip roller means, 53a and 53b.

Untreated micromesh tape, 51, passes over nip rollers, 53a, and is compressed by nip roller, 53b, while coating, 52, is forced onto and into the micromesh structure of tape, 51. Treated tape, 54, is then wound onto take up means, 55. Various floss guides, 56a and 56b, are positioned to assist the travel of tape, 51, and guide untreated tape 51, and treated tape, 57, which controls the compression force applied to tape, 51, while avoiding physical damage to the tape during loading of coating, 52.

Coating, 52, is maintained as a melt by maintaining the temperature in tip applicator, 53, at approximately 210° F. Rate of application of coating, 52, is approximately 1.85 g/min. The quantity of coating loaded into micromesh tape, 51, is controlled by:

Micromesh floss, 60, passes over godet, 61, and under contact roller means, 62, which is partially immersed in low melt viscosity emulsion coating, 63, contained in contact roller coated teeth means, 64, coating the upper surface, 60a, of floss, 60, with coating, 63; partially coating floss, 60, then passes over contact roller means, 65, which is also partially immersed in low melt viscosity emulsion coating, 63, thereby coating the under surface, 60b, of floss, 60, with coating, 63. The coating levels of 60a and 60b on micromesh floss, 60, are controlled by passing coated micromesh floss, 60, through metering gap means, 66. Coated and metered floss, 67, is then processed through a traditional drying means or onto a traditional winding means, neither of which are shown.

The interproximal devices of the present invention can contain a broad range of coating substances which are best loaded onto and/or into the micromesh structure by one of three loading means. Specifically:

The improved interproximal devices of the present invention contain coatings that: (a) comprise from 10 to 120% by weight of the micromesh substrate, (b) are preferably saliva soluble and (c) in a preferred embodiment are crystal free, and accordingly, exhibit a minimum of flaking. Some of these coatings are released in total into the oral cavity during flossing. In a preferred embodiment, these coatings contain ingredients such as: (a) Soft Abrasives™ that work with the micromesh structure to help physically remove biofilms (plaque) from interproximal and subgingival surfaces, (b) chemotherapeutic ingredients affecting oral health and subsequent systemic diseases caused or exacerbated by poor oral health, (c) cleaners that introduce detersive effects into the areas flossed, and (d) mouth conditioners. These coatings are particularly adapted to loading into and/or onto the micromesh tapes using the compression, injection or contact loading means described above to produce the innovative interproximal devices of the present invention.

It has been discovered that the substantivity of certain high melt viscosity mixture and emulsion coatings loaded onto micromesh tapes can be enhanced such that during flexure of the coated micromesh floss, these enhanced coatings remain substantive to said floss and resist cracking, fracturing and flaking off. Specifically, it has been observed that most coated flexible surfaces, especially those formulated to be saliva-soluble and to carry effective quantities of abrasives, cleaners, surfactants, and chemotherapeutic agents; fracture along crystal faces during flexure of the floss, thereafter prematurely releasing the ingredients from the flexible surface by cracking, chipping, flaking and/or falling off, etc. In response to these observations, it has been unexpectedly found that the addition of certain substances to various high melt viscosity mixture and emulsion coatings at relatively modest levels reduces crystal formation while simultaneously enhancing the coating's substantivity to these micromesh flosses when subjected to flexure, which properties thereby impart outstanding flake resistance and release values to said micromesh interproximal devices of the invention.

Those coating additives that reduce, control and/or eliminate crystal formation and enhance the substantivity of the loaded coating to flexible, micromesh surfaces when added to these coatings at modest levels include certain aliphatic, long chain, fatty alcohols having from between about 10 and 30 carbon atoms and/or various liquid surfactants such as polyethylene glycol sorbitan dialiphatic esters.

Suitable aliphatic, long chain, fatty alcohols for the crystal-free coatings of the present invention can be represented by the structural formula ROH, wherein R represents a long chain alkyl group having from 20 to 30 carbon atoms. Specific examples include:

1-decanol 1-heptadecanol 1-pentacosanol
1-undecanol 1-octadecanol 1-hexacosanol
1-dodecanol 1-nonadecanol 1-heptacosanol
1-tetradecanol 1-eicosanol 1-octacosanol
1-pentadecanol 1-heneicosanol 1-nonacosanol
1-hexadecanol 1-tricosanol 1-triacosanol
1-tetracosanol, and mixtures thereof.

Naturally occurring mixtures with substantial quantifies of these fatty alcohols, or isomers thereof; including those chemically derived from natural sources also constitute suitable sources of aliphatic, long chain fatty alcohols for the purpose of this invention.

The long chain fatty alcohols can be purchased commercially from Stepan, Procter & Gamble and Aldrich Chemical Co. and a variety of companies processing vegetable and animal derived fatty alcohols.

Suitable liquid surfactants for the saliva-soluble, crystal-free coatings of the present invention include polyoxyethylene glycol sorbitan mono- and di-aliphatic esters represented by the general formula:

##STR00001##
wherein R1, R2, R3, R4 are H or aliphatic acyl groups having from between about 10 and 30 carbon atoms, and the sum of w, x, y, and z is from between about 20 and about 80. These liquid surfactants are available under the trade names Emsorb®, Span®, Tween® from Cognis, N.A. and ICI. Specific examples of these include:

PEG 20 sorbitan monooleate (Tween® 80, ICI); PEG 40 sorbitan monostearate (SPAN 60 ICI) and PEG 40 sorbitan diisostearate (Emsorb 2726, Cognis N.A.).

Surprisingly, interproximal devices of the present invention feature ultra shred-resistance combined with superior gentleness. The loaded coating released during flossing can deliver cleaners, mouth conditioners, chemotherapeutic ingredients, etc., along with Soft Abrasives™ between teeth and below the gum line. These substances also collectively impart lubricity to the interproximal devices. This micromesh structure combines with the Soft Abrasives™ released during flossing to gently scrub biofilm, tartar and stained pellicle from tooth surfaces between teeth and below the gum line.

Once the micromesh interproximal device has released the coating during flossing, it tends to simultaneously entrap loosened biofilm, tartar and stain residue, along with other debris and to then remove these entrapped substances from between teeth. See FIG. 7a. The capacity to entrap and remove loosened biofilm, etc., from between teeth is a most critical function of effective interproximal devices according to Bass [Dental Items of Interest, 70, 921–34, (1948)].

This feature of the interproximal devices of the present invention is described as the entrapment factor. As noted above, the “entrapment factor” has been generally compromised by monofilament dental tapes and by most multifilament waxed flosses available commercially today. Surprisingly, compression and injection loading of the micromesh tape with high and medium melt viscosity mixtures and emulsions containing Soft Abrasives™ tends to accentuate the fibrillations in the tape, which tends to make these fibrillations more effective in entrapping loosened substances and in removing them from between teeth once the coatings are released.

The entrapped biofilm, tartar, stain residue and debris removed from between teeth by these micromesh devices, i.e. the entrapment factor is readily visually indicated on the “spent” floss, and serves to help motivate compliance. See FIG. 7a.

The micromesh structure, in combination with the Soft Abrasives™ loaded into and on the micromesh interproximal device which is later released during flossing, creates a perceptible impression that the device is working to remove biofilm, tartar, stained pellicle, debris, etc., as the device is being worked (usually with a sawing-action) between teeth. This “it's working” perception is a critical “compliance” advantage over most multifilament and monofilament dental devices available commercially.

The preferred saliva-soluble, substantially crystal-free, high and medium melt viscosity mixture and emulsion coatings of the invention can contain various cleaners, Soft Abrasives™, chemotherapeutic ingredients, as well as flavors, mouth conditioners, etc. These latter substances tend to leave a lasting coating on surfaces in the oral cavity that imparts a refreshing, just-brushed feeling that also encourages and motivates regular flossing, particularly after meals and snacks while away-from-home. Particularly preferred mouth conditioners include various MICRODENT® and ULTRAMULSION® substances such as described in U.S. Pat. Nos. 4,911,927; 4,950,479; 5,032,387; 5,098,711; 5,165,913; 5,538,667; 5,645,841; 5,561,959 and 5,665,374.

The mechanical action of the micromesh structure in combination with Soft Abrasives™ released in the various coatings during flossing is further supplemented by the various cleaners including surfactants also released in these coatings during flossing. These released cleaners are readily soluble in the saliva and interproximal fluids and produce a detersive effect in the interproximal and subgingival regions. This detersive effect is critical in helping to loosen biofilm, tartar stain residue and other debris from tooth surfaces which substances are usually entrapped by the micromesh structure of the spent tape and then removed.

In addition to the cleaners and Soft Abrasives™ described above, the coatings loaded onto and into the micromesh structure can also contain various chemotherapeutic ingredients including anti-biofilm and anti-tartar agents as well as active ingredients such as antimicrobials, biofilm attachment altering ingredients such as MICRODENT® and ULTRAMULSION® and anti-tartar ingredients such as the pyrophosphates. All of these can be delivered interproximally and subgingivally by the coated micromesh interproximal devices of the present invention during flossing.

The innovative micromesh interproximal devices of the present invention are designed to replace both:

a. commercial monofilament dental tapes such as Gore's Glide®, J&J's Easy Slide®, Colgate's Total® and Oral-B's Satin® Floss, as well as

b. commercial waxed, multifilament dental flosses such as J&J's REACH® Waxed Flosses and REACH® Gentle Gum Care and Ranir's Hi-Tech® Floss.

The broad appeal of micromesh interproximal devices loaded with various coatings to monofilament tape users and to multifilament floss users represents a major advance in interproximal dental devices that promises to:

a. improve overall interproximal cleaning,

b. improve the disruption and/or removal of biofilm, tartar stained pellicle, debris, etc., from tooth surfaces, and entrapment and removal of these dislodged substances from between teeth and below the gum line, and

c. encourage flossing compliance.

Accordingly, the present invention is directed to shred-resistant, coated, ultra-high molecular weight polyethylene, micromesh interproximal device produced by:

a. fibrillating and slitting stretched polyethylene film having a tensile strength from between about 0.7 GPa and about 5 GPa, wherein said polyethylene has an intrinsic viscosity of from between about 5 and about 50 dl/g, wherein fibrillation as illustrated in FIGS. 1a through 1f is preferably achieved using rotary fibrillators, wherein the transfer speed of the stretched polyethylene tape is from between about 1 and about 1000 m/min and the rotational line speed of the fibrillator in rotational contact with the polyethylene tape, is from between about 10 and about 3000 m/min, and the fibrillation density is from between about 5% and 90% of the total interproximal device surface, and

b. compression, injection and/or contact loading said micromesh polyethylene interproximal device with coatings of high, medium or low melt viscosity mixtures and emulsions containing: cleaners, chemotherapeutic ingredients and Soft Abrasives™ at from between about 10 and about 120 mg/yd.

Advantageously, the micromesh structure of the device is most receptive to the compression injection or contact loading processes and produces a coated interproximal device that remains substantially flake-free while generally readily releasing the coating during flossing.

Advantageously, when the loaded coating contains insoluble Soft Abrasives™ of an appropriate particle size, these abrasives, once released, tend to compliment the micromesh structure during flossing to gently scrub biofilm, tartar and stained pellicle off tooth surfaces. This is further shown in the schematic illustration set out in FIG. 7. This Soft Abrasives™ scrubbing action is readily perceptible and is generally described as “you can feel it working.”

The loaded micromesh dental devices of the present invention are a most effective means for delivering chemotherapeutic substances to interproximal and subgingival areas of the oral cavity. The chemotherapeutic substances contained in the coatings loaded onto and into the micromesh dental devices of the present invention can be delivered to specific interproximal and subgingival sites during flossing. This site-specific delivery of localized concentrations of chemotherapeutics is obviously preferred over the use of systemic and/or mouth rinse treatments which impose substantially greater body burdens.

Various chemotherapeutic agents suitable for inclusion in the coatings of the present invention include:

a. quaternary ammonium compounds such as benzethonium chloride, cetylpyridinium chloride (CPC),

b. phenolic compounds such as thymol and phenol, methyl salicylate and other compositions such as benzoic acid and boric acid,

c. natural extracts (flavor oils) known to possess antimicrobial properties including eucalyptol, and

d. sanguinaria extract, alone or in combination with zinc chloride, or zinc chloride alone,

e. triclosan, and

f. iodine;

Examples of saliva-insoluble formula modifiers suitable for contact coating include:

microcrystalline waxes,

paraffin wax,

carnuba, beeswax and other natural waxes,

animal and vegetable fats and oils, and

low-melt point, orally suitable polymers and copolymers.

Examples of saliva-soluble formula modifiers include so-called water soluble waxes, including:

liquid polyethylene glycols,

solid polyethylene glycols,

liquid polypropylene glycols,

solid polypropylene glycols, and

triacetin.

Examples of low melt temperature, water-soluble polymers, include:

hydroxyethylcellulose,

hydroxypropylcellulose,

carboxy derivatives of cellulose, and

orally suitable saliva gelling or water-soluble copolymers of various resins.

According to one preferred aspect of this invention, there is provided an interproximal device formed by fibrillating and slitting an ultra-high molecular weight, stretched, polyethylene tape to produce a micromesh substrate suitable for loading with a saliva-soluble, crystal-free coating comprising cleaners, chemotherapeutic ingredients and Soft Abrasives™ wherein said polyethylene micromesh:

a. has a tensile strength between from about 0.7 and about 5 GPa, and

b. has an intrinsic viscosity from between about 5 and about 50 dl/g,

c. is stretched in a solid state at a temperature lower than the melting point of the polyethylene at a total draw ratio from between about 80 and about 200 fold, and

d. is fibrillated under conditions where the transfer speed of the stretched polyethylene tape is from between about 1 and about 1000 m/min and the rotational line speed of the fibrillator means in contact with the stretched tape is from between about 10 and about 3000 m/min, to produce fibrillation densities from between about 5% and about 90% of the total device surface.

According to another aspect of this invention, there is provided a micromesh, ultra-high molecular weight, polyethylene interproximal device with various coatings loaded by compression, injection or contact means as described in FIGS. 8 through 13.

Each of these various loading means are used for loading specific coatings into and/or onto the micromesh interproximal devices of the present invention. For example:

According to another aspect of this invention, there is provided a micromesh interproximal device that is compression loaded with a high melt viscosity emulsion that:

a. is saliva soluble

b. is substantially crystal-free

c. is present at from between about 10 and about 120 mg/yd, and

d. contains cleaners, Soft Abrasives™ and chemotherapeutic substances.

According to still another aspect of this invention, there is provided a method for producing micromesh, ultra-high molecular weight, polyethylene, interproximal devices which includes:

According to a preferred aspect of this invention, there is provided a method for removing biofilm, tartar and stained pellicle from tooth surfaces comprising flossing said surfaces with an interproximal device comprising an ultra-high molecular weight, stretched, polyethylene, micromesh device, compression loaded with a saliva-soluble, crystal-free, high melt emulsion coating at from between about 10 and about 120 mg/yd.

According to a further preferred aspect of this invention, there is provided a method for the site-specific delivery of chemotherapeutic substances to various interproximal and subgingival areas by flossing with a loaded micromesh dental device with a saliva-soluble, crystal-free coating containing one or more chemotherapeutic substances.

According to still another aspect of this invention, there is provided a means for compression loading micromesh, ultra-high molecular weight, polyethylene, interproximal devices with saliva-soluble, crystal-free, high melt emulsion coating compositions containing Soft Abrasives™ that are releasable during flossing and available for complimenting the micromesh structure and its scrubbing action to remove biofilm, tartar and stained pellicle.

According to a further preferred aspect of this invention, there is provided a method and means for treating gingivitis, interproximally and below the gum line, comprising flossing the specific areas of gingival inflammation with a micromesh dental device of the invention, compression loaded with a saliva-soluble, crystal-free coating, high melt emulsion containing chlorhexidine digluconate and Soft Abrasives™. During flossing, the released Soft Abrasives™ in cooperation with the micromesh structure helps remove chlorhexidine stained pellicle from previous chlorhexidine treatments, and the “spent” micromesh device entraps and removes these dislodged staining substances from between teeth and below the gum line.

Particularly preferred micromesh dental devices of the present invention are distinguished from multifilament floss and monofilament tape devices by:

Suitable emulsions for purposes of the present invention include those described and claimed in the various MICRODENT® and ULTRAMULSION® U.S. Patents including U.S. Pat. Nos. 4,911,927; 4,950,479; 5,032,387; 5,098,711; 5,165,713; 5,538,667; 5,645,841; 5,561,959 and 5,665,374, all of which are hereby incorporated by reference.

Examples of suitable surfactants include:

sodium lauryl sulfate,

sodium lauryl sarcosinate,

polyethylene glycol stearate,

polyethylene glycol monostearate,

coconut monoglyceride sulfonates,

sodium alkyl sulfate,

sodium alkyl sulfoacetates,

block copolymers of polyoxyethylene and polyoxybutylene,

allylpolyglycol ether carboxylates,

polyethylene derivatives of sorbitan esters,

propoxylated cetyl alcohol,

block copolymers comprising a cogeneric mixture of conjugated polyoxypropylene and

soap powder,

and mixtures thereof.

Examples of suitable coating substances include waxes (both natural and synthetic), silicones, silicone glycol copolymers and polydimethylsiloxanes at molecular weights from between about 1000 cs and several million cs. (Specific examples are described in the Examples below including PDMS 2.5 million and ULTRAMULSION® 10-2.5.)

Micromesh polyethylene tapes suitable for loading with the coatings of the present invention and useful as interproximal devices are available from Integrated Textile Systems, Inc., Monroe, North Carolina, under the trademark Tensylon™. Specific Tensylon™ micromesh polyethylene substrates available include various tapes at various fibrillation densities. Some of these commercial Tensylon tapes are designated as: Fib 42, Fib 53, Fib 70, Fib 200, etc. (These are described further in the photographs set out in FIGS. 2 through 4 and the Examples below.)

The fibrillators used for these Tensylon™ micromesh substrates are of the rotary type fitted with multiple sets of needle-like and tapping screw-like arrangements (see FIGS. 5 and 6) that penetrate the stretched polyethylene tape as it is passed under fibrillators at very high speeds. See FIGS. 1 through 4.

These Tensylon™ tapes are available in various dimensions and denier, including: widths from between about 0.12 and about 0.035 inches, thickness from between about 0.001 and about 0.004 inches and denier from between about 200 and about 600.

Suitable abrasives for use with micromesh devices of the present invention, which are designated by the trademark Soft Abrasives™, include dicalcium phosphate (DCP), sodium hexametaphosphate, pumice, aluminum silicate, silica, glass beads, titanium oxide, rice flour, quartz, novaculite, silicon carbide, alumina zirconia, alumina, polishing alumina, calcined aluminum oxide, silicon and zirconium oxide; all of the foregoing at various crystal forms and particle shapes; various hardness including Rockwell 48-50c at various sieve analysis ranging from U.S. sieve #60 to #270; various specific gravity ranges including 2.65 gm/cc, 3.20 gm/cc, 4.3 gm/cc, 3.6 to 3.9 gm/cc.

These abrasives are preferably added to saliva-soluble coatings at between about 0.25% and about 20% by weight of the micromesh substrate. An alternative method for adding additional abrasive to coated micromesh devices is by means of a dusting process where the coated micromesh device is passed through a chamber charged with abrasive particles in the air, wherein the abrasive particles coat the coated micromesh device as it passes through the dusting chamber.

Suitable abrasives are commercially available from AGSCO Corp., Wheeling, Ill.

The present invention is hereinafter described specifically by way of Examples as detailed in Tables 1 through 6. However, the present invention is by no means limited to these Examples.

In Examples 1 through 30, various ultra-high molecular weight polyethylene films are stretched, slit and fibrillated at various levels of fibrillation as indicated in the tables. These fibrillated micromesh devices are then loaded with various coating compositions as detailed in the various tables.

The various molten coatings described are prepared using a homogenizer and heating the coating mixture in a stainless steel vessel. These coatings can be compression or injection loaded onto the micromesh floss as illustrated in FIGS. 8 through 12 using a range of slub settings for the compression loading such as 0.006 inch and a range of nip roll spacings such as 0.0045 inch.

Coating loads at the 30 to 65 mg/yd range are readily obtained with a wide range of coating compositions.

Illustrative Examples 1 through 4 as set out in Table 1 below describe certain preferred embodiments of the invention.

TABLE 1
Stretched Film
Fibrillation Saliva-Soluble, Crystal-Free, High Melt Viscosity
Type as Emulsion Coating
Polymer Type Tensile shown in Fibrillation Compression Release Soft Release
Ex. (Mol. Wt. in intrinsic Draw Strength FIGS. 1a–1f Density Load Value Cleaners Abrasives ™ Value
No. viscosity d1/g) Ratio (in GPa) (denier) (in %) (in mg/yd) (in %) (% by wt.) (% by wt.) (in %)
1 ultra-high molec. wt. 80 0.7 FIG. 1a 40 45 100 30 20 100
polyethylene (5) (350)
2 ultra-high molec. wt. 210 5 FIG. 1c 90 120 100 40 25 95
polyethylene (50) (300)
3 ultra-high molec. wt. 140 3.2 FIG. 1f 60 60 100 25 10 98
copolymer of ethylene (400)
and propylene (20)
4 ultra-high molec. wt. 110 2 FIG. 1b 50 20 100 10 40 100
copolymer of ethylene (450)
and butene-1 (25)

Illustrative Examples 5 to 8 in Table 2 below describe preferred saliva-soluble, crystal-free, high melt viscosity emulsi loaded onto various micromesh devices similar to those shown in FIGS. 2 and 5 of the Drawings.

TABLE 2
High Melt Viscosity Emulsion Coating
Floss Compression Type of Type of Type of Crystal-Free
Width Thickness Fibrillation Load surfactant silicone Soft Abrasive ™ Ingredients Release
Ex. No. Denier (in inches) (in inches) Density (in %) (in mg/yd) (% by wt.) (% by wt.) (% by wt.) (% by wt.) Value (in %)
5 350 .052 .001 50 43 Poloxamer PDMS 2.5 DCP (3) Emsorb 2726 98
407 million (5.7) (2)
(52) Stearyl alcohol
(10)
6 350 .052 .001 55 45 Poloxamer PDMS 2.5 DCP (6) Emsorb 2726 95
407 million (5.7) (3)
(52) Stearyl Alcohol
(15)
7 500 .065 .002 20 38 Poloxamer PDMS 2.5 Silica (3) Emsorb 2726 100
388 million (5.7) (1)
(43) Stearyl Alcohol
(14)
8 500 .065 .002 30 40 Poloxamer PDMS 2.5 Calcium Emsorb 2726 100
388 million (8.2) Carbonate (8) (3)
(43) Stearyl Alcohol
(12)

Saliva-soluble, crystal-free, substantially flake-free, high melt viscosity emulsion coatings suitable for the micromesh devices of the invention are set out in Examples 9 through 26 in Table 3 below:

TABLE 3
EXAMPLE
Ingredient 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Ultramulsion 57.1 54.8 52.3 50.8 50.8 50.8 58.8 60.8 60.1 55.1 51.1 60.1 61.1 61.1 53.1 57.1
10-2.5*
POLOXAMER 407 60.1 60.1
Emsorb 2726 12.5 7.5 12.5 9 5 3 3 0 3 3 3 3 3 3 4 3 3 3
Stearyl Alcohol 9.2 10.5 8 7 11 13 15 16 15 15 15 15 15 15 10 8 15 15
Insoluble Saccharin 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Propyl gallate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Spicemint Flavor 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
Vanilla Mint Flavor 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
tetrasodium- 8 14 14 10 10 10 10 10 10 10 14 4 6 6 10 6
pyrophosphate
dicalcium phosphate 10 6 10
Microcrystalline 10 10 10 0 0 0 0 5 5 0 7 10 7 7
Wax ML 445

TABLE 4
Micromesh Device with saliva-soluble, crystal-free, high melt viscosity emulsion
coatings with chemotherapeutic ingredients and Soft Abrasives ™
Saliva-Soluble, Crystal-Free, High Melt Viscosity Emulsion Coatings
Micromesh Device Type of
Fibrillation Compression Crystal-Free Chemotherapeutic Release
Ex. Width Thickness Density Load Ingredients Type of Ingredient Value
No. Denier (in inches) (in inches) (in %) (in mg/yd) (% by wt.) Soft Abrasive ™ (% by wt.) (in %)
27 350 0.055 0.001 40 42 Emsorb 2726 Dicalcium Triclosan 100
(3) phosphate (0.6)
Stearyl alcohol
(12)
28 350 0.055 0.001 60 42 Emsorb 2726 Silica, Chlorhexidine 100
(2) Dicalcium (0.6)
Stearyl alcohol phosphate
(15)
Microwax
(7)
29 500 0.079 0.001 80 58 Emsorb 2726 Calcium Metronidazole 95
(3) carbonate (0.8)
Microwax
(7)
30 500 0.079 0.001 90 61 Stearyl alcohol Silica Stannous fluoride 100
(10) (4.8)
Microwax
(7)

TABLE 5
Micromesh devices injection loaded with medium melt viscosity emulsion or mixture coatings
Micromesh Device Medium Melt Viscosity
Width Thickness Injection Load Emulsion or Mixture Coating
Ex. No. Denier (in inches) (in inches) (in mg/yd) Ingredient Percent by Wt.
31 400 .060 .001 40 PEG 1450 27
Microcrystalline Wax 3
Ultramulsion 10-2.5* 5
POLOXAMER 407 45
Preferred Abrasive System 10
Insoluble Saccharin 2
Flavor and Preservatives 8
32 350 .052 .001 52 PEG 1450 20
Hydrogenated Vegetable Oil 10
Ultramulsion 10-2.5* 10
POLOXAMER 407 40
Preferred Abrasive System 10
Insoluble Saccharin 2
Flavor and Preservatives 8
33 500 .065 .002 47 PEG 1450 15
PEG 600 5
Ultramulsion 10-2.5* 10
POLOXAMER 338 50
Carnuba Wax 5
Preferred Abrasive System 5
Insoluble Saccharin 2
Flavor and Preservatives 8
34 500 .065 .002 62 PEG 4000 30
Sorbitol 5
hydroxypropylcellulose 10
Ultramulsion 10-2.5* 10
POLOXAMER 407 20
Preferred Abrasive System 10
Insoluble Saccharin 2
Flavor and Preservatives 8

TABLE 6
Micromesh devices contact loaded with low melt viscosity emulsion or mixture coatings
Micromesh Device Contact Low Melt Viscosity
Width Thickness Coating Load Emulsion or Mixture Coating
Ex. No. Denier (in inches) (in inches) (in mg/yd) Ingredient Percent by Wt.
35 350 .055 .001 20 Microcrystalline Wax 80
Hydrogenated Vegetable Oil 5
POLOXAMER 407 5
PEG 40 sorbitan diisostearate 5
Preferred Abrasive System 0
Insoluble Saccharin 1
Flavor and Preservatives 4
36 350 .055 .001 35 Microcrystalline Wax 85
Hydrozyethyl cellulose 3
POLOXAMER 407 2
PEG 40 sorbitan diisostearate 5
Preferred Abrasive System 0
Insoluble Saccharin 1
Flavor and Preservatives 4
37 350 .055 .001 18 Microcrystaline Wax 82
Hydrogenated Vegetable Oil 3
POLOXAMER 407 0
PEG 40 sorbitan diisostearate 5
Preferred Abrasive System 5
Insoluble Saccharin 1
Flavor and Preservatives 4
38 500 .079 .001 18 Microcrystaline Wax 85
PEG 40 sorbitan diisostearate 5
Preferred Abrasive System 2
Insoluble Saccharin 2
Flavor and Preservatives 6

A spool of micromesh tape, 460 denier, 1.7 thousandths inch thickness, constructed of ultra high molecular weight polyethylene, with a relative fibrillation of 42, was put on a dispensing creel under a controlled tension of 150 grams. The tape was routed into an applicator tank under four splaying bars.

The coating formula consists of 57.1 percent ULTRAMULSION® 10/2.5 (90 percent poloxamer 407 and 10 percent polydimethylsiloxane, 2.5 million centistokes); 7 percent microcrystalline wax 445; 3.0 percent PEG 40 sorbitan diisostearate; 15 percent stearyl alcohol; 1.8 percent insoluble saccharin; 0.1 percent propyl gallate; 10 percent flavor; and 6.0 percent dicalcium phosphate dihydrate.

The ingredients were heated at 85° C. and stirred vigorously until homogeneous and added to the applicator tank until the four bars were covered.

The micromesh tape was threaded under four splaying bars and up through a slub gap of 0.005 inches and between two compression rollers heated to 65° C. gapped at 0.005 inches and heated at 65° C. The tape was then threaded through a 40 foot long cooling tunnel at 7° C. and on to Lessona 959 take-up winders. The line speed was increased to 1.5 yards per second to produce 2210 yards.

A sample of tape was measured for load level and gave 41.4 mg/yd.

A spool of micromesh tape, 460 denier, 1.7 thousandths inch thickness, constructed of ultra high molecular weight polyethylene, with a relative fibrillation of 70, was put on a dispensing creel under a controlled tension of 150 grams. The tape was routed into an applicator tank under four splaying bars.

The coating formula consists of 57.1 percent ULTRAMULSION® 10/2.5 (90 percent poloxamer 407 and 10 percent polydimethylsiloxane, 2.5 million centistokes); 7 percent microcrystalline wax 445; 3.0 percent PEG 40 sorbitan diisostearate; 15 percent stearyl alcohol; 1.8 percent insoluble saccharin; 0.1 percent propyl gallate; 10 percent flavor; and 6.0 percent dicalcium phosphate dihydrate.

The ingredients were heated at 85° C. and stirred vigorously until homogeneous and added to the applicator tank until the four bars were covered.

The micromesh tape was threaded under four splaying bars and up through a slub gap of 0.005 inches and between two compression rollers gapped at 0.005 inches and heated at 85° C. The tape was then threaded through a 40 foot long cooling tunnel at 7° C. and on to Lessona 959 take-up winders. The line speed was increased to 1.5 yards per second to produce 2210 yards.

A sample of tape was measured for load level and gave 51.3 mg/yd.

A spool of micromesh tape, 460 denier, 1.7 thousandths inch thickness, constructed of ultra high molecular weight polyethylene, with a relative fibrillation of 200, was put on a dispensing creel under a controlled tension of 150 grams. The tape was routed into an applicator tank under four splaying bars.

The coating formula consists of 57.1 percent ULTRAMULSION® 10/2.5 (90 percent poloxamer 407 and 10 percent polydimethylsiloxane, 2.5 million centistokes); 7 percent microcrystalline wax 445; 3.0 percent PEG 40 sorbitan diisostearate; 15 percent stearyl alcohol; 1.8 percent insoluble saccharin; 0.1 percent propyl gallate; 10 percent flavor; and 6.0 percent dicalcium phosphate dihydrate.

The ingredients were heated at 85° C. and stirred vigorously until homogeneous and added to the applicator tank until the four bars were covered.

The micromesh tape was threaded under four splaying bars and up through a slub gap of 0.005 inches and between two compression rollers gapped at 0.005 inches and heated at 85° C. The tape was then threaded through a 40 foot long cooling tunnel at 7° C. and on to Lessona 959 take-up winders. The line speed was increased to 1.5 yards per second to produce 2210 yards.

A sample of tape was measured for load level and gave 56.2 mg/yd.

The present invention has been described in detail, including the preferred embodiments thereof. However, it will be appreciated that those skilled in the art, upon consideration of the present disclosure, may make modifications and/or improvements on this invention and still be within the scope and spirit of this invention as set forth in the following claims.

Hill, Ira D., Brown, Dale G.

Patent Priority Assignee Title
11135040, Oct 02 2012 Dental device
11452291, May 14 2007 The Research Foundation for The State University Induction of a physiological dispersion response in bacterial cells in a biofilm
11541105, Jun 01 2018 The Research Foundation for The State University of New York Compositions and methods for disrupting biofilm formation and maintenance
7806125, Aug 17 2004 Allan, Coopersmith Inter dental tooth cleaner and delivery device
7975707, Dec 26 2007 Medibotics LLC Dental floss or tape whose cross-sectional size can be adjusted after insertion
8408219, Jan 11 2005 AVIENT PROTECTIVE MATERIALS B V Dental tape and process for its manufacturing
9585818, Oct 12 2012 Premier Dental Products Company Enamel protectant and repair toothpaste treatments
9586064, Oct 12 2012 Premier Dental Products Company Enamel protectant and repair brushing gels
9604078, Oct 12 2012 Premier Dental Products Company Methods for protecting and reparing enamel
9616004, Oct 12 2012 Premier Dental Products Company Enamel protectant and repair toothpaste
9724542, Oct 12 2012 Premier Dental Products Company Remineralizing and desensitizing compositions, treatments and methods of manufacture
9877929, Oct 13 2011 Premier Dental Products Company Topical vitamin D and ubiquinol oral supplement compositions
9877930, Oct 12 2012 Premier Dental Products Company Topical ubiquinol oral supplement compositions with amorphous calcium phosphate
Patent Priority Assignee Title
2185789,
2667443,
2772205,
2954587,
3214899,
3662930,
3693851,
3699979,
3800812,
3838702,
3897795,
3928618,
3943949, Nov 26 1974 Johnson & Johnson Flavored dental articles
4029113, Feb 20 1975 Waxed dental textile material and method of preparing and using the same
4033365, Jan 23 1976 Johnson & Johnson Flavored dental articles
4414990, Apr 02 1982 JOHNSON & JOHNSON CONSUMER PRODUCTS, INC Fluoridated dental articles
4627975, Dec 21 1984 ICI Americas Inc. Dental floss dentifrice formulation and method of treating teeth, mouth and throat therewith to reduce plaque accumulation and irritation
4638823, Mar 14 1983 REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, A CORP OF CA Fluoride-coated dental floss
4776358, Sep 23 1986 Floss employing microporous tapes sandwiching paste dentifrice
4879076, Jun 17 1986 NIPPON MITSUBSHI OIL CORPORATION Process for the production of polyethylene materials
4911927, Nov 14 1988 WHITEHILL ORAL TECHNOLOGIES, INC Method and apparatus for adding chemotherapeutic agents to dental floss
4950479, Nov 06 1986 WHITE HILL ORAL TECHNOLOGIES, INC Method of interrupting the formation of plaque
4974615, Jul 26 1989 Elastic filament for oral hygiene
4986288, Mar 23 1988 Colgate-Palmolive Company Dental floss and picks
4996011, Jul 09 1988 NIPPON MITSUBSHI OIL CORPORATION Production of polyethylene materials having improved strength and modulus qualities
4998011, Nov 17 1989 Discovision Associates Flat plate focus sensing apparatus
5002714, Dec 27 1988 NIPPON MITSUBSHI OIL CORPORATION Process for producing highly oriented polyethylene material
5032387, Nov 06 1986 WHITEHILL ORAL TECHNOLOGIES, INC Dental and oral hygiene preparations
5033365, Jul 10 1989 KFC Corporation Apparatus for simulating open flame broiled meat products
5033488, Mar 29 1988 Colgate-Palmolive Co. Dental floss
5091133, Dec 21 1988 NIPPON MITSUBSHI OIL CORPORATION Continuous production process of high-strength and high-modulus polyolefin material
5098711, Nov 14 1988 WHITEHILL ORAL TECHNOLOGIES, INC Method of treating the oral cavity with dental floss containing chemotherapeutic agents
5106555, Jul 28 1989 Nippon Oil Corporation Process for the continuous production of high-strength and high-modulus polyethylene material
5106558, May 02 1989 Nippon Oil Corporation Method for continuous preparation of polyethylene material having high strength and high modulus of elasticity
5165713, Jul 03 1991 5TH BOOT INDUSTRIES INC Fifth wheel cover
5165913, Nov 14 1988 WHITEHILL ORAL TECHNOLOGIES, INC Controlled release interproximal delivery system
5200129, Apr 20 1990 NIPPON MITSUBSHI OIL CORPORATION Process for continuous production of polyolefin material
5209251, Mar 29 1988 COLGATE-PALMOLIVE COMPANY A DE CORP Dental floss
5220932, Dec 20 1990 Westone Products Limited Dental floss and method of making it
5357990, Aug 01 1991 Gillette Canada Company Flavored dental floss and process
5423337, Mar 24 1994 VERVE, L L C Medicated dental floss
5433226, Mar 09 1994 ROBERT R BURCH JR Dental floss based on robust segmented elastomer
5479952, Jan 06 1994 Polteco, Inc. Dental floss of ultra-high modulus line material with enhanced mechanical properties
5503842, Oct 16 1989 Colgate-Palmolive Company Polytetrafluoroethylene therapeutic articles
5518012, Jun 15 1994 W L GORE & ASSOCIATES, INC Expanded PTFE floss material and method of making same
5538667, Oct 28 1993 WHITEHILL ORAL TECHNOLOGIES, INC Ultramulsions
5558901, May 26 1994 Gillette Canada Company Floss yarn bulking assembly and method
5561959, Nov 05 1993 Owens Corning Intellectual Capital, LLC Heat-reflective roof structure
5578373, Nov 01 1990 Nippon Oil Corporation Split polyethylene stretched material and process for producing the same
5598373, Jun 29 1994 PS4 LUXCO S A R L Semiconductor memory system
5603921, Mar 13 1995 Whalen Biomedical Incorporated Medicated dental floss and method of preparation
5645841, Jun 05 1995 WhiteHill Oral Technologies, Inc. Ultramulsion based oral care rinse compositions
5665374, Jun 05 1995 WhiteHill Oral Technologies, Inc. Ultramulsion containing interdental delivery devices
5693708, Jul 19 1990 NIPPON MITSUBSHI OIL CORPORATION Colored stretched polyethylene material and process for producing the same
5695708, Dec 25 1994 STRATASYS LTD Three dimensional forming
5702657, Dec 27 1994 NIPPON MITSUBSHI OIL CORPORATION Method for the continuous production of a polyethylene material having high strength and high modulus of elasticity
5711935, May 10 1994 WHITEHILL ORAL TECHNOLOGIES, INC Dental floss
5718251, Apr 26 1996 W L GORE & ASSOCIATES, INC Dental floss article
5723388, May 27 1991 NIPPON MITSUBSHI OIL CORPORATION Prepreg of ultra-high-molecular-weight polyethylene
5755243, Jun 27 1996 Gillette Canada Company Dental floss with thermoplastic coating
5760117, May 21 1990 APPLIED ELASTOMERICS, INC Gelatinous composition and articles
5765576, Apr 26 1996 W L GORE & ASSOCIATES, INC Dental floss article and method of making same
5787758, Sep 03 1996 Sheldon/Van Someren, Inc.; SHELDON VAN SOMEREN, INC Three-axis machine for rapid and rigid manipulation of components
5830495, Jul 03 1996 McNeil-PPC, Inc Dental floss with increased loading weight
5845652, Jun 06 1995 Gillette Canada Company Dental floss
5848600, Apr 26 1996 W L GORE & ASSOCIATES, INC Dental floss article
5884639, Mar 08 1996 Applied Elastomerics, Inc. Crystal gels with improved properties
5911228, Jul 10 1996 COMPRESSOR PRODUCTS INTERNATIONAL LLC Ingredient filled polytetrafluoroethylene dental floss devoid to grip enhancing coating
5918609, Oct 24 1996 Gillette Canada Company Particulate modified elastomeric flosses
5962572, Dec 29 1995 APPLIED ELASTOMERICS, INC Oriented gel and oriented gel articles
5998431, Aug 23 1991 GILLETTE COMPANY, THE Sustained-release matrices for dental application
6003525, Mar 14 1998 Elastomer floss and related flossing devices
6017480, Mar 22 1996 Nippon Mitsubishi Oil Corporation Process for producing polyolefin materials
6027593, Apr 01 1997 Process for the fabrication of disposable diapers and other disposable products and a disposable diaper
6080481, Nov 14 1997 JOHNSON & JOHNSON CONSUMER INC Highly flavored dental floss
6083208, Jan 05 1996 The Trustees of Columbia University of the City of New York Triclosan-containing medical devices
6148830, Aug 11 1994 Applied Elastomerics, Incorporated Tear resistant, multiblock copolymer gels and articles
6161555, Aug 11 1994 Applied Elastomerics, Inc.; APPLIED ELASTOMERICS, INC Crystal gels useful as dental floss with improved high tear, high tensile, and resistance to high stress rupture properties
RE35439, Sep 13 1988 Germicidal dental floss and method for fabrication
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 11 2002International Tape Partners LLC(assignment on the face of the patent)
Apr 19 2002BROWN, DALE G International Tape Partners LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0128850392 pdf
Apr 22 2002HILL, IRA D International Tape Partners LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0128850392 pdf
Jan 23 2009International Tape Partners LLCWHITEHILL ORAL TECHNOLOGIES INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0221370687 pdf
Date Maintenance Fee Events
Nov 11 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 11 2009M1554: Surcharge for Late Payment, Large Entity.
May 27 2011ASPN: Payor Number Assigned.
Nov 22 2013REM: Maintenance Fee Reminder Mailed.
Apr 11 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 11 2014M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
Nov 20 2017REM: Maintenance Fee Reminder Mailed.
May 07 2018EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Apr 11 20094 years fee payment window open
Oct 11 20096 months grace period start (w surcharge)
Apr 11 2010patent expiry (for year 4)
Apr 11 20122 years to revive unintentionally abandoned end. (for year 4)
Apr 11 20138 years fee payment window open
Oct 11 20136 months grace period start (w surcharge)
Apr 11 2014patent expiry (for year 8)
Apr 11 20162 years to revive unintentionally abandoned end. (for year 8)
Apr 11 201712 years fee payment window open
Oct 11 20176 months grace period start (w surcharge)
Apr 11 2018patent expiry (for year 12)
Apr 11 20202 years to revive unintentionally abandoned end. (for year 12)