A first partial checksum for the header portion of a tcp header is generated on an intelligent network interface card (INIC) before all the data of the data payload of the tcp message has been transferred to the INIC. A pseudopacket with the first partial checksum and the data is assembled in DRAM on the INIC as the data arrives onto the INIC. When the last portion of the data of the data payload is received onto the INIC, a second partial checksum for the data payload is generated. The pseudopacket is read out of DRAM for transfer to a network. While the pseudopacket is being transferred, the second partial header is combined with the first partial header and the resulting final checksum is inserted into the pseudopacket so that a complete tcp packet with a correct checksum is output from the INIC to the network.

Patent
   7042898
Priority
Oct 14 1997
Filed
Mar 09 2001
Issued
May 09 2006
Expiry
Apr 26 2021
Extension
1095 days
Assg.orig
Entity
Large
111
93
all paid
5. An apparatus, comprising:
(a) means for transferring a data payload from a host memory to a first memory of a network interface device;
(b) means for creating, before the transferring of (a) is complete, a pseudoheader and storing the pseudoheader in a second memory of the network interface device, the pseudoheader containing a header portion and a checksum portion, the checksum portion being a checksum of the header portion and not a checksum of the data payload;
(c) means for transferring, before the transferring of (a) is complete, the pseudoheader from the second memory to the first memory;
(d) means for generating, after (c), a checksum for the data payload wherein the pseudoheader and the data payload together comprise a pseudopacket; and
(e) means for reading the pseudheader and at least a portion of the data payload from the first memory and for combining the checksum for the header portion with the checksum for the data payload to generate a final checksum, the final checksum being inserted into the pseudopacket to form a complete tcp packet, the complete tcp packet being output from the network interface device to a network.
1. A method, comprising:
(a) transferring a data payload from a host memory to a first memory of a network interface device;
(b) on the network interface device and before the transferring of (a) is complete creating a pseudoheader and storing the pseudoheader in a second memory of the network interface device, the pseudoheader containing a header portion and a checksum portion, the checksum portion being a checksum of the header portion and not a checksum of the data payload;
(c) on the network interface device and before the transferring of (a) is complete transferring the pseudoheader from the second memory to the first memory;
(d) after (c) generating on the network interface device a checksum for the data payload; wherein the pseudoheader and the data payload together comprise a pseudopacket; and
(e) reading the pseudoheader and at least a portion of the data payload from the first memory and combining the checksum for the header portion with the checksum for the data payload to generate a final checksum, the final checksum being inserted into the pseudopacket to form a complete tcp packet, the complete tcp packet being output from the network interface device to a network.
2. The method of claim 1, wherein the first memory is DRAM and wherein the second memory is SRAM.
3. The method of claim 1, wherein the second memory has a faster access time than the first memory.
4. The method of claim 1, wherein the network interface device is part of a host computer, the host memory being another part of the host computer.
6. The apparatus of claim 5, wherein the apparatus comprises a host computer, the network interface device being a part of the host computer, the host memory being another part of the host computer.
7. The apparatus of claim 5, wherein the means for reading includes a sequencer, and wherein the means for creating includes a processor.

This application is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/464,283, filed Dec. 15, 1999, by Laurence B. Boucher et al., now U.S. Pat. No. 6,427,173, which in turn is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/439,603, filed Nov. 12, 1999, by Laurence B. Boucher et al., now U.S. Pat No. 6,247,060, which in turn claims the benefit under 35 U.S.C. §119(e)(1) of the Provisional Application Ser. No. 60/061,809, filed on Oct. 14, 1997. This application also is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/384,792, filed Aug. 27, 1999, now U.S. Pat. No. 6,434,620, which in turn claims the benefit under 35 U.S.C. § 119(e)(1) of the Provisional Application Ser. No. 60/098,296, filed Aug. 27, 1998. This application also is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/067,544, filed Apr. 27, 1998, now U.S. Pat. No. 6,226,880. The subject matter of all the above-identified patent applications, and of the two above-identified provisional applications, is incorporated by, reference herein.

FIG. 1 (Prior Art) is a simplified diagram of a TCP packet. FIG. 2 is a simplified diagram of a network interface card (NIC) 100 card called an intelligent network interface card (INIC). One of the operations the INIC performs is to read data for a TCP packet out of host memory 101 on a host computer 102 and to transmit that data as the data payload of a TCP message onto a network 107.

A difficulty associated with performing this operation quickly is that the checksum of the TCP packet is located near the front of the packet before the data payload. The checksum is a function of all the data of the data payload. Consequently all the data of the payload must generally be transferred to the INIC 100 before the checksum can be generated. Consequently, in general, all the data of the payload is received onto the INIC card, the checksum 104 is generated, the checksum 104 is then combined with the data payload in DRAM 105 to form the complete TCP packet 106, and the complete TCP packet 106 is then transferred from DRAM 105 to the network 107.

FIG. 2 illustrates this flow of information. Arrow 108 illustrates the flow of data from host memory 101 and across PCI bus 103 to DRAM 105 located on INIC card 100. While the data is being transferred, processor 109 on INIC card 100 builds the TCP header 110 in faster SRAM 111. The TCP header is formed in SRAM 111 rather than DRAM 105 because processor 109 needs to perform multiple operations on the header 110 as it is assembled and doing such multiple operations from relatively slow DRAM would unduly slow down processor 109. When all the data has been received onto the INIC 100, processor 109 is able to determine the checksum 104. The complete TCP header 110 including the correct checksum 104 is at that point residing in SRAM 111. Arrow 112 represents the assembly and writing of the complete header 110 from processor 109 to SRAM 111.

Once the complete header 110 is assembled, it is transferred from SRAM 111 to DRAM 105 in a relatively slow write to DRAM 105. Arrow 113 illustrates this transfer. Once the complete TCP packet 106 is assembled in DRAM 105, the complete packet 106 is output from DRAM 105 to the network 107. In the example of FIG. 2, this transfer is represented by arrow 114.

Unfortunately, the writing to DRAM 105 is often a relatively slow process and this writing can only begin once all the data has been received onto the INIC card. The result is an undesirable latency in the outputting of the TCP packet onto the network. A solution is desired.

A first partial checksum for the header portion of a TCP header is generated on an intelligent network interface card (INIC) before all the data of the data payload of the TCP message has been transferred to the INIC. A pseudopacket with the first partial checksum and the data is assembled in DRAM on the INIC as the data arrives onto the INIC. When the last portion of the data of the data payload is received onto the INIC, a second partial checksum for the data payload is generated. This second partial checksum is not, however, written into DRAM. Rather, the pseudopacket is read out of DRAM for transfer to the network and while the pseudopacket is being transferred the second partial header is combined with the first partial header such that the resulting final TCP checksum is inserted into the pseudopacket. The pseudopacket is therefore converted into a complete TCP packet with a correct checksum as it is output from the INIC to the network.

In this way, the slow write to DRAM of the complete TCP header after the payload has already been transferred to DRAM is avoided. Rather than generating the complete TCP checksum and taking the time to write it into DRAM, the complete TCP checksum is generated on the fly as the pseudopacket is transferred from DRAM to the network.

This summary does not purport to define the invention. The claims, and not this summary, define the invention.

FIG. 1 is a simplified diagram of a TCP packet.

FIG. 2 is a diagram used in explaining the background of the invention.

FIG. 3 is a diagram of an intelligent network interface card (INIC) in accordance with an embodiment of the present invention.

FIG. 4 is a diagram of a method in accordance with an embodiment of the present invention.

FIG. 3 is a diagram of an intelligent network interface card (INIC) 200 in accordance with one embodiment of the present invention. INIC 200 is coupled to host computer 201 via PCI bus 202. For additional information on INIC 200, see U.S. patent application Ser. No. 09/464,283, filed Dec. 15, 1999 (the subject matter of which is incorporated herein by reference).

FIG. 4 is a flow chart that illustrates a method in accordance with an embodiment of the invention. In step 300, data from host memory that is to make up a part of the payload of a TCP message is transferred from host memory 203 to DRAM 204 via PCI bus 202. Hardware in the path of this data determines a first checksum CSUM1 on the fly as the data passes by. This flow of data from host memory 203 to DRAM 204 is indicated on FIG. 3 by arrow 205.

Although it could be in some situations, in the presently described example not all the data that will make up the TCP data payload is present in the same place in host memory 203. Consequently, the flow of data for the data payload from host memory 203 to DRAM 204 occurs in multiple different data moves as the various different pieces of the data are located and transferred to DRAM 204.

In step 301, more of the data that is to make the data payload of the TCP message is moved from host memory 203 to DRAM 204. A second checksum CSUM2 is generated as the data passes through the data path. This data flow is again represented by arrow 205.

In this example, the data payload is transferred to DRAM in three pieces. In step 302, the last of the data is moved from host memory 203 to DRAM 204 and a third checksum CSUM3 associated with this data is generated.

Processor 206, before this transferring is completed, builds in SRAM 207 the TCP header 208 that is to go on the TCP message. Processor 206 does not have all the data for the TCP payload so it cannot determine the complete checksum for the TCP message. It does, however, generate a checksum HDR CSUM 209 for the remainder (header portion 216) of the TCP header. This HDR CSUM is a partial checksum. Arrow 210 in FIG. 3 illustrates the building of the pseudoheader 208 (header portion 216 and partial checksum HDR CSUM 209) in SRAM 207.

In step 303, while the data payload is being transferred from host memory 203 to DRAM 204 in steps 301-302, the TCP header with the partial checksum HDR CSUM is moved from SRAM 207 to DRAM 204. This transfer is illustrated in FIG. 3 by arrow 211.

In step 304, after all the data for the data payload has been transferred such that checksums for all the various pieces of the data payload have been generated, processor 206 combines those various data checksums together to form a single checksum for the data payload. In this example, there are three data checksums CSUM1, CSUM2 and CSUM 3. These are combined together to make a single data checksum DATA CSUM for the data payload. Processor 206 then supplies this DATA CSUM to a transmit sequencer 212. For additional details on one particular example of a transmit sequencer, see U.S. patent application Ser. No. 09/464,283 (the subject matter of which is incorporated herein by reference). The supplying of the DATA CSUM to transmit sequencer 212 is illustrated in FIG. 3 by arrow 213. At this point, the data payload is present in one place in DRAM 204 in assembled form with the pseudoheader 208 (header portion 216 and HDR CSUM 209) that was transferred from SRAM 207 to DRAM 204 in step 303. This assembly is a pseudopacket (pseudoheader and data payload). It is complete but for the fact that the header does not contain a complete checksum but rather contains the partial checksum HDR CSUM 209.

In step 305, the transmit sequencer 212 begins transferring the pseudopacket out of DRAM 204 for transmission onto a network 214. Network 214 is, in one embodiment, a local area network (LAN). Transmit sequencer 212 combines the DATA CSUM with the HDR CSUM to create a final checksum and inserts the final checksum into the pseudopacket as the pseudopacket passes over path 215 from DRAM 204 to network 214. What is transferred onto network 214 is therefore a TCP packet having a correct TCP header with a correct checksum.

Although the functionality of the INIC is described here as being carried out on a separate card, it is to be understood that in some embodiments the functionality of the INIC is carried out on the host computer itself, for example on the motherboard of the host computer. Functionality of the INIC can be incorporated into the host such that payload data from host memory does not pass over a bus such as the PCI bus, but rather the INIC functionality is incorporated into the host in the form of an I/O integrated circuit chip or integrated circuit chip set that is coupled directly to the host memory bus. The I/O integrated circuit chip has a dedicated hardware interface for network communications. Where the INIC functionality is embodied in such an I/O integrated circuit chip, payload data from host memory is transferred to the network from the host memory by passing through the host's local bus, onto the I/O integrated circuit chip, and from the I/O integrated circuit chip's network interface port substantially directly to the network (through a physical layer interface device (PHY)) without passing over any expansion card bus.

Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. The present invention extends to packet protocols other than the TCP protocol. In some embodiments, the first part of the packet is output from the INIC before the final checksum is inserted into the packet. The combining of the DATA CSUM and the HDR CSUM need not be performed by a sequencer and the pseudoheader need not be created by a processor. Other types of hardware and software can be employed to carry out these functions in certain embodiments. In some embodiments, the pseudoheader is assembled in memory or registers inside processor 109 rather than in a separate memory such as SRAM 111. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.

Starr, Daryl D., Boucher, Laurence B., Craft, Peter K., Philbrick, Clive M., Higgen, David A., Blightman, Stephen E. J.

Patent Priority Assignee Title
10033840, Apr 17 2000 SONS OF INNOVATION LLC System and devices facilitating dynamic network link acceleration
10154115, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure
10205795, Apr 17 2000 SONS OF INNOVATION LLC Optimization of enhanced network links
10329410, Apr 17 2000 SONS OF INNOVATION LLC System and devices facilitating dynamic network link acceleration
10516751, Apr 17 2000 SONS OF INNOVATION LLC Optimization of enhanced network links
10819826, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure
10858503, Apr 17 2000 SONS OF INNOVATION LLC System and devices facilitating dynamic network link acceleration
10931775, Apr 17 2000 SONS OF INNOVATION LLC Optimization of enhanced network links
11991234, Apr 30 2004 DISH Technologies L.L.C. Apparatus, system, and method for multi-bitrate content streaming
7206872, Feb 20 2004 Nvidia Corporation System and method for insertion of markers into a data stream
7249306, Feb 20 2004 Nvidia Corporation System and method for generating 128-bit cyclic redundancy check values with 32-bit granularity
7260631, Dec 19 2003 Nvidia Corporation System and method for receiving iSCSI protocol data units
7302499, Nov 10 2000 Nvidia Corporation Internet modem streaming socket method
7324547, Dec 13 2002 Nvidia Corporation Internet protocol (IP) router residing in a processor chipset
7362772, Dec 13 2002 Nvidia Corporation Network processing pipeline chipset for routing and host packet processing
7363572, Jun 05 2003 Nvidia Corporation Editing outbound TCP frames and generating acknowledgements
7376790, Jun 12 2001 Network Appliance, Inc. Caching media data using content sensitive object identifiers
7379475, Jan 25 2002 Nvidia Corporation Communications processor
7386627, Jan 29 2002 NETWORK APPLLANCE Methods and apparatus for precomputing checksums for streaming media
7412488, Jun 05 2003 Nvidia Corporation Setting up a delegated TCP connection for hardware-optimized processing
7420931, Jun 05 2003 Nvidia Corporation Using TCP/IP offload to accelerate packet filtering
7447795, Oct 04 2000 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Multi-purpose switching network interface controller
7461160, Oct 14 1997 ALACRITECH, INC Obtaining a destination address so that a network interface device can write network data without headers directly into host memory
7472156, Oct 14 1997 ALACRITECH, INC Transferring control of a TCP connection between devices
7483375, Jun 11 1998 Nvidia Corporation TCP/IP/PPP modem
7496689, Apr 22 2002 ALACRITECH, INC TCP/IP offload device
7502869, Oct 14 1997 ALACRITECH, INC Intelligent network interface system and method for accelerated protocol processing
7535913, Jun 06 2002 Nvidia Corporation Gigabit ethernet adapter supporting the iSCSI and IPSEC protocols
7543087, Apr 22 2002 ALACRITECH, INC Freeing transmit memory on a network interface device prior to receiving an acknowledgement that transmit data has been received by a remote device
7584260, Oct 14 1997 ALACRITECH, INC Method to synchronize and upload an offloaded network stack connection with a network stack
7609696, Jun 05 2003 Nvidia Corporation Storing and accessing TCP connection information
7613109, Jun 05 2003 Nvidia Corporation Processing data for a TCP connection using an offload unit
7620726, Oct 14 1997 ALACRITECH, INC Zero copy method for receiving data by a network interface
7624198, Dec 19 2003 Nvidia Corporation Sequence tagging system and method for transport offload engine data lists
7627684, Oct 14 1997 ALACRITECH, INC Network interface device that can offload data transfer processing for a TCP connection from a host CPU
7640364, Mar 07 2001 ALACRITECH, INC Port aggregation for network connections that are offloaded to network interface devices
7664868, Nov 07 2001 ALACRITECH, INC TCP/IP offload network interface device
7664883, Aug 28 1998 ALACRITECH, INC Network interface device that fast-path processes solicited session layer read commands
7673072, Oct 14 1997 ALACRITECH, INC Fast-path apparatus for transmitting data corresponding to a TCP connection
7694024, Oct 14 1997 ALACRITECH, INC TCP/IP offload device with fast-path TCP ACK generating and transmitting mechanism
7698413, Apr 12 2004 Nvidia Corporation Method and apparatus for accessing and maintaining socket control information for high speed network connections
7701973, Jun 28 2004 Intel Corporation Processing receive protocol data units
7738500, Dec 14 2005 ALACRITECH, INC TCP timestamp synchronization for network connections that are offloaded to network interface devices
7779330, Nov 15 2005 MARVELL INTERNATIONAL LTD Method and apparatus for computing checksum of packets
7809847, Oct 14 1997 ALACRITECH, INC Network interface device that can transfer control of a TCP connection to a host CPU
7826350, May 11 2007 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Intelligent network adaptor with adaptive direct data placement scheme
7831720, May 17 2007 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Full offload of stateful connections, with partial connection offload
7844743, Oct 14 1997 ALACRITECH, INC Protocol stack that offloads a TCP connection from a host computer to a network interface device
7853723, Oct 14 1997 ALACRITECH, INC TCP/IP offload network interface device
7899913, Dec 19 2003 Nvidia Corporation Connection management system and method for a transport offload engine
7924840, Jan 12 2006 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Virtualizing the operation of intelligent network interface circuitry
7924868, Dec 13 2002 Nvidia Corporation Internet protocol (IP) router residing in a processor chipset
7945699, Oct 14 1997 ALACRITECH, INC Obtaining a destination address so that a network interface device can write network data without headers directly into host memory
7962654, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure
7975066, Apr 16 2001 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure
7991918, Jun 05 2003 Nvidia Corporation Transmitting commands and information between a TCP/IP stack and an offload unit
8019901, Sep 29 2000 ALACRITECH, INC Intelligent network storage interface system
8024481, Apr 17 2000 SONS OF INNOVATION LLC System and method for reducing traffic and congestion on distributed interactive simulation networks
8032655, Apr 11 2001 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Configurable switching network interface controller using forwarding engine
8060644, May 11 2007 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Intelligent network adaptor with end-to-end flow control
8065399, Apr 17 2000 SONS OF INNOVATION LLC Automated network infrastructure test and diagnostic system and method therefor
8065439, Dec 19 2003 Nvidia Corporation System and method for using metadata in the context of a transport offload engine
8131880, Oct 14 1997 ALACRITECH, INC Intelligent network interface device and system for accelerated communication
8139482, Aug 31 2005 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Method to implement an L4-L7 switch using split connections and an offloading NIC
8155001, Aug 31 2005 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Protocol offload transmit traffic management
8176545, Dec 19 2003 Nvidia Corporation Integrated policy checking system and method
8195823, Apr 17 2000 SONS OF INNOVATION LLC Dynamic network link acceleration
8213427, Dec 19 2005 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Method for traffic scheduling in intelligent network interface circuitry
8218555, Apr 24 2001 Nvidia Corporation Gigabit ethernet adapter
8248939, Oct 08 2004 Alacritech, Inc. Transferring control of TCP connections between hierarchy of processing mechanisms
8339952, Aug 31 2005 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Protocol offload transmit traffic management
8341286, Jul 31 2008 Alacritech, Inc. TCP offload send optimization
8356112, May 11 2007 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Intelligent network adaptor with end-to-end flow control
8386641, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure
8417770, Apr 17 2000 SONS OF INNOVATION LLC Data redirection system and method therefor
8417852, Jun 05 2003 Nvidia Corporation Uploading TCP frame data to user buffers and buffers in system memory
8447803, Oct 14 1997 ALACRITECH, INC Method and apparatus for distributing network traffic processing on a multiprocessor computer
8453035, Mar 25 2008 Oracle America, Inc. Method for efficient generation of a fletcher checksum using a single SIMD pipeline
8463935, Apr 17 2000 SONS OF INNOVATION LLC Data prioritization system and method therefor
8510468, Apr 17 2000 SONS OF INNOVATION LLC Route aware network link acceleration
8539112, Oct 14 1997 ALACRITECH, INC TCP/IP offload device
8539513, Apr 01 2008 Alacritech, Inc. Accelerating data transfer in a virtual computer system with tightly coupled TCP connections
8549170, Dec 19 2003 Nvidia Corporation Retransmission system and method for a transport offload engine
8589587, May 11 2007 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Protocol offload in intelligent network adaptor, including application level signalling
8621101, Sep 29 2000 ALACRITECH, INC Intelligent network storage interface device
8631140, Oct 14 1997 ALACRITECH, INC Intelligent network interface system and method for accelerated protocol processing
8686838, Jan 12 2006 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Virtualizing the operation of intelligent network interface circuitry
8782199, Oct 14 1997 ALACRITECH, INC Parsing a packet header
8805948, Oct 14 1997 ALACRITECH, INC Intelligent network interface system and method for protocol processing
8856379, Oct 14 1997 ALACRITECH, INC Intelligent network interface system and method for protocol processing
8893159, Apr 01 2008 Alacritech, Inc. Accelerating data transfer in a virtual computer system with tightly coupled TCP connections
8898340, Apr 17 2000 SONS OF INNOVATION LLC Dynamic network link acceleration for network including wireless communication devices
8935406, Apr 16 2007 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Network adaptor configured for connection establishment offload
8977711, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure including wirelessly coupled devices
8977712, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure including a wireless communication link
8996705, Apr 17 2000 SONS OF INNOVATION LLC Optimization of enhanced network links
9009223, Oct 14 1997 ALACRITECH, INC Method and apparatus for processing received network packets on a network interface for a computer
9055104, Apr 22 2002 ALACRITECH, INC Freeing transmit memory on a network interface device prior to receiving an acknowledgment that transmit data has been received by a remote device
9098297, May 08 1997 Nvidia Corporation Hardware accelerator for an object-oriented programming language
9148293, Apr 17 2000 SONS OF INNOVATION LLC Automated network infrastructure test and diagnostic system and method therefor
9185185, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure
9306793, Oct 22 2008 ALACRITECH, INC TCP offload device that batches session layer headers to reduce interrupts as well as CPU copies
9380129, Apr 17 2000 SONS OF INNOVATION LLC Data redirection system and method therefor
9413788, Jul 31 2008 Alacritech, Inc. TCP offload send optimization
9436542, Apr 17 2000 SONS OF INNOVATION LLC Automated network infrastructure test and diagnostic system and method therefor
9537878, Apr 16 2007 WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION Network adaptor configured for connection establishment offload
9578124, Apr 17 2000 SONS OF INNOVATION LLC Optimization of enhanced network links
9667729, Jul 31 2008 Alacritech, Inc. TCP offload send optimization
9723105, Apr 17 2000 SONS OF INNOVATION LLC System and method for implementing application functionality within a network infrastructure
9923987, Apr 17 2000 SONS OF INNOVATION LLC Optimization of enhanced network links
RE45009, Apr 17 2000 SONS OF INNOVATION LLC Dynamic network link acceleration
Patent Priority Assignee Title
4336538, Jul 26 1975 The Marconi Company Limited Radar systems
4991133, Oct 07 1988 International Business Machines Corp. Specialized communications processor for layered protocols
5056058, Mar 13 1989 Hitachi, Ltd. Communication protocol for predicting communication frame type in high-speed processing system
5058110, May 03 1989 Computer Network Technology Corporation Protocol processor
5097442, Jun 20 1985 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE Programmable depth first-in, first-out memory
5163131, Sep 08 1989 NetApp, Inc Parallel I/O network file server architecture
5212778, May 27 1988 Massachusetts Institute of Technology Message-driven processor in a concurrent computer
5280477, Aug 17 1992 OL SECURITY LIMITED LIABILITY COMPANY Network synchronous data distribution system
5289580, May 10 1991 Unisys Corporation Programmable multiple I/O interface controller
5303344, Feb 23 1990 Hitachi, Ltd. Protocol processing apparatus for use in interfacing network connected computer systems utilizing separate paths for control information and data transfer
5412782, Jul 02 1992 U S ETHERNET INNOVATIONS, LLC Programmed I/O ethernet adapter with early interrupts for accelerating data transfer
5448566, Nov 15 1993 International Business Machines Corporation Method and apparatus for facilitating communication in a multilayer communication architecture via a dynamic communication channel
5485579, Sep 08 1989 Network Appliance, Inc Multiple facility operating system architecture
5506966, Dec 17 1991 NEC Corporation System for message traffic control utilizing prioritized message chaining for queueing control ensuring transmission/reception of high priority messages
5511169, Mar 02 1992 Mitsubishi Denki Kabushiki Kaisha Data transmission apparatus and a communication path management method therefor
5517668, Jan 10 1994 Amdahl Corporation Distributed protocol framework
5541920, Jun 15 1995 Nortel Networks Limited Method and apparatus for a delayed replace mechanism for a streaming packet modification engine
5548730, Sep 20 1994 Intel Corporation Intelligent bus bridge for input/output subsystems in a computer system
5566170, Dec 29 1994 NETWORK SYSTEMS CORP Method and apparatus for accelerated packet forwarding
5588121, Jan 19 1993 International Computers Limited Parallel computer having MAC-relay layer snooped transport header to determine if a message should be routed directly to transport layer depending on its destination
5590328, Jul 25 1991 Mitsubishi Denki Kabushiki Kaisha Protocol parallel processing apparatus having a plurality of CPUs allocated to process hierarchical protocols
5592622, May 10 1995 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Network intermediate system with message passing architecture
5598410, Dec 29 1994 NETWORK SYSTEMS CORP Method and apparatus for accelerated packet processing
5629933, Jun 07 1995 International Business Machines Corporation Method and system for enhanced communication in a multisession packet based communication system
5634099, Dec 09 1994 International Business Machines Corporation Direct memory access unit for transferring data between processor memories in multiprocessing systems
5634127, Nov 30 1994 IBM Corporation; International Business Machines Corporation Methods and apparatus for implementing a message driven processor in a client-server environment
5642482, Dec 22 1992 Bull, S.A. System for network transmission using a communication co-processor comprising a microprocessor to implement protocol layer and a microprocessor to manage DMA
5664114, May 16 1995 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Asynchronous FIFO queuing system operating with minimal queue status
5671355, Jun 26 1992 PREDACOMM, INC Reconfigurable network interface apparatus and method
5678060, Oct 28 1993 Hitachi, Ltd. System for executing high speed communication protocol processing by predicting protocol header of next frame utilizing successive analysis of protocol header until successful header retrieval
5692130, Jan 14 1992 Ricoh Company, Ltd. Method for selectively using one or two communication channel by a transmitting data terminal based on data type and channel availability
5699317, Jan 22 1992 Intellectual Ventures I LLC Enhanced DRAM with all reads from on-chip cache and all writers to memory array
5701434, Mar 16 1995 Hitachi, Ltd. Interleave memory controller with a common access queue
5701516, Mar 09 1992 Network Appliance, Inc High-performance non-volatile RAM protected write cache accelerator system employing DMA and data transferring scheme
5749095, Jul 01 1996 Oracle America, Inc Multiprocessing system configured to perform efficient write operations
5751715, Aug 08 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Accelerator fiber channel hub and protocol
5752078, Jul 10 1995 International Business Machines Corporation System for minimizing latency data reception and handling data packet error if detected while transferring data packet from adapter memory to host memory
5758084, Feb 27 1995 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Apparatus for parallel client/server communication having data structures which stored values indicative of connection state and advancing the connection state of established connections
5758089, Nov 02 1995 Oracle America, Inc Method and apparatus for burst transferring ATM packet header and data to a host computer system
5758186, Oct 06 1995 Oracle America, Inc Method and apparatus for generically handling diverse protocol method calls in a client/server computer system
5758194, Nov 30 1993 Intel Corporation Communication apparatus for handling networks with different transmission protocols by stripping or adding data to the data stream in the application layer
5771349, May 12 1992 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Network packet switch using shared memory for repeating and bridging packets at media rate
5790804, Apr 12 1994 Mitsubishi Electric Research Laboratories, Inc Computer network interface and network protocol with direct deposit messaging
5794061, Aug 16 1995 MicroUnity Systems Engineering, Inc. General purpose, multiple precision parallel operation, programmable media processor
5802580, Sep 01 1994 High performance digital electronic system architecture and memory circuit thereof
5809328, Dec 21 1995 Unisys Corp. Apparatus for fibre channel transmission having interface logic, buffer memory, multiplexor/control device, fibre channel controller, gigabit link module, microprocessor, and bus control device
5812775, Jul 12 1995 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method and apparatus for internetworking buffer management
5815646, Apr 13 1993 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Decompression processor for video applications
5878225, Jun 03 1996 International Business Machines Corporation; IBM Corporation Dual communication services interface for distributed transaction processing
5930830, Jan 13 1997 International Business Machines Corporation System and method for concatenating discontiguous memory pages
5931918, Sep 08 1989 Network Appliance, Inc Parallel I/O network file server architecture
5935205, Jun 22 1995 Hitachi, LTD Computer system having a plurality of computers each providing a shared storage access processing mechanism for controlling local/remote access to shared storage devices
5937169, Oct 29 1997 Hewlett Packard Enterprise Development LP Offload of TCP segmentation to a smart adapter
5941969, Oct 22 1997 Network Appliance, Inc Bridge for direct data storage device access
5941972, Dec 31 1997 Crossroads Systems, Inc. Storage router and method for providing virtual local storage
5950203, Dec 31 1997 International Business Machines Corporation Method and apparatus for high-speed access to and sharing of storage devices on a networked digital data processing system
5991299, Sep 11 1997 Hewlett Packard Enterprise Development LP High speed header translation processing
5996024, Jan 14 1998 EMC IP HOLDING COMPANY LLC Method and apparatus for a SCSI applications server which extracts SCSI commands and data from message and encapsulates SCSI responses to provide transparent operation
6005849, Sep 24 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Full-duplex communication processor which can be used for fibre channel frames
6009478, Nov 04 1997 PMC-SIERRA, INC File array communications interface for communicating between a host computer and an adapter
6016513, Feb 19 1998 Hewlett Packard Enterprise Development LP Method of preventing packet loss during transfers of data packets between a network interface card and an operating system of a computer
6021446, Jul 11 1997 Oracle America, Inc Network device driver performing initial packet processing within high priority hardware interrupt service routine and then finishing processing within low priority software interrupt service routine
6026452, Feb 26 1997 RPX Corporation Network distributed site cache RAM claimed as up/down stream request/reply channel for storing anticipated data and meta data
6034963, Oct 31 1996 Nvidia Corporation Multiple network protocol encoder/decoder and data processor
6044438, Jul 10 1997 International Business Machiness Corporation; International Business Machines Corporation Memory controller for controlling memory accesses across networks in distributed shared memory processing systems
6047356, Apr 18 1994 HANGER SOLUTIONS, LLC Method of dynamically allocating network node memory's partitions for caching distributed files
6057863, Oct 31 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Dual purpose apparatus, method and system for accelerated graphics port and fibre channel arbitrated loop interfaces
6061368, Nov 05 1997 WSOU Investments, LLC Custom circuitry for adaptive hardware routing engine
6065096, Sep 30 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Integrated single chip dual mode raid controller
6141705, Jun 12 1998 Microsoft Technology Licensing, LLC System for querying a peripheral device to determine its processing capabilities and then offloading specific processing tasks from a host to the peripheral device when needed
6173333, Jul 18 1997 Interprophet Corporation TCP/IP network accelerator system and method which identifies classes of packet traffic for predictable protocols
6226680, Oct 14 1997 ALACRITECH, INC Intelligent network interface system method for protocol processing
6246683, May 01 1998 Hewlett Packard Enterprise Development LP Receive processing with network protocol bypass
6247060, Oct 14 1997 ALACRITECH, INC Passing a communication control block from host to a local device such that a message is processed on the device
6345301, Mar 30 1999 Unisys Corporation Split data path distributed network protocol
6356951, Mar 01 1999 Oracle America, Inc System for parsing a packet for conformity with a predetermined protocol using mask and comparison values included in a parsing instruction
6389468, Mar 01 1999 Oracle America, Inc Method and apparatus for distributing network traffic processing on a multiprocessor computer
6427169, Jul 30 1999 Intel Corporation Parsing a packet header
6434651, Mar 01 1999 Oracle America, Inc Method and apparatus for suppressing interrupts in a high-speed network environment
6449656, Jul 30 1999 Intel Corporation Storing a frame header
6453360, Mar 01 1999 Oracle America, Inc High performance network interface
20010004354,
20010025315,
WO13091,
WO104770,
WO105107,
WO105116,
WO105123,
WO140960,
WO9819412,
WO9850852,
WO9904343,
WO9965219,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 09 2001Alacritech, Inc.(assignment on the face of the patent)
May 14 2001BLIGHTMAN, STEPHEN E J ALACRITECH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0119080107 pdf
May 14 2001BOUCHER, LAURNCE B ALACRITECH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0119080107 pdf
May 14 2001CRAFT, PETER K ALACRITECH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0119080107 pdf
May 14 2001PHILBRICK, CLIVE M ALACRITECH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0119080107 pdf
May 14 2001STARR, DARYL D ALACRITECH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0119080107 pdf
Jun 07 2001HIGGEN, DAVID AALACRITECH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0119080107 pdf
Oct 17 2013ALACRITECH INC A-Tech LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0316440783 pdf
Jun 17 2016A-Tech LLCALACRITECH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0390680884 pdf
Date Maintenance Fee Events
Nov 13 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 13 2009M1554: Surcharge for Late Payment, Large Entity.
Oct 24 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 25 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 09 20094 years fee payment window open
Nov 09 20096 months grace period start (w surcharge)
May 09 2010patent expiry (for year 4)
May 09 20122 years to revive unintentionally abandoned end. (for year 4)
May 09 20138 years fee payment window open
Nov 09 20136 months grace period start (w surcharge)
May 09 2014patent expiry (for year 8)
May 09 20162 years to revive unintentionally abandoned end. (for year 8)
May 09 201712 years fee payment window open
Nov 09 20176 months grace period start (w surcharge)
May 09 2018patent expiry (for year 12)
May 09 20202 years to revive unintentionally abandoned end. (for year 12)