A user-portable device determines its own geolocation, and compares that location with a region defined by at least one memorized specified location and a distance. A deviation or alarm signal is generated when either within or without the defined region. In one version, the memorized specified location is the geolocation of another, remote user-portable device.
|
1. A method for generating a deviation signal when a user-portable device crosses a boundary, said method comprising the steps of:
at said device, determining the geolocation;
at said device, storing signals representing a selected geolocation and a defined distance from said selected geolocation, which determines a boundary;
at said device, processing at least said geolocation, selected geolocation, and defined distance signals to determine whether said device lies one of within and without said boundary; and
at said device, generating a deviation signal indicative if said device is one of within and without said boundary;
further comprising the step of transmitting said deviation signal from said device by way an electromagnetic signal transmitter.
2. A method for generating a deviation signal when a user-portable first device is one of within and without a predefined distance of a user-portable second device, said method comprising the steps of:
at said first device, determining the geolocation of said first device, and generating signals representative thereof;
at said second device, determining the geolocation of said second device, and generating signals representative thereof;
at said second device, transmitting electromagnetic signals including said signals representative of said geolocation of said second device;
at said first device, receiving electromagnetic signals representing said geolocation of said second device, and storing in a memory said signals representing said geolocation of said second device;
at said first device, storing in a memory signals representing a defined distance which, when combined with said geolocation of said second device, determines a boundary about said second device;
at said first device, processing said geolocation of said first device, said geolocation of said second device, and said signals representing a defined distance, to determine whether said first device lies one of within and without said boundary; and
at at least one of said first and second devices, generating a deviation signal indicative of the geolocation of said first device being one of within and without said boundary.
3. A method according to
4. A method according to
5. A method according to
6. A method according to
8. A method according to
10. A method according to
|
This application claims the benefit of the priority date of Provisional Application No. 60/499,534, filed Sep. 2, 2003.
This invention relates to geolocation (location) of user-portable devices, and to providing indications when a device is within or without a particular distance from a selected geolocation.
The use of geolocation functions or devices, such as GPS receivers, on user-portable devices is well established. Such devices may be used by persons, such as backpackers or military personnel, who travel in remote areas, and they may be used in populated areas to aid emergency personnel in locating injured parties. In some contexts, the portable device may also include, or be associated with, communication devices such as voice, video, or data transceivers, cell-phones, biometric sensors, panic or distress actuators, and friend-or-foe indications. In some contexts, the user of such a portable device may want to avoid entering an area which is known to contain hostile combatants. This requires the user to be aware of the geolocation of the hostile forces, and to navigate with care to avoid the undesired areas. On the other hand, there may be situations in which the user of such a portable device may desire to perform scouting within a given region. Such activity requires that the user use his geolocator in conjunction with a map to navigate within the desired region.
Improved or alternative geolocation devices and methods are desired.
A user-portable device according to an aspect of the invention comprises a geolocation (location) device, such as a GPS receiver, for determining the location of the device, and for generating signals representing the location of the device. A memory is provided for storing signals representing at least one selected location, and also for storing signals representing a predefined distance, in at least one direction, from the selected location. A processor is coupled to the memory and to the geolocation device, for determining the deviation distance of the location of the device from the selected location, and for comparing the deviation distance with the predefined distance, and for generating a deviation signal when the deviation distance is one of greater and less than the predefined distance. In a preferred version of this aspect of the invention, the device further comprises a signal receiver coupled to the memory, for receiving from a remote location the signals representing the selected location(s), and also for receiving the signals representing the predefined distance(s), and for causing the signals representing the selected location and the signals representing the predefined distance to be stored in the memory. In one version, the deviation signal is generated when the deviation distance is greater than the predefined distance. In one version, the at least one direction includes all directions relative to the selected location, thereby defining the boundary as a sphere or circle. The deviation signal may be an alarm signal. The alarm may be presented to the user aurally, visually, or in a tactile manner, as by a vibration. In a preferred version of this aspect of the invention, the user-portable device includes an electromagnetic signal transmitter coupled to the processor, for transmitting the alarm signal to a remote location.
A method according an other aspect of the invention is for generating a deviation signal when a user-portable device crosses a boundary. This method comprises the step of, at the device, determining the device geolocation, and, also at the device, storing signals representing a selected geolocation, and a defined distance from the selected geolocation which determines a boundary. At the device, the device geolocation is processed with the selected geolocation and defined distance signals to determine whether the device lies one of within and without the boundary. At the device, a deviation signal is generated which is indicative if the device is one of within and without the boundary. The detection signal may trigger a local alarm. In one mode of the method, the deviation signal is transmitted from the device by way of an electromagnetic signal transmitter. In another mode of the method, electromagnetic signals are received at the device, where these received signals bear data representing the selected geolocation and the defined distance from a remote location in at least one direction. The selected geolocation and defined distance signals are stored within the device for use in the processing.
An other method according to an aspect of the invention is for generating a deviation signal when a user-portable first device is one of within and without a predefined distance of a user-portable second device. This other method comprises the steps of, at the first device, determining the geolocation of the first device, and generating signals representative thereof, and at the second device, determining the geolocation of the second device, and generating signals representative thereof. According to this other method, at the second device, electromagnetic signals are transmitted, where the electromagnetic signals include signals representative of the geolocation of the second device. At the first device, electromagnetic signals are received which represent the geolocation of the second device, and the signals representing the geolocation of the second device are stored in a memory of the first device. Signals representing the defined distance (and direction, if applicable) are also stored in memory at the first device. The defined distance, in conjunction with the geolocation of the second device, defines a boundary around the second device. At least the geolocation of the first device, the geolocation of the second device, and the signals representing the defined distance are processed at the first device, to determine whether the first device lies one of within and without the boundary. A deviation signal, indicative of the geolocation of the first device being one of within and without the boundary, is generated at at least one of the first and second devices. The determination of geolocation may be performed by the use of GPS. In a preferred mode of this other method, the step at the first device of storing in memory signals representing a defined distance includes the step of receiving, by way of electromagnetic transmissions from a remote location, the signals representing a defined distance. The deviation signal may be generated at the first device, the second device, or at both devices, and may be transmitted to a location remote from both devices. The deviation signal may be manifested aurally, visually, or in a tactile manner. In one especially advantageous version of this mode of the method, the deviation signal is generated when the first device is within the boundary about the second device.
A version of this other method may include, between the steps of (a) at the second device, transmitting electromagnetic signals including the signals representative of the geolocation of the second device and (b) at the first device, receiving electromagnetic signals representing the geolocation of the second device, and storing in a memory the signals representing the geolocation of the second device, the additional step of receiving at a third location, remote from both the geolocation of the first device and the geolocation of the second device, the electromagnetic signals from the second device, processing the content of the electromagnetic signals from the second device, and transmitting to the first device the electromagnetic signals representing the geolocation of the second device.
In the military context, the location of enemy combatants may not be known to an individual soldier, and is instead deduced from the available evidence at a headquarters location. According to an aspect of the invention, the portable device receives information from a remote location, such as the headquarters, defining a boundary which encloses either the soldier or the enemy combatants, and provides the soldier with a warning when he goes from one side of the border to the other side.
According to an aspect of the invention, memory 18 is preloaded with information relating to a specified geolocation, and is also preloaded with information relating to distance(s).
Assuming that the geolocation of device 10 is indicated by GPS receiver 16 of
The arrangement in one version as so far described has the advantage that the headquarters can address each of the portable units 10 with data, without the need for distracting the user from important other duties to enter into memory information on specific location and distance. Additionally, if all the soldiers in a given area are to receive the same information, the specific location and distance information may be broadcast to their portable devices rather than sent to each individual receiver address. The broadcast feature allows the relevant boundary information to be updated from the headquarters quickly without the need to sequentially address each individual user. In addition, there is no need to continue to poll the individual users from the headquarters to verify that they remain within the desired region, with the possibility that communications will be lost with one or more of the individual users at a critical moment, because the individual user's own portable device has stored in its memory the locations of interest, and can provide a warning when a boundary is crossed even if the headquarters is not at the time of the crossing in communication with the particular portable device. However, there may be situations in which the information to be entered into memory is so extensive that entry in the form of data is mandated.
Of course, the device as described is also capable of providing a deviation signal or alarm when the region to be avoided is within the circle boundary B of
In one advantageous aspect of the invention in which two portable devices such as 10 of
When the person bearing the first device 1 of
Other embodiments of the invention will be apparent to those skilled in the art. For example, the explanation of the operation of the device and method has assumed that the topology of the region in question is flat, but the same principles may be used in an area which is hilly or mountainous, or in an urban area having buildings extending in a third dimension above a planar region, as the calculations of distances and boundaries in three dimensions rather than two dimensions are well known to those skilled in the art. While Global Positioning System (GPS) has been described as the method for geolocation, other methods, such as LORAN, are possible. As mentioned, the distance information may be accompanied by direction information andor cardinal direction information in some cases; almost any shape boundary can be defined by 360 or more vectors, each of different length and direction.
Thus, a user-portable device (10) according to an aspect of the invention comprises a geolocation (location) device (16), such as a GPS receiver, for determining the location of the device (10), and for generating signals representing the location (D) of the device (10). A memory (18) is provided for storing signals representing a selected location (30), and also for storing signals representing a predefined distance (R), in at least one direction, from the selected location (30). A processor (20) is coupled to the memory (1.8) and to the geolocation device (16), for determining the deviation distance (35) of the location (D) of the device (10) from the selected location (30), and for comparing the deviation distance (35) with the predefined distance (R), and for generating a deviation signal when the deviation distance (35) is one of greater and less than the predefined distance (R). In a preferred version of this aspect of the invention, the device (10) further comprises a signal receiver (part of 12) coupled to the memory (18), for receiving from a remote location the signals representing the selected location (30), and also for receiving the signals representing the predefined distance (R), and for causing the signals representing the selected location (30) and the signals representing the predefined distance (R) to be stored in the local memory (18). In one version, the deviation signal is generated when the deviation distance (35) is greater than the predefined distance (R). In one version (
A method according an other aspect of the invention is for generating a deviation signal when a user-portable device crosses a boundary or is within or without the boundary. This method comprises the step of, at the device (1), determining the geolocation, and, also at the device (1), storing signals representing a selected geolocation (location 2) and a defined distance (R4) from the selected geolocation (location 2) which determines a boundary (B4). At the device (1), the own- or self-geolocation is processed with the selected geolocation (location 2) and defined distance (R4) signals to determine whether the device (1) lies one of within and without the boundary (B4). At the device (1), a deviation signal is generated which is indicative if the device (1) is one of within and without the boundary (B4). In one mode of the method, the deviation signal is transmitted (48, 54) from the device (location 2) by way of an electromagnetic signal transmitter. In another mode of the method, electromagnetic signals (52, 54) are received at the device (location 1) from a remote location (50), where these received signals bear information relating to the selected geolocation (location 2) and the defined distance (R4). The selected geolocation (location 2) and defined distance (R4) signals are stored within the device (1) for use in the processing.
An other method according to an aspect of the invention is for generating a deviation signal when a user-portable first device (1) is one of within and without a predefined distance (R4) of a user-portable second device (2). This other method comprises the steps of, at the first device (1), determining the geolocation of the first device (1), and generating signals representative thereof, and at the second device (2), determining the geolocation of the second device (2), and generating signals representative thereof. According to this other method, at the second device (2), electromagnetic signals are transmitted 48, 54), where the electromagnetic signals include the signals representative of the geolocation of the second device (2). At the first device (1), electromagnetic signals are received (52, 54) which represent the geolocation of the second device (2), and the signals representing the geolocation of the second device (2) are stored in a memory (18) of the first device (1). Signals representing the defined distance (R4) are stored in memory (18) at the first device (1). The defined distance (R4), in conjunction with the geolocation of the second device (2), define a boundary (B4) around the second device (2). The signals representing a defined distance (R4) are stored in a memory (18) at the first device. The geolocation of the first device (1), the geolocation of the second device (2), and the signals representing the defined distance (R4) are processed at the first device (1), to determine whether the first device (1) lies one of within and without the boundary (B4). A deviation signal, indicative of the geolocation of the first device (1) being one of within and without the boundary, is generated at at least one of the first (1) and second (2) devices. The determination of geolocation may be performed by the use of GPS. In a preferred mode of this other method, the step at the first device (1) of storing in memory (18) signals representing a defined distance (R4) includes the step of receiving, by way of electromagnetic transmissions (52) from a remote location (50), the signals representing a defined distance (R4). The deviation signal may be generated at the first device (1), the second device (2), or both devices, and may be transmitted (56) to a location (50) remote from both devices. The deviation signal may be manifested aurally, visually, or in a tactile manner. In one especially advantageous version of this mode of the method, the deviation signal is generated when the first device (1) is within the boundary (B4) about the second device (2).
A version of this other method may include, between the steps of (a) at the second device (2), transmitting electromagnetic signals (48, 54) including the signals representative of the geolocation of the second device (2) and (b) at the first device (1), receiving electromagnetic signals (52, 54) representing the geolocation of the second device (2), and storing in a memory (18) the signals representing the geolocation of the second device (2), the additional step of receiving at a third location (50), remote from both the geolocation of the first device (1) and the geolocation of the second device (2), the electromagnetic signals (48) from the second device (2), processing the content of the electromagnetic signals (48) from the second device (2), and transmitting (52) to the first device (1) the electromagnetic signals (52) representing the geolocation of the second device (2).
Meise, William H., Fey, III, Charles Frederick
Patent | Priority | Assignee | Title |
10405161, | Nov 29 2017 | Ford Global Technologies, LLC | V2X cellular communication synchronization and initiation independent of a cellular base station |
7277053, | Sep 08 2004 | LUCID DIMENSIONS LLC | Apparatus and methods for detecting and locating signals |
7498982, | Aug 09 2006 | Rockwell Collins, Inc. | Method to improve accuracy of targeted position estimation through use of multiple networked observations |
Patent | Priority | Assignee | Title |
5532690, | Apr 04 1995 | Exelis Inc | Apparatus and method for monitoring and bounding the path of a ground vehicle |
5936526, | Jan 13 1998 | Round Rock Research, LLC | Apparatus for generating an alarm in a portable computer system |
5961571, | Dec 27 1994 | Siemens Corporation | Method and apparatus for automatically tracking the location of vehicles |
6154658, | Dec 14 1998 | ABACUS INNOVATIONS TECHNOLOGY, INC ; LEIDOS INNOVATIONS TECHNOLOGY, INC | Vehicle information and safety control system |
6166688, | Mar 31 1999 | Lenovo PC International | Data processing system and method for disabling a portable computer outside an authorized area |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 27 2004 | Lockheed Martin Corporation | (assignment on the face of the patent) | ||||
Aug 27 2004 | MEISE, WILLIAM H | Lockheed Martin Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015749 | 0991 |
Date | Maintenance Fee Events |
Apr 27 2006 | ASPN: Payor Number Assigned. |
Dec 14 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 13 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 13 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 13 2009 | 4 years fee payment window open |
Dec 13 2009 | 6 months grace period start (w surcharge) |
Jun 13 2010 | patent expiry (for year 4) |
Jun 13 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 13 2013 | 8 years fee payment window open |
Dec 13 2013 | 6 months grace period start (w surcharge) |
Jun 13 2014 | patent expiry (for year 8) |
Jun 13 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 13 2017 | 12 years fee payment window open |
Dec 13 2017 | 6 months grace period start (w surcharge) |
Jun 13 2018 | patent expiry (for year 12) |
Jun 13 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |