A first partial checksum for the header portion of a tcp header is generated on an intelligent network interface card (INIC) before all the data of the data payload of the tcp message has been transferred to the INIC. A pseudopacket with the first partial checksum and the data is assembled in DRAM on the INIC as the data arrives onto the INIC. When the last portion of the data of the data payload is received onto the INIC, a second partial checksum for the data payload is generated. The pseudopacket is read out of DRAM for transfer to a network. While the pseudopacket is being transferred, the second partial header is combined with the first partial header and the resulting final checksum is inserted into the pseudopacket so that a complete tcp packet with a correct checksum is output from the INIC to the network.
|
5. An apparatus, comprising:
(a) means for transferring a data payload from a host memory to a first memory of a network interface device;
(b) means for creating, before the transferring of (a) is complete, a pseudoheader and storing the pseudoheader in a second memory of the network interface device, the pseudoheader containing a header portion and a checksum portion, the checksum portion being a checksum of the header portion and not a checksum of the data payload;
(c) means for transferring, before the transferring of (a) is complete, the pseudoheader from the second memory to the first memory;
(d) means for generating, after (c), a checksum for the data payload wherein the pseudoheader and the data payload together comprise a pseudopacket; and
(e) means for reading the pseudheader and at least a portion of the data payload from the first memory and for combining the checksum for the header portion with the checksum for the data payload to generate a final checksum, the final checksum being inserted into the pseudopacket to form a complete tcp packet, the complete tcp packet being output from the network interface device to a network.
1. A method, comprising:
(a) transferring a data payload from a host memory to a first memory of a network interface device;
(b) on the network interface device and before the transferring of (a) is complete creating a pseudoheader and storing the pseudoheader in a second memory of the network interface device, the pseudoheader containing a header portion and a checksum portion, the checksum portion being a checksum of the header portion and not a checksum of the data payload;
(c) on the network interface device and before the transferring of (a) is complete transferring the pseudoheader from the second memory to the first memory;
(d) after (c) generating on the network interface device a checksum for the data payload; wherein the pseudoheader and the data payload together comprise a pseudopacket; and
(e) reading the pseudoheader and at least a portion of the data payload from the first memory and combining the checksum for the header portion with the checksum for the data payload to generate a final checksum, the final checksum being inserted into the pseudopacket to form a complete tcp packet, the complete tcp packet being output from the network interface device to a network.
4. The method of
6. The apparatus of
7. The apparatus of
|
This application is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/464,283, filed Dec. 15, 1999, by Laurence B. Boucher et al., now U.S. Pat. No. 6,427,173, which in turn is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/439,603, filed Nov. 12, 1999, by Laurence B. Boucher et al., now U.S. Pat No. 6,247,060, which in turn claims the benefit under 35 U.S.C. §119(e)(1) of the Provisional Application Ser. No. 60/061,809, filed on Oct. 14, 1997. This application also is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/384,792, filed Aug. 27, 1999, now U.S. Pat. No. 6,434,620, which in turn claims the benefit under 35 U.S.C. § 119(e)(1) of the Provisional Application Ser. No. 60/098,296, filed Aug. 27, 1998. This application also is a continuation-in-part of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/067,544, filed Apr. 27, 1998, now U.S. Pat. No. 6,226,880. The subject matter of all the above-identified patent applications, and of the two above-identified provisional applications, is incorporated by, reference herein.
A difficulty associated with performing this operation quickly is that the checksum of the TCP packet is located near the front of the packet before the data payload. The checksum is a function of all the data of the data payload. Consequently all the data of the payload must generally be transferred to the INIC 100 before the checksum can be generated. Consequently, in general, all the data of the payload is received onto the INIC card, the checksum 104 is generated, the checksum 104 is then combined with the data payload in DRAM 105 to form the complete TCP packet 106, and the complete TCP packet 106 is then transferred from DRAM 105 to the network 107.
Once the complete header 110 is assembled, it is transferred from SRAM 111 to DRAM 105 in a relatively slow write to DRAM 105. Arrow 113 illustrates this transfer. Once the complete TCP packet 106 is assembled in DRAM 105, the complete packet 106 is output from DRAM 105 to the network 107. In the example of
Unfortunately, the writing to DRAM 105 is often a relatively slow process and this writing can only begin once all the data has been received onto the INIC card. The result is an undesirable latency in the outputting of the TCP packet onto the network. A solution is desired.
A first partial checksum for the header portion of a TCP header is generated on an intelligent network interface card (INIC) before all the data of the data payload of the TCP message has been transferred to the INIC. A pseudopacket with the first partial checksum and the data is assembled in DRAM on the INIC as the data arrives onto the INIC. When the last portion of the data of the data payload is received onto the INIC, a second partial checksum for the data payload is generated. This second partial checksum is not, however, written into DRAM. Rather, the pseudopacket is read out of DRAM for transfer to the network and while the pseudopacket is being transferred the second partial header is combined with the first partial header such that the resulting final TCP checksum is inserted into the pseudopacket. The pseudopacket is therefore converted into a complete TCP packet with a correct checksum as it is output from the INIC to the network.
In this way, the slow write to DRAM of the complete TCP header after the payload has already been transferred to DRAM is avoided. Rather than generating the complete TCP checksum and taking the time to write it into DRAM, the complete TCP checksum is generated on the fly as the pseudopacket is transferred from DRAM to the network.
This summary does not purport to define the invention. The claims, and not this summary, define the invention.
Although it could be in some situations, in the presently described example not all the data that will make up the TCP data payload is present in the same place in host memory 203. Consequently, the flow of data for the data payload from host memory 203 to DRAM 204 occurs in multiple different data moves as the various different pieces of the data are located and transferred to DRAM 204.
In step 301, more of the data that is to make the data payload of the TCP message is moved from host memory 203 to DRAM 204. A second checksum CSUM2 is generated as the data passes through the data path. This data flow is again represented by arrow 205.
In this example, the data payload is transferred to DRAM in three pieces. In step 302, the last of the data is moved from host memory 203 to DRAM 204 and a third checksum CSUM3 associated with this data is generated.
Processor 206, before this transferring is completed, builds in SRAM 207 the TCP header 208 that is to go on the TCP message. Processor 206 does not have all the data for the TCP payload so it cannot determine the complete checksum for the TCP message. It does, however, generate a checksum HDR CSUM 209 for the remainder (header portion 216) of the TCP header. This HDR CSUM is a partial checksum. Arrow 210 in
In step 303, while the data payload is being transferred from host memory 203 to DRAM 204 in steps 301-302, the TCP header with the partial checksum HDR CSUM is moved from SRAM 207 to DRAM 204. This transfer is illustrated in
In step 304, after all the data for the data payload has been transferred such that checksums for all the various pieces of the data payload have been generated, processor 206 combines those various data checksums together to form a single checksum for the data payload. In this example, there are three data checksums CSUM1, CSUM2 and CSUM 3. These are combined together to make a single data checksum DATA CSUM for the data payload. Processor 206 then supplies this DATA CSUM to a transmit sequencer 212. For additional details on one particular example of a transmit sequencer, see U.S. patent application Ser. No. 09/464,283 (the subject matter of which is incorporated herein by reference). The supplying of the DATA CSUM to transmit sequencer 212 is illustrated in
In step 305, the transmit sequencer 212 begins transferring the pseudopacket out of DRAM 204 for transmission onto a network 214. Network 214 is, in one embodiment, a local area network (LAN). Transmit sequencer 212 combines the DATA CSUM with the HDR CSUM to create a final checksum and inserts the final checksum into the pseudopacket as the pseudopacket passes over path 215 from DRAM 204 to network 214. What is transferred onto network 214 is therefore a TCP packet having a correct TCP header with a correct checksum.
Although the functionality of the INIC is described here as being carried out on a separate card, it is to be understood that in some embodiments the functionality of the INIC is carried out on the host computer itself, for example on the motherboard of the host computer. Functionality of the INIC can be incorporated into the host such that payload data from host memory does not pass over a bus such as the PCI bus, but rather the INIC functionality is incorporated into the host in the form of an I/O integrated circuit chip or integrated circuit chip set that is coupled directly to the host memory bus. The I/O integrated circuit chip has a dedicated hardware interface for network communications. Where the INIC functionality is embodied in such an I/O integrated circuit chip, payload data from host memory is transferred to the network from the host memory by passing through the host's local bus, onto the I/O integrated circuit chip, and from the I/O integrated circuit chip's network interface port substantially directly to the network (through a physical layer interface device (PHY)) without passing over any expansion card bus.
Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. The present invention extends to packet protocols other than the TCP protocol. In some embodiments, the first part of the packet is output from the INIC before the final checksum is inserted into the packet. The combining of the DATA CSUM and the HDR CSUM need not be performed by a sequencer and the pseudoheader need not be created by a processor. Other types of hardware and software can be employed to carry out these functions in certain embodiments. In some embodiments, the pseudoheader is assembled in memory or registers inside processor 109 rather than in a separate memory such as SRAM 111. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.
Starr, Daryl D., Boucher, Laurence B., Craft, Peter K., Philbrick, Clive M., Higgen, David A., Blightman, Stephen E. J.
Patent | Priority | Assignee | Title |
10033840, | Apr 17 2000 | SONS OF INNOVATION LLC | System and devices facilitating dynamic network link acceleration |
10154115, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure |
10205795, | Apr 17 2000 | SONS OF INNOVATION LLC | Optimization of enhanced network links |
10329410, | Apr 17 2000 | SONS OF INNOVATION LLC | System and devices facilitating dynamic network link acceleration |
10516751, | Apr 17 2000 | SONS OF INNOVATION LLC | Optimization of enhanced network links |
10819826, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure |
10858503, | Apr 17 2000 | SONS OF INNOVATION LLC | System and devices facilitating dynamic network link acceleration |
10931775, | Apr 17 2000 | SONS OF INNOVATION LLC | Optimization of enhanced network links |
11991234, | Apr 30 2004 | DISH Technologies L.L.C. | Apparatus, system, and method for multi-bitrate content streaming |
7206872, | Feb 20 2004 | Nvidia Corporation | System and method for insertion of markers into a data stream |
7249306, | Feb 20 2004 | Nvidia Corporation | System and method for generating 128-bit cyclic redundancy check values with 32-bit granularity |
7260631, | Dec 19 2003 | Nvidia Corporation | System and method for receiving iSCSI protocol data units |
7302499, | Nov 10 2000 | Nvidia Corporation | Internet modem streaming socket method |
7324547, | Dec 13 2002 | Nvidia Corporation | Internet protocol (IP) router residing in a processor chipset |
7362772, | Dec 13 2002 | Nvidia Corporation | Network processing pipeline chipset for routing and host packet processing |
7363572, | Jun 05 2003 | Nvidia Corporation | Editing outbound TCP frames and generating acknowledgements |
7376790, | Jun 12 2001 | Network Appliance, Inc. | Caching media data using content sensitive object identifiers |
7379475, | Jan 25 2002 | Nvidia Corporation | Communications processor |
7386627, | Jan 29 2002 | NETWORK APPLLANCE | Methods and apparatus for precomputing checksums for streaming media |
7412488, | Jun 05 2003 | Nvidia Corporation | Setting up a delegated TCP connection for hardware-optimized processing |
7420931, | Jun 05 2003 | Nvidia Corporation | Using TCP/IP offload to accelerate packet filtering |
7447795, | Oct 04 2000 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Multi-purpose switching network interface controller |
7461160, | Oct 14 1997 | ALACRITECH, INC | Obtaining a destination address so that a network interface device can write network data without headers directly into host memory |
7472156, | Oct 14 1997 | ALACRITECH, INC | Transferring control of a TCP connection between devices |
7483375, | Jun 11 1998 | Nvidia Corporation | TCP/IP/PPP modem |
7496689, | Apr 22 2002 | ALACRITECH, INC | TCP/IP offload device |
7502869, | Oct 14 1997 | ALACRITECH, INC | Intelligent network interface system and method for accelerated protocol processing |
7535913, | Jun 06 2002 | Nvidia Corporation | Gigabit ethernet adapter supporting the iSCSI and IPSEC protocols |
7543087, | Apr 22 2002 | ALACRITECH, INC | Freeing transmit memory on a network interface device prior to receiving an acknowledgement that transmit data has been received by a remote device |
7584260, | Oct 14 1997 | ALACRITECH, INC | Method to synchronize and upload an offloaded network stack connection with a network stack |
7609696, | Jun 05 2003 | Nvidia Corporation | Storing and accessing TCP connection information |
7613109, | Jun 05 2003 | Nvidia Corporation | Processing data for a TCP connection using an offload unit |
7620726, | Oct 14 1997 | ALACRITECH, INC | Zero copy method for receiving data by a network interface |
7624198, | Dec 19 2003 | Nvidia Corporation | Sequence tagging system and method for transport offload engine data lists |
7627684, | Oct 14 1997 | ALACRITECH, INC | Network interface device that can offload data transfer processing for a TCP connection from a host CPU |
7640364, | Mar 07 2001 | ALACRITECH, INC | Port aggregation for network connections that are offloaded to network interface devices |
7664868, | Nov 07 2001 | ALACRITECH, INC | TCP/IP offload network interface device |
7664883, | Aug 28 1998 | ALACRITECH, INC | Network interface device that fast-path processes solicited session layer read commands |
7673072, | Oct 14 1997 | ALACRITECH, INC | Fast-path apparatus for transmitting data corresponding to a TCP connection |
7694024, | Oct 14 1997 | ALACRITECH, INC | TCP/IP offload device with fast-path TCP ACK generating and transmitting mechanism |
7698413, | Apr 12 2004 | Nvidia Corporation | Method and apparatus for accessing and maintaining socket control information for high speed network connections |
7701973, | Jun 28 2004 | Intel Corporation | Processing receive protocol data units |
7738500, | Dec 14 2005 | ALACRITECH, INC | TCP timestamp synchronization for network connections that are offloaded to network interface devices |
7779330, | Nov 15 2005 | MARVELL INTERNATIONAL LTD | Method and apparatus for computing checksum of packets |
7809847, | Oct 14 1997 | ALACRITECH, INC | Network interface device that can transfer control of a TCP connection to a host CPU |
7826350, | May 11 2007 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Intelligent network adaptor with adaptive direct data placement scheme |
7831720, | May 17 2007 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Full offload of stateful connections, with partial connection offload |
7844743, | Oct 14 1997 | ALACRITECH, INC | Protocol stack that offloads a TCP connection from a host computer to a network interface device |
7853723, | Oct 14 1997 | ALACRITECH, INC | TCP/IP offload network interface device |
7899913, | Dec 19 2003 | Nvidia Corporation | Connection management system and method for a transport offload engine |
7924840, | Jan 12 2006 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Virtualizing the operation of intelligent network interface circuitry |
7924868, | Dec 13 2002 | Nvidia Corporation | Internet protocol (IP) router residing in a processor chipset |
7945699, | Oct 14 1997 | ALACRITECH, INC | Obtaining a destination address so that a network interface device can write network data without headers directly into host memory |
7962654, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure |
7975066, | Apr 16 2001 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure |
7991918, | Jun 05 2003 | Nvidia Corporation | Transmitting commands and information between a TCP/IP stack and an offload unit |
8019901, | Sep 29 2000 | ALACRITECH, INC | Intelligent network storage interface system |
8024481, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for reducing traffic and congestion on distributed interactive simulation networks |
8032655, | Apr 11 2001 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Configurable switching network interface controller using forwarding engine |
8060644, | May 11 2007 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Intelligent network adaptor with end-to-end flow control |
8065399, | Apr 17 2000 | SONS OF INNOVATION LLC | Automated network infrastructure test and diagnostic system and method therefor |
8065439, | Dec 19 2003 | Nvidia Corporation | System and method for using metadata in the context of a transport offload engine |
8131880, | Oct 14 1997 | ALACRITECH, INC | Intelligent network interface device and system for accelerated communication |
8139482, | Aug 31 2005 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Method to implement an L4-L7 switch using split connections and an offloading NIC |
8155001, | Aug 31 2005 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Protocol offload transmit traffic management |
8176545, | Dec 19 2003 | Nvidia Corporation | Integrated policy checking system and method |
8195823, | Apr 17 2000 | SONS OF INNOVATION LLC | Dynamic network link acceleration |
8213427, | Dec 19 2005 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Method for traffic scheduling in intelligent network interface circuitry |
8218555, | Apr 24 2001 | Nvidia Corporation | Gigabit ethernet adapter |
8248939, | Oct 08 2004 | Alacritech, Inc. | Transferring control of TCP connections between hierarchy of processing mechanisms |
8339952, | Aug 31 2005 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Protocol offload transmit traffic management |
8341286, | Jul 31 2008 | Alacritech, Inc. | TCP offload send optimization |
8356112, | May 11 2007 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Intelligent network adaptor with end-to-end flow control |
8386641, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure |
8417770, | Apr 17 2000 | SONS OF INNOVATION LLC | Data redirection system and method therefor |
8417852, | Jun 05 2003 | Nvidia Corporation | Uploading TCP frame data to user buffers and buffers in system memory |
8447803, | Oct 14 1997 | ALACRITECH, INC | Method and apparatus for distributing network traffic processing on a multiprocessor computer |
8453035, | Mar 25 2008 | Oracle America, Inc. | Method for efficient generation of a fletcher checksum using a single SIMD pipeline |
8463935, | Apr 17 2000 | SONS OF INNOVATION LLC | Data prioritization system and method therefor |
8510468, | Apr 17 2000 | SONS OF INNOVATION LLC | Route aware network link acceleration |
8539112, | Oct 14 1997 | ALACRITECH, INC | TCP/IP offload device |
8539513, | Apr 01 2008 | Alacritech, Inc. | Accelerating data transfer in a virtual computer system with tightly coupled TCP connections |
8549170, | Dec 19 2003 | Nvidia Corporation | Retransmission system and method for a transport offload engine |
8589587, | May 11 2007 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Protocol offload in intelligent network adaptor, including application level signalling |
8621101, | Sep 29 2000 | ALACRITECH, INC | Intelligent network storage interface device |
8631140, | Oct 14 1997 | ALACRITECH, INC | Intelligent network interface system and method for accelerated protocol processing |
8686838, | Jan 12 2006 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Virtualizing the operation of intelligent network interface circuitry |
8782199, | Oct 14 1997 | ALACRITECH, INC | Parsing a packet header |
8805948, | Oct 14 1997 | ALACRITECH, INC | Intelligent network interface system and method for protocol processing |
8856379, | Oct 14 1997 | ALACRITECH, INC | Intelligent network interface system and method for protocol processing |
8893159, | Apr 01 2008 | Alacritech, Inc. | Accelerating data transfer in a virtual computer system with tightly coupled TCP connections |
8898340, | Apr 17 2000 | SONS OF INNOVATION LLC | Dynamic network link acceleration for network including wireless communication devices |
8935406, | Apr 16 2007 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Network adaptor configured for connection establishment offload |
8977711, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure including wirelessly coupled devices |
8977712, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure including a wireless communication link |
8996705, | Apr 17 2000 | SONS OF INNOVATION LLC | Optimization of enhanced network links |
9009223, | Oct 14 1997 | ALACRITECH, INC | Method and apparatus for processing received network packets on a network interface for a computer |
9055104, | Apr 22 2002 | ALACRITECH, INC | Freeing transmit memory on a network interface device prior to receiving an acknowledgment that transmit data has been received by a remote device |
9098297, | May 08 1997 | Nvidia Corporation | Hardware accelerator for an object-oriented programming language |
9148293, | Apr 17 2000 | SONS OF INNOVATION LLC | Automated network infrastructure test and diagnostic system and method therefor |
9185185, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure |
9306793, | Oct 22 2008 | ALACRITECH, INC | TCP offload device that batches session layer headers to reduce interrupts as well as CPU copies |
9380129, | Apr 17 2000 | SONS OF INNOVATION LLC | Data redirection system and method therefor |
9413788, | Jul 31 2008 | Alacritech, Inc. | TCP offload send optimization |
9436542, | Apr 17 2000 | SONS OF INNOVATION LLC | Automated network infrastructure test and diagnostic system and method therefor |
9537878, | Apr 16 2007 | WESTERN ALLIANCE BANK, AN ARIZONA CORPORATION | Network adaptor configured for connection establishment offload |
9578124, | Apr 17 2000 | SONS OF INNOVATION LLC | Optimization of enhanced network links |
9667729, | Jul 31 2008 | Alacritech, Inc. | TCP offload send optimization |
9723105, | Apr 17 2000 | SONS OF INNOVATION LLC | System and method for implementing application functionality within a network infrastructure |
9923987, | Apr 17 2000 | SONS OF INNOVATION LLC | Optimization of enhanced network links |
RE45009, | Apr 17 2000 | SONS OF INNOVATION LLC | Dynamic network link acceleration |
Patent | Priority | Assignee | Title |
4336538, | Jul 26 1975 | The Marconi Company Limited | Radar systems |
4991133, | Oct 07 1988 | International Business Machines Corp. | Specialized communications processor for layered protocols |
5056058, | Mar 13 1989 | Hitachi, Ltd. | Communication protocol for predicting communication frame type in high-speed processing system |
5058110, | May 03 1989 | Computer Network Technology Corporation | Protocol processor |
5097442, | Jun 20 1985 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE | Programmable depth first-in, first-out memory |
5163131, | Sep 08 1989 | NetApp, Inc | Parallel I/O network file server architecture |
5212778, | May 27 1988 | Massachusetts Institute of Technology | Message-driven processor in a concurrent computer |
5280477, | Aug 17 1992 | OL SECURITY LIMITED LIABILITY COMPANY | Network synchronous data distribution system |
5289580, | May 10 1991 | Unisys Corporation | Programmable multiple I/O interface controller |
5303344, | Feb 23 1990 | Hitachi, Ltd. | Protocol processing apparatus for use in interfacing network connected computer systems utilizing separate paths for control information and data transfer |
5412782, | Jul 02 1992 | U S ETHERNET INNOVATIONS, LLC | Programmed I/O ethernet adapter with early interrupts for accelerating data transfer |
5448566, | Nov 15 1993 | International Business Machines Corporation | Method and apparatus for facilitating communication in a multilayer communication architecture via a dynamic communication channel |
5485579, | Sep 08 1989 | Network Appliance, Inc | Multiple facility operating system architecture |
5506966, | Dec 17 1991 | NEC Corporation | System for message traffic control utilizing prioritized message chaining for queueing control ensuring transmission/reception of high priority messages |
5511169, | Mar 02 1992 | Mitsubishi Denki Kabushiki Kaisha | Data transmission apparatus and a communication path management method therefor |
5517668, | Jan 10 1994 | Amdahl Corporation | Distributed protocol framework |
5541920, | Jun 15 1995 | Nortel Networks Limited | Method and apparatus for a delayed replace mechanism for a streaming packet modification engine |
5548730, | Sep 20 1994 | Intel Corporation | Intelligent bus bridge for input/output subsystems in a computer system |
5566170, | Dec 29 1994 | NETWORK SYSTEMS CORP | Method and apparatus for accelerated packet forwarding |
5588121, | Jan 19 1993 | International Computers Limited | Parallel computer having MAC-relay layer snooped transport header to determine if a message should be routed directly to transport layer depending on its destination |
5590328, | Jul 25 1991 | Mitsubishi Denki Kabushiki Kaisha | Protocol parallel processing apparatus having a plurality of CPUs allocated to process hierarchical protocols |
5592622, | May 10 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Network intermediate system with message passing architecture |
5598410, | Dec 29 1994 | NETWORK SYSTEMS CORP | Method and apparatus for accelerated packet processing |
5629933, | Jun 07 1995 | International Business Machines Corporation | Method and system for enhanced communication in a multisession packet based communication system |
5634099, | Dec 09 1994 | International Business Machines Corporation | Direct memory access unit for transferring data between processor memories in multiprocessing systems |
5634127, | Nov 30 1994 | IBM Corporation; International Business Machines Corporation | Methods and apparatus for implementing a message driven processor in a client-server environment |
5642482, | Dec 22 1992 | Bull, S.A. | System for network transmission using a communication co-processor comprising a microprocessor to implement protocol layer and a microprocessor to manage DMA |
5664114, | May 16 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Asynchronous FIFO queuing system operating with minimal queue status |
5671355, | Jun 26 1992 | PREDACOMM, INC | Reconfigurable network interface apparatus and method |
5678060, | Oct 28 1993 | Hitachi, Ltd. | System for executing high speed communication protocol processing by predicting protocol header of next frame utilizing successive analysis of protocol header until successful header retrieval |
5692130, | Jan 14 1992 | Ricoh Company, Ltd. | Method for selectively using one or two communication channel by a transmitting data terminal based on data type and channel availability |
5699317, | Jan 22 1992 | Intellectual Ventures I LLC | Enhanced DRAM with all reads from on-chip cache and all writers to memory array |
5701434, | Mar 16 1995 | Hitachi, Ltd. | Interleave memory controller with a common access queue |
5701516, | Mar 09 1992 | Network Appliance, Inc | High-performance non-volatile RAM protected write cache accelerator system employing DMA and data transferring scheme |
5749095, | Jul 01 1996 | Oracle America, Inc | Multiprocessing system configured to perform efficient write operations |
5751715, | Aug 08 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Accelerator fiber channel hub and protocol |
5752078, | Jul 10 1995 | International Business Machines Corporation | System for minimizing latency data reception and handling data packet error if detected while transferring data packet from adapter memory to host memory |
5758084, | Feb 27 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus for parallel client/server communication having data structures which stored values indicative of connection state and advancing the connection state of established connections |
5758089, | Nov 02 1995 | Oracle America, Inc | Method and apparatus for burst transferring ATM packet header and data to a host computer system |
5758186, | Oct 06 1995 | Oracle America, Inc | Method and apparatus for generically handling diverse protocol method calls in a client/server computer system |
5758194, | Nov 30 1993 | Intel Corporation | Communication apparatus for handling networks with different transmission protocols by stripping or adding data to the data stream in the application layer |
5771349, | May 12 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Network packet switch using shared memory for repeating and bridging packets at media rate |
5790804, | Apr 12 1994 | Mitsubishi Electric Research Laboratories, Inc | Computer network interface and network protocol with direct deposit messaging |
5794061, | Aug 16 1995 | MicroUnity Systems Engineering, Inc. | General purpose, multiple precision parallel operation, programmable media processor |
5802580, | Sep 01 1994 | High performance digital electronic system architecture and memory circuit thereof | |
5809328, | Dec 21 1995 | Unisys Corp. | Apparatus for fibre channel transmission having interface logic, buffer memory, multiplexor/control device, fibre channel controller, gigabit link module, microprocessor, and bus control device |
5812775, | Jul 12 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for internetworking buffer management |
5815646, | Apr 13 1993 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Decompression processor for video applications |
5878225, | Jun 03 1996 | International Business Machines Corporation; IBM Corporation | Dual communication services interface for distributed transaction processing |
5930830, | Jan 13 1997 | International Business Machines Corporation | System and method for concatenating discontiguous memory pages |
5931918, | Sep 08 1989 | Network Appliance, Inc | Parallel I/O network file server architecture |
5935205, | Jun 22 1995 | Hitachi, LTD | Computer system having a plurality of computers each providing a shared storage access processing mechanism for controlling local/remote access to shared storage devices |
5937169, | Oct 29 1997 | Hewlett Packard Enterprise Development LP | Offload of TCP segmentation to a smart adapter |
5941969, | Oct 22 1997 | Network Appliance, Inc | Bridge for direct data storage device access |
5941972, | Dec 31 1997 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
5950203, | Dec 31 1997 | International Business Machines Corporation | Method and apparatus for high-speed access to and sharing of storage devices on a networked digital data processing system |
5991299, | Sep 11 1997 | Hewlett Packard Enterprise Development LP | High speed header translation processing |
5996024, | Jan 14 1998 | EMC IP HOLDING COMPANY LLC | Method and apparatus for a SCSI applications server which extracts SCSI commands and data from message and encapsulates SCSI responses to provide transparent operation |
6005849, | Sep 24 1997 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Full-duplex communication processor which can be used for fibre channel frames |
6009478, | Nov 04 1997 | PMC-SIERRA, INC | File array communications interface for communicating between a host computer and an adapter |
6016513, | Feb 19 1998 | Hewlett Packard Enterprise Development LP | Method of preventing packet loss during transfers of data packets between a network interface card and an operating system of a computer |
6021446, | Jul 11 1997 | Oracle America, Inc | Network device driver performing initial packet processing within high priority hardware interrupt service routine and then finishing processing within low priority software interrupt service routine |
6026452, | Feb 26 1997 | RPX Corporation | Network distributed site cache RAM claimed as up/down stream request/reply channel for storing anticipated data and meta data |
6034963, | Oct 31 1996 | Nvidia Corporation | Multiple network protocol encoder/decoder and data processor |
6044438, | Jul 10 1997 | International Business Machiness Corporation; International Business Machines Corporation | Memory controller for controlling memory accesses across networks in distributed shared memory processing systems |
6047356, | Apr 18 1994 | HANGER SOLUTIONS, LLC | Method of dynamically allocating network node memory's partitions for caching distributed files |
6057863, | Oct 31 1997 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Dual purpose apparatus, method and system for accelerated graphics port and fibre channel arbitrated loop interfaces |
6061368, | Nov 05 1997 | WSOU Investments, LLC | Custom circuitry for adaptive hardware routing engine |
6065096, | Sep 30 1997 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Integrated single chip dual mode raid controller |
6141705, | Jun 12 1998 | Microsoft Technology Licensing, LLC | System for querying a peripheral device to determine its processing capabilities and then offloading specific processing tasks from a host to the peripheral device when needed |
6173333, | Jul 18 1997 | Interprophet Corporation | TCP/IP network accelerator system and method which identifies classes of packet traffic for predictable protocols |
6226680, | Oct 14 1997 | ALACRITECH, INC | Intelligent network interface system method for protocol processing |
6246683, | May 01 1998 | Hewlett Packard Enterprise Development LP | Receive processing with network protocol bypass |
6247060, | Oct 14 1997 | ALACRITECH, INC | Passing a communication control block from host to a local device such that a message is processed on the device |
6345301, | Mar 30 1999 | Unisys Corporation | Split data path distributed network protocol |
6356951, | Mar 01 1999 | Oracle America, Inc | System for parsing a packet for conformity with a predetermined protocol using mask and comparison values included in a parsing instruction |
6389468, | Mar 01 1999 | Oracle America, Inc | Method and apparatus for distributing network traffic processing on a multiprocessor computer |
6427169, | Jul 30 1999 | Intel Corporation | Parsing a packet header |
6434651, | Mar 01 1999 | Oracle America, Inc | Method and apparatus for suppressing interrupts in a high-speed network environment |
6449656, | Jul 30 1999 | Intel Corporation | Storing a frame header |
6453360, | Mar 01 1999 | Oracle America, Inc | High performance network interface |
20010004354, | |||
20010025315, | |||
WO13091, | |||
WO104770, | |||
WO105107, | |||
WO105116, | |||
WO105123, | |||
WO140960, | |||
WO9819412, | |||
WO9850852, | |||
WO9904343, | |||
WO9965219, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 09 2001 | Alacritech, Inc. | (assignment on the face of the patent) | / | |||
May 14 2001 | BLIGHTMAN, STEPHEN E J | ALACRITECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011908 | /0107 | |
May 14 2001 | BOUCHER, LAURNCE B | ALACRITECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011908 | /0107 | |
May 14 2001 | CRAFT, PETER K | ALACRITECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011908 | /0107 | |
May 14 2001 | PHILBRICK, CLIVE M | ALACRITECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011908 | /0107 | |
May 14 2001 | STARR, DARYL D | ALACRITECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011908 | /0107 | |
Jun 07 2001 | HIGGEN, DAVID A | ALACRITECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011908 | /0107 | |
Oct 17 2013 | ALACRITECH INC | A-Tech LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031644 | /0783 | |
Jun 17 2016 | A-Tech LLC | ALACRITECH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039068 | /0884 |
Date | Maintenance Fee Events |
Nov 13 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 13 2009 | M1554: Surcharge for Late Payment, Large Entity. |
Oct 24 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 25 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 09 2009 | 4 years fee payment window open |
Nov 09 2009 | 6 months grace period start (w surcharge) |
May 09 2010 | patent expiry (for year 4) |
May 09 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 09 2013 | 8 years fee payment window open |
Nov 09 2013 | 6 months grace period start (w surcharge) |
May 09 2014 | patent expiry (for year 8) |
May 09 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 09 2017 | 12 years fee payment window open |
Nov 09 2017 | 6 months grace period start (w surcharge) |
May 09 2018 | patent expiry (for year 12) |
May 09 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |