A pure rendering intent is used to render text and line art in color imaging systems. A CMY image goes through a one hundred percent under color removal process creating a CMYK image. The CMYK image is processed by a set of clamping tone reproduction curves. The clamping tone reproduction curves shift nearly saturated colors to total saturation. The result is a rendering of text and line art that has improved clarity and legibility.
|
14. A color image rendering device comprising:
a neutral color mapper configured to map pixels of an image representing neutral and nearly neutral mixtures of colorants to pixels rendered with only a neutral colorant, and
a primary color mapper configured to map pixels of the image representing nearly pure primary colors to pixels representing corresponding pure primary color, whereby text and line art is rendered more clearly for limiting displeasing moiré patterns and/or halftone registration errors.
1. A method for rendering an image, comprising:
accepting an image represented as a set of pixels, each pixel representing colors with a set of colorants, each pixel calling for a level of saturation for each colorant in the set of colorants;
mapping pixels representing neutral and nearly neutral colors to pixels rendered with only a neutral colorant; and
mapping pixels representing nearly pure primary colors to pixels representing pure primary colors, whereby text and line art is rendered more clearly, for limiting displeasing moiré patterns and halftone registration errors.
2. The method for rendering an image of
selecting a colorant to be removed from each pixel;
removing 100% of the selected colorant and replacing the selected colorant with an equivalent amount of the neutral colorant; and
reducing the level of the remaining colorants to create an intermediate image.
3. The method for rendering an image of
generating a neutral colorant tone reproduction curve for the neutral colorant;
generating a remaining colorant tone reproduction curve for each remaining colorant;
processing the neutral colorant in each pixel in the intermediate image through the neutral colorant tone reproduction curve; and
processing each remaining colorant in each pixel in the intermediate image through each remaining colorants' remaining colorant tone reproduction curve.
4. The method for rendering an image of
generating a clamping type neutral colorant tone reproduction curve.
5. The method for rendering an image of
generating an identity type neutral colorant tone reproduction curve.
6. The method for rendering an image of
generating a clamping type remaining colorant tone reproduction curve.
7. The method for rendering an image of
determining which colorant has a lowest saturation level, and
selecting the colorant with the lowest saturation level.
8. The method for rendering an image of
transforming each pixel through a non-linear transform, from an original color space into a non-linear transform space, and
inversely transforming each pixel for returning each pixel to the original color space.
9. The method for rendering an image of
transforming each pixel through a power law function.
10. The method for rendering an image of
accepting an image represented as a set of pixels, each pixel representing colors described with a set of colorants comprising cyan, magenta, and yellow.
11. The method for rendering an image of
accepting an image represented as a set of pixels, each pixel representing colors described with a set of colorants comprising red, green, and blue.
12. The method for rendering an image of
translating the pixels representing colors described with the set of colorants comprising red, green and blue, to pixels representing colors described with the set of colorants comprising cyan, magenta, and yellow.
13. The method for rendering an image of
mapping pixels representing nearly neutral colors to pixels rendered with only a black colorant.
15. The color image rendering device of
a one hundred percent under color remover, and
a set of tone reproduction curves.
16. The color image rendering device of
a neutral colorant tone reproduction curve, and
a set of remaining colorant reproduction curves.
17. The color image rendering device of
clamping type tone reproduction curves.
18. The color image rendering device of
an identity type tone reproduction curve.
19. The color image rendering device of
a clamping type tone reproduction curve.
|
1. Field of the Invention
The invention relates to the art of rendering electronic or digital images. The invention finds particular application in the rendering of text and line art images in color image reproduction systems.
2. Description of Related Art
Text and line art makeup an important class of printed and copied digital images. For example, this document, and the paperwork associated with it, is almost entirely made up of text and lines. The lines are used, for example, to separate sections of official forms.
Processing methods that would produce the most accurate and visually pleasing copies of text and line art are different than those used by most color image processing equipment. Existing transforms and image enhancement algorithms are optimized to produce accurate and pleasing spot color, business graphics, and photographic images.
Spot color applications require a high degree of color accuracy and purity. An example of a spot color application is the printing of a corporate logo. It is very important, when printing a corporate logo that colors be reproduced exactly, without any muddiness or colorant blending errors.
Business graphics applications include the printing of bar graphs and pie charts. In these applications, the user is less concerned about perfect color matching. Small differences, for example, between the colors in a graph as it was displayed on a computer screen (CRT) and as it is rendered by a printer are not very important. What is more important to the user is that the colors in the charts and graphs are crisp and uniform. Rendering methods or intents targeted for business graphics therefore, can and do make trade-offs. The goal of business graphics rendering intent is to produce vivid colors. To that end, perceived color matching and actual spectral content matching are sometimes sacrificed.
As the name implies, photographic applications include the reproduction of photographic scenes. The relationship between colors, and the sharpness of edges in a photographic image are usually considered more important than absolute color accuracy. Therefore, the photographic or perceptual intents make trade-offs that enhance color relationships and edge reproduction while sacrificing color accuracy.
An organization known as The International Color Consortium (ICC) has developed standards supporting color rendering intents called colorimetric, perceptual and saturation rendering intents. These rendering intents are best suited for rendering spot color, photographic images, and the pure hues of business graphics respectively. The ICC has not offered a rendering intent description optimized for text and line art.
Applying the available rendering intents to text and line art applications can produce undesirable results. For example, under certain circumstances, processing text and line art through the calorimetric, perceptual, or saturation intent can result in rendered images that contain distorting and displeasing halftone textures in the text or the background. One set of circumstances known to produce these results is the printing of small blue text on a gray background. The moiré patterns in the gray background combined with the halftone texture in the blue text results in reduced visibility and readability of the text. This quality reduction is unacceptable in most printing and copying applications.
Therefore there is a need for a processing method, or rendering intent, that is optimized for producing text and line art.
Toward that end, a method for rendering color images, optimized for reproducing text and line art, has been developed. The method has been identified as the “Pure intent”. The method comprises the steps of: accepting an image represented as a set of pixels, each pixel representing colors with a set of colorants, each pixel calling for a level of saturation for each colorant in the set of colorants, mapping pixels representing neutral and nearly neutral colors to pixels rendered with only a neutral colorant, and mapping pixels representing nearly pure primary colors to pixels representing pure primary colors.
Alternatively, the method comprises the steps of: accepting an image represented as a set of pixels, each pixel representing colors in a defined color space, each of the colors in that defined color space being transformable into a colorant space, each pixel calling for a level of saturation for each colorant in the set of colorants after transformation, mapping pixels representing neutral and nearly neutral colors to pixels rendered with only a neutral colorant, and mapping pixels representing nearly pure primary colors to pixels representing pure primary colors by modifying the pixel color in the defined color space or in the colorant space.
An advantage of the present invention is that it allows color image processing equipment to render clear legible copies of text and line art documents.
Another advantage of the present invention is that it renders text and line art without displeasing moire´ patterns near neutral colors.
Another advantage of the present invention is that it renders text and line art without blending the text and line art into the background.
Another advantage of the present invention is that it removes colors that are some times added to, for example, black text, when the text is scanned with a noisy or mis-calibrated scanner.
Another advantage of the present invention is that it reduces image production costs by reducing consumption of non-neutral colorants.
Another advantage of the present invention is that it produces cleaner sharper lines and text, reducing the amount of unwanted halftone texture.
Another advantage of the present invention is that it eliminates mis-registration artifacts in thin, neutral, text and lines.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating preferred embodiments, they are not to scale, and are not to be construed as limiting the invention.
The invention will be described with reference to the common RGB (Red, Green, Blue) and CMYK (Cyan, Magenta, Yellow, Black) color spaces. However it can be applied in other color spaces.
As is known, due to the workings of the human eye, red, green and blue (RGB) light can be additively mixed to produce the perception of other colors. Indeed, when combined in the correct proportions a mixture of red, green and blue light appears to the human eye, to be white. Additionally, it is known that the simple-subtractive mixing of cyan, magenta and yellow (CMY) colorants or pigments also produces the perception of other colors. The well-balanced mixing of these subtractive colorants is perceived by the human eye as black. Because of these effects, and for the purposes of this discussion, we refer to red, green, blue, cyan, magenta, yellow, along with black and white, as the primary colors.
Most text and line art is rendered in black (K). When text and/or line art is rendered in color, most often it is rendered in some other primary color. Armed with those facts and the knowledge that a particular image is a text and/or line art image, one can make two powerful assumptions about the image. One can assume that pixels in the image that describe nearly neutral colors are meant to describe purely neutral colors. One can also assume that pixels that describe nearly pure primary colors are meant to describe pure primary colors.
Referring to
The next two steps can be performed in any order or can be performed simultaneously.
As illustrated, the next step is a neutral mapping step 88 that maps pixels that call for a neutral or near neutral combination of colorants, to pixels that call for an appropriate saturation level of only a neutral colorant. For example, when rendering an image with a printer that works in the CMYK color space, a pixel that calls for nearly equal amounts of the C (cyan), M (magenta) and Y (yellow) colorants is calling for a nearly neutral, or gray color. Such a pixel is mapped at this neutral mapping step 88, to a pixel calling for a corresponding amount of only a neutral colorant, for example a K (black) colorant.
Another step, and illustrated as the next step, is a primary mapping step 92. The primary mapping step 92 maps pixels that call for combinations of colorants that would yield nearly pure primary colors, to pixels that call for combinations of colorant that yield pure primary colors. For example, again, in the case of a CMYK printer, where a pixel calls for nearly equal amounts of the C colorant and the Y colorant and a much smaller amount of the M colorant, the pixel is calling for a nearly pure green. Such a pixel is mapped by this primary mapping step 92 to a pure green pixel. That is to say the initial pixel is mapped to a pixel calling for equal amounts of C and Y colorants and no M colorant.
The two mapping steps 88, 92 described above, performed in any order, improve the rendering of the vast majority of text and line art images.
Rendering neutral and near neutral colors with a single neutral colorant, for example with a pure K colorant in a CMYK printer, provides a cleaner rendering of text and lines. Furthermore, it helps to eliminate sensitivity to pile-height effects, moire´ pattern generation, color mis-registration affects and changes in viewing illumination. Additionally, when text and line art documents are scanned, the scanning process can introduce some color into pixels that were originally neutral. Rendering neutrals and near neutrals as pure K eliminates this color noise, beneficially returning these pixels back to neutral.
Shifting colors that are close to the primaries to their nearest primary helps reduce the amount of halftoning present in text and therefore improves its legibility.
Referring to
The CMY image 130 then goes through an one hundred percent under color removal process 134. The under color removal process ensures that neutral colors are rendered in pure K (pure black). The CMY image 130 is comprised of pixels. Each pixel calls for levels of saturation for each colorant in the CMY color space (Cyan, Magenta and Yellow). One hundred percent under color removal replaces the least saturated colorant in each pixel with an equivalent amount of K (Black). Additionally, the saturation levels of the remaining two colorants are also reduced.
There are a number of standard ways to perform one hundred percent under color removal. One way is to totally remove the colorant that has the lowest saturation level in a particular pixel and also reduced the saturation level of the other colorants by the same amount. The colorant removed in this process is then replaced with an appropriate amount of neutral colorant. Take for example a CMY pixel describing a near neutral color by calling for saturation levels of 35% cyan, 36% magenta and 37% yellow colorants. The one hundred percent under color removal process, described in the preceding paragraph, first determines that cyan has lowest saturation level and that the level is 35%. Therefore a level of 35% of black is introduced, and the saturation level of each of the pixels is reduced by 35 percent. This results in a pixel calling for saturation levels of 0% cyan, 1% magenta, 2% yellow, and 35% black.
Another one hundred percent under color removal method applies a nonlinear transformation, such as, for example, a power law (gamma) function to each of the colorant saturation levels in a pixel before subtracting away the colorant with the minimum saturation level and subtracting a like amount from the other colorants. This technique provides a convenient algorithm for performing 100% under color removal while maintaining the colorfulness of nearly pure primary colors.
Consider, for example, the transform equation:
Transformed Pixel Value=(Original Pixel Value)γ
If one picks a value for gamma (γ) of 2 then the original pixel values are mapped to transformed pixel values by squaring. A CMY pixel with pixel values of cyan=10%, magenta=90% and yellow=90% represents a near primary color. In order to manipulate that pixel mathematically it is expressed in fractional form i.e. cyan=0.1, magenta=0.9 and yellow=0.9. If the pixel is processed through the transforming equation above with, for example, γ=2, the transformed pixel values become cyan=0.01, magenta=0.81, yellow=0.81. Performing under color replacement on the transformed version of the pixel yields pixels pixel values of cyan=0, magenta=0.80, yellow=0.80. Replacing the removed colorant with black yields a pixel in transformed pixel space with pixel values of cyan=0, magenta=0.80, yellow=0.80, black=0.01. A square root function is the inverse transform (raising the Transformed Pixel Values to the power of 1/γ) of the transform equation when γ=2. So processing the transform space pixel through the inverse transform yields a pixel with pixels values of cyan=0, magenta=0.8944, yellow=0.8944 and black=0.1. So, a near primary color pixel can be processed through the transform with only a small effect. The result for pixels calling for near neutral colors is quite different.
For example, a CMY pixel calling for cyan=0.45, magenta=0.5, yellow=0.5 is transformed to one calling for cyan=0.2025, magenta=0.25, yellow=0.25. Removing the under color and like amounts of the other colorants and adding like amounts of black yields a transform space pixel calling for cyan=0, magenta=0.0475, yellow=0.0475, black=0.2025. Applying the inverse transform yields a pixel calling for cyan=0, magenta=0.218, yellow=0.218, black=0.45. The magenta and yellow colorants have been reduced by more than half and the neutral colorant, black, now strongly dominates the pixel.
When gamma law functions are used in under color removal, the values of γ typically used range from 1 to 3. However, other values may be used, depending on the desired result.
Whichever method is used, the one hundred percent under color removal process 134 converts the CMY image to a CMYK color space image 138. The one hundred percent under color removal process 134 also performs a great deal of the neutral mapping step 88 described in reference to
Next, the CMYK image 138 is processed through a clamping tone reproduction curve set 142. Referring to
One alternative to the embodiment described above is to use an identity tone reproduction curve 226 for the K colorant alone. An identity K colorant tone reproduction curve is desirable where text and lines are rendered in, for example, light gray. Using a clamping K channel tone reproduction curve 210 described above could force light gray text all the way to white. Moving light gray text to white would cause the light gray text to disappear. Using the identity K colorant tone reproduction curve 226 preserves light gray text and lines.
Whether the tone reproduction curves used are all clamping type tone reproductions curves 210 or include a identity type tone reproductions curve 226 for the K channel, processing an image through the tone reproduction curves finishes the neutral mapping step 88 described in reference to
For example, using clamping tone reproduction curves for all the colorants, a nearly pure primary pixel which would be rendered by a standard rendering intent with colorant saturation levels of 95% cyan, 7% magenta, 93% yellow and 10% black, would instead be mapped to a pixel calling for 100% cyan, 0% magenta 100% yellow and 0% black. The resulting pixel would be perceived as green, one of the pure primaries. Note how the small amounts of magenta and black, which are likely to produce undesirable halftone textures, are now eliminated.
Referring now to
Of course, the neutral mapper 320 and primary mapper 340 can share components and indeed can comprise functional modules that perform both tasks or portions of both tasks simultaneously. For example the neutral mapper and primary mapper can comprise a one hundred percent under color remover and a set of tone reproduction curves that work together to perform both the neutral mapping and primary color mapping task.
Typically, the neutral mapper 320 and primary mapper 340 are implemented as software modules. The mappers are stored in computer or microprocessor memory and executed by a microprocessor or central processing unit. However the functions of the neutral mapper 320 and primary mapper 340 can be carried out in various ways and by various devices, including but not limited to distributed processors and various components interconnected via computer networks.
The invention has been described with reference to particular embodiments. Modifications and alterations will occur to others upon reading and understanding this specification. For example different clamping tone reproduction curves can be used than those illustrated. Clamping can begin further from or closer to the end points of the curve. Moving the points where clamping begins simply redefines the meaning of the phrases “nearly neutral” and “nearly pure”. The meaning of those phrases is meant to be adjusted based on the idiosyncrasies of the equipment involved and the application to which the method and equipment are applied. While sets of one dimensional tone reproductions curves were described, it is anticipated that multidimensional techniques can be used to implement the neutral mapper and primary mapper functions. It is intended that all such modifications and alterations are included insofar as they come within the scope of the appended claims or equivalents thereof.
Eschbach, Reiner, Balasubramanian, Thyagarajan
Patent | Priority | Assignee | Title |
7187799, | Aug 18 2003 | Xerox Corporation | Method for determining a hue adjustment to an input hue |
7190831, | Aug 18 2003 | Xerox Corporation | Method for squeezing an input hue toward a region of preferred hue |
7433511, | Oct 17 2003 | Hewlett-Packard Development Company, L.P. | Color adjustment using black generation and under color removal |
8014600, | Dec 07 2005 | Synaptics Incorporated | Intelligent saturation of video data |
8335015, | Sep 16 2009 | Xerox Corporation | Systems and methods for building a color lookup table for a printer |
8340410, | Dec 07 2005 | Synaptics Incorporated | Intelligent saturation of video data |
8427697, | Feb 28 2003 | Seiko Epson Corporation | Color separation into plural ink components including primary color ink and spot color ink |
8477394, | Aug 05 2010 | Synaptics Incorporated | Systems and methods for color defringing |
8593692, | Aug 12 2009 | Xerox Corporation; XEROX CORPORAATION | Systems and methods for building a color lookup table for a printer |
9442680, | Mar 17 2014 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Image forming apparatus having toner saving function and method for printing |
Patent | Priority | Assignee | Title |
3555262, | |||
3647295, | |||
4415925, | Feb 05 1981 | Canon Kabushiki Kaisha | Color original readout apparatus |
4926248, | Mar 30 1985 | Hitachi, Ltd. | Scanning recording type printing method and apparatus for increasing image quality by controlling tone dot locations within image pixels |
5146548, | Jun 24 1988 | VISTA DMS, INC | Method and apparatus for optimizing and storing contone images for subsequent half-toning and merging with text |
5200831, | Jun 05 1992 | Eastman Kodak Company | Method and arrangement for locally switching gray dot types to reproduce an image with gray level printing |
5212741, | Jan 21 1992 | Eastman Kodak Company | Preprocessing of dot-matrix/ink-jet printed text for Optical Character Recognition |
5231504, | Dec 30 1991 | Xerox Corporation | Method for improved color reproduction using linear mixing calculations based on positional relationships between an original color and an achromatic region in a linear mixing space |
5293207, | Jan 29 1992 | Konica Corporation | Color image forming apparatus with black toner control |
5481372, | May 14 1991 | Fuji Xerox Co., Ltd. | Area control system for image processing apparatus |
5517334, | Apr 14 1992 | Electronics for Imaging, Inc. | Indexed processing of color image data |
5528339, | Aug 26 1994 | Intellectual Ventures Fund 83 LLC | Color image reproduction of scenes with color enhancement and preferential tone mapping |
5539540, | Feb 12 1993 | Intellectual Ventures Fund 83 LLC | Method and associated apparatus for transforming input color values in an input color space to output color values in an output color space |
5592311, | Oct 06 1993 | Fuji Xerox Co., Ltd. | Apparatus for forming color images having reduced edge exaggeration with high rate undercolor removal |
5606395, | Jan 11 1996 | Xerox Corporation | Method and apparatus for adjusting machine parameters in a printing machine to provide real-time print appearance control |
5710871, | Mar 15 1994 | Seiko Epson Corporation | Data correction subsystem and method for color image processing system |
5742410, | Jun 20 1993 | Fuji Xerox Co., Ltd. | Color image processing apparatus capable of correcting a color deviation by converting only chroma signals |
5768403, | May 14 1991 | Fuji Xerox Co., Ltd. | Image-area identifying system for a color image processing apparatus |
5881209, | Sep 13 1994 | Apple Inc | Method and system for automatically generating printer profiles |
5892891, | Nov 20 1996 | Xerox Corporation | System for printing color images with extra colorants in addition to primary colorants |
5943059, | Aug 04 1994 | NEC Corporation | Method and apparatus for coloring support |
5963201, | May 11 1992 | Apple Inc | Color processing system |
6069981, | Jun 16 1997 | Dainippon Screen Mfg. Co., Ltd. | Image conversion method and record medium |
6088477, | Aug 26 1992 | Canon Kabushiki Kaisha | System for controlling an amount of undercolor removal based on a grayness signal, a darkness signal, and a black signal |
6118896, | Jul 31 1995 | Canon Kabushiki Kaisha | Image processing apparatus and method for performing color correction based on object type of an image |
6125200, | Dec 16 1997 | Adobe Systems Incorporated | Removing non-text information from a color image |
6249596, | Nov 23 1993 | AGFA HEALTHCARE N V | Method of locating saturated pixels in the display of a radiographic image |
6275302, | Dec 27 1995 | Xerox Corporation | Color printing yielding a background dependent neutral gray image (i.e. intelligent gray) |
6275304, | Dec 22 1998 | Xerox Corporation | Automated enhancement of print quality based on feature size, shape, orientation, and color |
6278802, | Sep 02 1993 | Agfa Graphics NV | Frequency-modulation halftone screen and method for making same |
6285462, | Nov 13 1998 | Xerox Corporation | Intelligent GCR/UCR process to reduce multiple colorant moire in color printing |
6323957, | Jun 01 1998 | Xerox Corporation | Background noise removal for a low-cost digital color copier |
6326974, | Aug 04 1994 | NEC Corporation | Method and apparatus for coloring support |
6345128, | Sep 19 1994 | Apple Inc | Generation of tone reproduction curves using psychophysical data |
6346993, | Feb 05 1999 | Xerox Corporation | Tone-variation-resistant phase-shiftable halftone screen system and method of using |
6415052, | Mar 27 1987 | Canon Kabushiki Kaisha | Color image processing apparatus |
6529291, | Sep 22 1999 | Xerox Corporation | Fuzzy black color conversion using weighted outputs and matched tables |
6574004, | Jul 16 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System and method for converting color data to gray data |
6577826, | Mar 24 2000 | Fuji Xerox Co., Ltd. | Image forming apparatus which sets parameters for the formation of paper |
6587593, | Apr 28 1998 | Sharp Kabushiki Kaisha | Image processing device and image processing method |
6646762, | Nov 05 1999 | Xerox Corporation | Gamut mapping preserving local luminance differences |
6648442, | Apr 23 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY L P | Compensation for temperature dependent drop quantity variation |
6693942, | Oct 23 2001 | WFK LASERS, LLC | Diode-pumped visible wavelength alkali laser |
20010031084, | |||
20010036231, | |||
20020075491, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 27 2000 | BALASUBRAMANIAN, THYAGARAJAN | Xerox Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010778 | /0307 | |
Apr 28 2000 | ESCHBACH, REINER | Xerox Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010778 | /0307 | |
May 02 2000 | Xerox Corporation | (assignment on the face of the patent) | / | |||
Jun 21 2002 | Xerox Corporation | Bank One, NA, as Administrative Agent | SECURITY AGREEMENT | 013111 | /0001 | |
Jun 25 2003 | Xerox Corporation | JPMorgan Chase Bank, as Collateral Agent | SECURITY AGREEMENT | 015134 | /0476 | |
Aug 22 2022 | JPMORGAN CHASE BANK, N A AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO BANK ONE, N A | Xerox Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061388 | /0388 | |
Aug 22 2022 | JPMORGAN CHASE BANK, N A AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK | Xerox Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 066728 | /0193 |
Date | Maintenance Fee Events |
Mar 16 2006 | ASPN: Payor Number Assigned. |
Nov 13 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 17 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 19 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 04 2009 | 4 years fee payment window open |
Jan 04 2010 | 6 months grace period start (w surcharge) |
Jul 04 2010 | patent expiry (for year 4) |
Jul 04 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 04 2013 | 8 years fee payment window open |
Jan 04 2014 | 6 months grace period start (w surcharge) |
Jul 04 2014 | patent expiry (for year 8) |
Jul 04 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 04 2017 | 12 years fee payment window open |
Jan 04 2018 | 6 months grace period start (w surcharge) |
Jul 04 2018 | patent expiry (for year 12) |
Jul 04 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |