A magnetic logic cell includes a magnetic element having a pinned layer, a free layer, and a spacer layer. The pinned and free layers have pinned and free layer magnetizations. The spacer layer resides between the pinned and free layers. In one aspect, the magnetic logic cell includes a first configuration line that is electrically connected to the magnetic element and carries a first current and a second configuration line electrically that is insulated from the magnetic element and the first configuration line and carries a second current. The first or second current alone cannot switch the free layer magnetization. The first and second currents together can switch the free layer magnetization. When the first current is driven through the magnetic element and the second current is provided, the combination sets the pinned layer magnetization direction. In one aspect, the pinned layer magnetization is set by heating the AFM layer to approximately at or above the blocking temperature. In order to configure the logic cell, an initial direction for the free layer magnetization is also set.
|
22. A magnetic logic cell comprising;
a pinned layer having a pinned layer magnetization;
a free layer having a free layer magnetization;
a spacer layer residing between the pinned layer and the free layer; and
an antiferromagnetic layer having a blocking temperature such that a first current driven through the magnetic element heats the antiferromagnetic layer to be in a sufficiently disordered state that the pinned layer magnetization can be set in a pinned layer magnetization direction;
wherein the first current alone is insufficient to switch the free layer magnetization.
16. A method for configuring a magnetic logic cell for a particular operation, the magnetic logic cell including a magnetic element having a pinned layer, a free layer, and a spacer layer, the pinned layer having a pinned layer magnetization; the free layer having a free layer magnetization, the spacer layer residing between the pinned layer and the free layer, and comprising;
setting pinned layer magnetization direction by driving a first current from through the magnetic element and driving a second current in proximity to the magnetic element that generates a magnetic field to set the pinned layer magnetization to a pinned layer magnetization direction;
setting an initial direction for the free layer magnetization by driving the first current and the second current in a particular direction.
1. A magnetic logic cell comprising;
a magnetic element including a pinned layer, a free layer, and a spacer layer, the pinned layer having a pinned layer magnetization; the free layer having a free layer magnetization, the spacer layer residing between the pinned layer and the free layer;
a first configuration line electrically connected to the magnetic element, the first configuration line for carrying a first current;
a second configuration line electrically insulated from the magnetic element and from the first configuration line, the second configuration line for carrying a second current, the first current and the second current alone incapable of switching the free layer magnetization, the first current and the second current together in a particular direction capable of switching the free layer magnetization, and wherein the first current driven through the magnetic element and the second current capable of setting the pinned layer magnetization to a pinned layer magnetization direction.
13. A magnetic logic array comprising:
a plurality of magnetic logic cells, each of the plurality of magnetic logic cells including a magnetic element having a pinned layer, a free layer, and a spacer layer, the pinned layer having a pinned layer magnetization; the free layer having a free layer magnetization, the spacer layer residing between the pinned layer and the free layer;
a plurality of first configuration lines, each of the plurality of first configuration lines electrically connected to the magnetic element of a first portion of the plurality of magnetic logic cells, the first configuration line for carrying a first current having a first current magnitude;
a plurality of second configuration lines, each of the plurality of second configuration lines electrically insulated from the magnetic element and from the first configuration line of a second portion of the plurality of magnetic logic cells, the second configuration line for carrying a second current having a second current magnitude, the first current and the second current alone incapable of switching the free layer magnetization, the first current and the second current together in a particular direction capable of switching the free layer magnetization, and wherein the first current driven through the magnetic element and the second current capable of setting the pinned layer magnetization to a pinned layer magnetization direction.
2. The logic cell of
an antiferromagnetic layer adjacent to the pinned layer, the antiferromagnetic layer having a blocking temperature such that the first current driven through the magnetic element is capable of heating the antiferromagnetic layer to at least the blocking temperature.
4. The logic cell of
5. The logic cell of
a transistor coupled to the magnetic element such that the first current is driven through the magnetic element when the transistor is in a first set.
6. The logic cell of
7. The logic cell of
8. The logic cell of
9. The logic cell of
11. The logic cell of
14. The magnetic logic array of
15. The magnetic logic array of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
23. The magnetic logic cell of
24. The magnetic logic cell of
|
The present invention relates to electronic logic devices and more particularly to a method and system for providing a magnetic element that is suitable for use in logic applications such as AND, OR, NAND, and NOR gates.
Currently, magnetic elements are of interest for a variety of applications. In general, such conventional magnetic elements are magnetic tunneling junctions.
Depending upon the orientations of the magnetization 19 and 15 of the conventional free layer 18 and the conventional pinned layer 14, respectively, the resistance of the conventional magnetic element 10, respectively, changes. When the magnetization 19 of the conventional free layer 18 is parallel to the magnetization 15 of the conventional pinned layer 14, the resistance of the conventional magnetic element 10 is low. When the magnetization 19 of the conventional free layer 18 is antiparallel to the magnetization 15 of the conventional pinned layer 14, the resistance of the conventional magnetic element 10 is high. To sense the resistance of the conventional magnetic element 10, current is driven through the conventional magnetic element 10. Current could be driven in a CPP (current perpendicular to the plane) configuration, perpendicular to the layers of conventional magnetic element 10 up or down, in the z-direction as seen in
One application that is of interest is the use of the conventional magnetic element 10 in reconfigurable structures that perform multiple logic operations such as AND, OR, NAND, and NOR functions. Logic functions are traditionally performed using conventional transistor based logic. Conventional transistor based logic circuits are designed to perform one logic operation per design. Thus, the transistor based logic cells cannot be reconfigured to perform alternate operations. It would, therefore, be desirable to perform such logic operations using reconfigurable technology, such as magnetic technology.
Although conventional magnetic elements, such as the conventional magnetic element 10, can be used in reconfigurable logic design, one of ordinary skill in the art will readily recognize that current designs have serious drawbacks. For example, most conventional reconfigurable logic designs using the conventional magnetic element 10 require multiple conventional magnetic elements 10 per cell. See, for example, R. Richter, H. Boeve, L. Bar, J. Bangert, U. K. Klostermann, J. Wecker and G. Reiss, “Field programmable spin-logic based on magnetic tunneling elements” in Journal of Magnetism and Magnetic Materials, vol. 240 (2002) pp 127–129 or W. Black and B. Das, “Programmable logic using giant-magnetoresistance and spin-dependant tunneling devices” in Journal of Applied Physics, vol. 87 (2000) pp 6674–6679. Alternatively, other conventional reconfigurable logic designs that utilize conventional magnetic elements 10 involve complex interconnection architectures. See, for example, S. Nakamura and S. Haneda, “Magnetic logic element and magnetic logic element array”, U.S. Patent Publ. # 2003/0227807 or A. Ney, C. Pampuch, R. Koch and K. H. Ploog, “Programmable computing with a single magnetoresistive element” in Letter to Nature, vol. 425 (2003) pp 485–487. Multiple conventional magnetic elements 10 per cell and complex interconnection architectures are a barrier to using magnetic elements in higher density, relatively easily fabricated reconfigurable logic circuits.
Accordingly, what is needed is a method and system for providing reconfigurable logic that utilizes magnetic elements while maintaining a simpler structure. The present invention addresses such a need.
The present invention provides a magnetic logic cell that includes a magnetic element having a pinned layer, a free layer, and a spacer layer. The pinned layer has a pinned layer magnetization. The free layer has a free layer magnetization. The spacer layer resides between the pinned layer and the free layer. A first configuration line is electrically connected to the magnetic element and carries a first current. A second configuration line is electrically insulated from the magnetic element and from the first configuration line. The second configuration line carries a second current. The first current and the second current alone are incapable of switching the free layer magnetization. The first current and the second current together in a particular direction can switch the free layer magnetization to the particular direction. When the first current is driven through the magnetic element and the second current is provided, the combination is capable of setting the pinned layer magnetization to a pinned layer magnetization direction. In order to configure the logic cell to perform a specific logic operation, the pinned layer magnetization direction is set as described above. An initial direction for the free layer magnetization is also set by driving the first current and the second current.
According to the method and system disclosed herein, the present invention provides reconfigurable logic that can utilize a single magnetic element per operation. Once configured, the logic cell can accept inputs and provide the appropriate output for the logic operation based upon the inputs.
The present invention relates to logic design. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
The present invention provides a magnetic logic cell that includes a magnetic element having a pinned layer, a free layer, and a spacer layer. The pinned layer has a pinned layer magnetization. The free layer has a free layer magnetization. The spacer layer resides between the pinned layer and the free layer. A first configuration line is electrically connected to the magnetic element and carries a first current. A second configuration line electrically is insulated from the magnetic element and from the first configuration line. The second configuration line carries a second current. The first current and the second current alone are incapable of switching the free layer magnetization. The first current and the second current together in a particular direction can switch the free layer magnetization to the particular direction. When the first current is driven through the magnetic element and the second current is provided, the combination is capable of setting the pinned layer magnetization to a pinned layer magnetization direction. In order to configure the logic cell to perform a specific logic operation, the pinned layer magnetization direction is set as described above. An initial direction for the free layer magnetization is also set by driving the first current and the second current.
The present invention will be described in terms of a particular magnetic element having certain components. However, one of ordinary skill in the art will readily recognize that this method and system will operate effectively for other magnetic logic elements having different and/or additional components and other magnetic logic having different and/or other features not inconsistent with the present invention. The present invention is also described in the context of current understanding of the magnetic switching. Consequently, one of ordinary skill in the art will readily recognize that theoretical explanations of the behavior of the method and system are made based upon this current understanding of magnetic switching. One of ordinary skill in the art will also readily recognize that the method and system are described in the context of a structure having a particular relationship to the substrate. However, one of ordinary skill in the art will readily recognize that the method and system are consistent with other structures. In addition, the method and system are described in the context of certain layers being synthetic and/or simple. However, one of ordinary skill in the art will readily recognize that the layers could have another structure. Moreover, certain components are described as being ferromagnetic. However, as used herein, the term ferromagnetic could include ferrimagnetic or like structures. Thus, as used herein, the term “ferromagnetic” includes, but is not limited to ferromagnets and ferrimagnets. The present invention is also described in the context of certain structures, such as magnetic tunneling junctions. However, one of ordinary skill in the art will readily recognize that the present invention is not limited to such structures, but instead can be used in other structures not inconsistent with the present invention. Moreover, the present invention is described in the context of the magnetic element. However, one of ordinary skill in the art will readily recognize that when incorporated into logic cell arrays, the magnetic element may be combined with another component, such as a transistor. The method and system are also described in the context of the current knowledge of ballistic MR. However, this description is not intended to limit the scope of the present invention.
To more particularly illustrate the method and system in accordance with the present invention, refer to
The magnetic element 110 includes an AFM layer 112, a pinned layer 114 having a pinned layer magnetization 115, a spacer layer 116 and a free layer 118 having a free layer magnetization 119. In one embodiment, the free layer 118 is a magnetic alloy containing at least one of elements Co, Fe or Ni. In a preferred embodiment, the free layer 118 includes Co, CoFe, CoFeB or a bilayer of type NiFe/CoFe. In one embodiment, the pinned layer 114 is a magnetic alloy containing at least one of elements Co, Fe or Ni. In a preferred embodiment, the pinned layer 114 includes Co or CoFe. The pinned layer 114 could also be synthetic, for example including ferromagnetic layers separated by a nonmagnetic spacer layer. In such an embodiment, the pinned layer 114 could be CoFe/Ru/CoFe.
The spacer layer 116 is preferably a nonmagnetic tunneling barrier layer or a current confined layer. If the spacer layer 116 is a tunneling barrier layer, then the spacer layer 116 preferably includes alumina or MgO and has a thickness of less than two nanometers. If the spacer layer 116 is a current confined layer, then the magnetic element 110 is preferably a ballistic magnetoresistive element. In such an embodiment, the spacer layer 116 includes a ferromagnetic alloy containing at least one of the elements Co, Fe or Ni embedded in an insulating matrix, such as SiO2 or SiC. In such an embodiment, the ferromagnetic material forms channel(s) extending through the vertical length of the spacer layer 116. The channel width is preferably between one and three nanometers and has a length (approximately the same as thickness of the spacer layer 116) that allows ballistic transport of electrons. In such an embodiment, the channel also serves as site for location of sharp domain wall when the magnetization directions of the layer at its two ends are anti-parallel.
The magnetic element 110 also preferably includes an AFM layer 112. The AFM layer preferably has a low blocking temperature in the range of one hundred degrees Celsius to two hundred degrees Celsius. For example, the AFM layer 112 may include materials including but not limited to IrMn and FeMn. Preferably the AFM layer 112 has a composition is close to Ir20Mn80 with blocking temperature of between one hundred and two hundred degrees Celsius, and preferably about one hundred and fifty degrees Celsius. The thickness and composition of the AFM layer 112 may be varied to obtain the desired blocking temperature.
The logic function provided by the magnetic logic cell 100 is reconfigurable and depends upon the currents driven through the configuration lines 120 and 130. For clarity, directions of magnetization and logic states are defined as follows. A logical zero “0” output occurs for a high resistance state (magnetizations 115 and 119 antiparallel) of the magnetic element 110. A logical one “1” output corresponds to a low resistance state (magnetizations 115 and 119 parallel) of the magnetic element 110. A positive direction for a magnetization is defined as toward the right in
In operation, the first configuration line 120 and the second configuration line 130 carry a first current and a second current, respectively. To switch the pinned layer magnetization, the first current of configuration line 120 is passed through the magnetic element, thus heating the element close to or above the blocking temperature of the AFM material 112. Simultaneously the second current is passed through the line 130, in either a positive or negative direction, to set the pinned layer magnetization along either the positive or negative direction respectively. To switch the free layer, both the first and second current travel through the line above the element, i.e., first current does not go through the magnetic element. The first and second currents alone are insufficient to switch the magnetization 119 of the free layer 118. However, when both the first and second currents are either in a positive direction or a negative direction, the free layer magnetization 119 is switched to a positive direction or a negative direction, respectively. The first and second currents are thus used in configuring the logic operation of the magnetic logic cell 100. In addition, the first and second currents are used as two inputs during operation of the magnetic logic cell. In particular, a positive first current corresponds to one input to the logic cell, with the input value being a logical “1”. A negative first current corresponds to the first input value being a logical “0”. Similarly, a positive second current corresponds to the other input to the logic cell having the input value being a logical “1”. A negative second current corresponds to the other input of the logic cell being a logical “0”.
The magnetic logic cell 100 could perform a number of logical operations. Described herein are the AND, OR, NAND, and NOR operations. For an AND operation, the pinned layer magnetization 115 is set in the positive direction, and the free layer magnetization 119 is initially set antiparallel to the pinned layer magnetization. Thus, the initial state of the logical cell 100 would be a logical “0”. The magnetic logic cell 100 is then ready to receive inputs. If the first and second inputs are both “1”, corresponding to the first current and a second current, respectively, being in the positive direction, then the direction of the free layer magnetization 119 would be switched. If the first input is “0” (the first current in the negative direction), the second input is “0” (the second current in the negative direction), or both are “0” (first and second currents in the negative direction), the magnetic field generate will not switch the magnetization 119 of the free layer 118.
For an OR operation, the pinned layer magnetization 115 is set in the positive direction, and the free layer magnetization 119 is initially set parallel to the pinned layer magnetization. Thus, the initial state of the logical cell 100 would be a logical “1”. The magnetic logic cell 100 is then ready to receive inputs. If the first and second inputs are both “0”, corresponding to the first current and a second current, respectively, being in the negative direction, then the direction of the free layer magnetization 119 would be switched. If the first input is “1” (the first current in the positive direction), the second input is “1” (the second current in the positive direction), or both are “1” (first and second currents in positive negative direction), the magnetic field generate will not switch the magnetization 119 of the free layer 118.
For a NOR operation, the pinned layer magnetization 115 is set in the negative direction, and the free layer magnetization 119 is initially set antiparallel to the pinned layer magnetization. Thus, the initial state of the logical cell 100 would be a logical “0”. The magnetic logic cell 100 is then ready to receive inputs. If the first and second inputs are both “0”, corresponding to the first current and a second current, respectively, being in the negative direction, then the direction of the free layer magnetization 119 would be switched (to a logical 1). If the first input is “1” (the first current in the positive direction), the second input is “1” (the second current in the positive direction), or both are “1” (first and second currents in the positive direction), the magnetic field generate will not switch the magnetization 119 of the free layer 118.
For a NAND operation, the pinned layer magnetization 115 is set in the negative direction, and the free layer magnetization 119 is initially set parallel to the pinned layer magnetization. Thus, the initial state of the logical cell 100 would be a logical “1”. The magnetic logic cell 100 is then ready to receive inputs. If the first and second inputs are both “1”, corresponding to the first current and a second current, respectively, being in the positive direction, then the direction of the free layer magnetization 119 would be switched to logical “0”. If the first input is “0” (the first current in the negative direction), the second input is “0” (the second current in the negative direction), or both are “0” (first and second currents in the negative direction), the magnetic field generate will not switch the magnetization 119 of the free layer 118. Configuration of the magnetic logic cell 100 is described in conjunction with
Thus, the magnetic logic cell 100 can be configured (and reconfigured) to provide a number of different logic operations. Furthermore, configuring the magnetic logic cell 100 can be achieved simply by driving the appropriate currents through and in proximity to portions of the magnetic memory. In addition to being reconfigurable, the magnetic logic cell 100 uses only one magnetic element per cell. Consequently, density can be improved and manufacturing simplified. Table 1 depicts the input currents and their corresponding logical state as well as the output for specific logic functions.
Input A | Input B | ||||
(1st | (2nd | Output | Output | Output | Output |
Config. | Config. | AND | OR | NOR | NAND |
Line) | Line) | Operation | Operation | Operation | Operation |
0 (−I1) | 0 (−I2) | 0 | 0 | 1 | 1 |
0 (−I1) | 1 (+I2) | 0 | 1 | 0 | 1 |
1 (+I1) | 0 (−I2) | 0 | 1 | 0 | 1 |
1 (+I1) | 1 (+I2) | 1 | 1 | 0 | 0 |
In order to read the output of the magnetic logic cell 100, a read current is driven through the magnetic element 110 and the resistance state determined. In a preferred embodiment, this reading is accomplished by turning the transistor 140 on so that current can be driven through the magnetic element 110. In a preferred embodiment, the first configuration line 120 also provides the read current. In a preferred embodiment, the read current is substantially less than the first current used in configuring the magnetic logic cell 100 or for the inputs. This is to ensure that the read operation does not disturb the state of the free layer 118.
More popular logic operations are the AND, OR, NOR, and NAND operations. Consequently, configuring the magnetic logic cell is described separately for these operations.
Thus, the magnetic cell 110 can be configured and reconfigured to perform various operations. Moreover, configuring the magnetic logic cell 100 can be achieved simply by driving the appropriate currents through and in proximity to portions of the magnetic memory. In addition to being reconfigurable, the magnetic logic cell 100 uses only one magnetic element per cell. Consequently, density can be improved and manufacturing simplified. Table 2 summarizes the currents provided in configuring the magnetic logic cell. Note that in Table 2, line 120 corresponds to the first configuration line 120 and line 130 corresponds to the second configuration line 130.
TABLE 2 | |||||||||
AND | AND | OR | OR | NOR | NOR | NAND | NAND | ||
Step | ORDER | First | Second | First | Second | First | Second | First | Second |
Pinned Layer | Line | +I1 | +I1 | +I1 | +I1 | −I1 | −I1 | −I1 | −I1 |
Setup | 120 | ||||||||
Line | +I2 | +I2 | +I2 | +I2 | −I2 | −I2 | −I2 | −I2 | |
130 | |||||||||
Trans. | On | Off | On | Off | On | Off | On | Off | |
140 | |||||||||
Free Layer | Line | −I1 | +I1 | +I1 | −I1 | ||||
Setup | 120 | ||||||||
Line | −I2 | +I2 | +I2 | −I2 | |||||
130 | |||||||||
Trans | off | off | off | off | |||||
140 | |||||||||
Thus, the magnetic logic cell 100 can be configured (and reconfigured) to provide a number of different logic operations. In addition to being reconfigurable, the magnetic logic cell 100 uses only one magnetic element per cell. Consequently, density can be improved and manufacturing simplified.
A method and system for providing a reconfigurable magnetic logic cell has been disclosed. The present invention has been described in accordance with the embodiments shown, and one of ordinary skill in the art will readily recognize that there could be variations to the embodiments, and any variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
Huai, Yiming, Pakala, Mahendra
Patent | Priority | Assignee | Title |
10360962, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with individually trimmable sense amplifiers |
10360964, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device |
10366774, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Device with dynamic redundancy registers |
10366775, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory device using levels of dynamic redundancy registers for writing a data word that failed a write operation |
10395711, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Perpendicular source and bit lines for an MRAM array |
10395712, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with horizontal source line and sacrificial bitline per virtual source |
10411185, | May 30 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for creating a high density magnetic tunnel junction array test platform |
10424393, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of reading data from a memory device using multiple levels of dynamic redundancy registers |
10437491, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register |
10437723, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device |
10446744, | Mar 08 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
10481976, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers |
10489245, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them |
10529439, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects |
10529915, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer |
10546624, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-port random access memory |
10546625, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of optimizing write voltage based on error buffer occupancy |
10593396, | Jul 06 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
10600478, | Jul 06 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
10615337, | May 30 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for creating a high density magnetic tunnel junction array test platform |
10650875, | Aug 21 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | System for a wide temperature range nonvolatile memory |
10656994, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques |
10784437, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
10811594, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for hard mask development for MRAM pillar formation using photolithography |
10818331, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-chip module for MRAM devices with levels of dynamic redundancy registers |
10840439, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction (MTJ) fabrication methods and systems |
10886330, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch |
10891997, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with horizontal source line and a virtual source line |
10930332, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with individually trimmable sense amplifiers |
10971680, | Oct 01 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi terminal device stack formation methods |
11107974, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer |
11107978, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
11107979, | Dec 28 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Patterned silicide structures and methods of manufacture |
11621293, | Oct 01 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi terminal device stack systems and methods |
7224601, | Aug 25 2005 | SAMSUNG SEMICONDUCTOR INC | Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element |
7430135, | Dec 23 2005 | SAMSUNG SEMICONDUCTOR INC | Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density |
7576956, | Jul 26 2004 | SAMSUNG SEMICONDUCTOR INC | Magnetic tunnel junction having diffusion stop layer |
7755930, | Mar 07 2007 | SAMSUNG ELECTRONICS CO , LTD | Semiconductor memory device and magneto-logic circuit |
7777261, | Sep 20 2005 | SAMSUNG SEMICONDUCTOR INC | Magnetic device having stabilized free ferromagnetic layer |
7825478, | Nov 07 2008 | Everspin Technologies, Inc | Polarity dependent switch for resistive sense memory |
7851840, | Sep 13 2006 | SAMSUNG SEMICONDUCTOR INC | Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier |
7859034, | Sep 20 2005 | SAMSUNG SEMICONDUCTOR INC | Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer |
7881098, | Aug 26 2008 | Seagate Technology LLC | Memory with separate read and write paths |
7881104, | Aug 08 2008 | Seagate Technology LLC | Magnetic memory with separate read and write paths |
7894248, | Sep 12 2008 | SAMSUNG SEMICONDUCTOR INC | Programmable and redundant circuitry based on magnetic tunnel junction (MTJ) |
7933137, | Oct 08 2008 | Seagate Technology LLC | Magnetic random access memory (MRAM) utilizing magnetic flip-flop structures |
7933146, | Oct 08 2008 | Seagate Technology LLC | Electronic devices utilizing spin torque transfer to flip magnetic orientation |
7935619, | Nov 07 2008 | Everspin Technologies, Inc | Polarity dependent switch for resistive sense memory |
7936580, | Oct 20 2008 | Seagate Technology LLC | MRAM diode array and access method |
7936583, | Oct 30 2008 | Seagate Technology LLC | Variable resistive memory punchthrough access method |
7940548, | Jul 13 2009 | Seagate Technology LLC | Shared bit line and source line resistive sense memory structure |
7944742, | Jul 18 2008 | Seagate Technology LLC | Diode assisted switching spin-transfer torque memory unit |
7957179, | Jun 27 2007 | SAMSUNG SEMICONDUCTOR INC | Magnetic shielding in magnetic multilayer structures |
7961497, | Oct 30 2008 | Seagate Technology LLC | Variable resistive memory punchthrough access method |
7973349, | Sep 20 2005 | SAMSUNG SEMICONDUCTOR INC | Magnetic device having multilayered free ferromagnetic layer |
7974119, | Jul 10 2008 | Everspin Technologies, Inc | Transmission gate-based spin-transfer torque memory unit |
7982275, | Aug 22 2007 | SAMSUNG SEMICONDUCTOR, INC | Magnetic element having low saturation magnetization |
7985994, | Sep 29 2008 | Seagate Technology LLC | Flux-closed STRAM with electronically reflective insulative spacer |
7998758, | Nov 05 2008 | Seagate Technology LLC | Method of fabricating a magnetic stack design with decreased substrate stress |
7999338, | Jul 13 2009 | Seagate Technology LLC | Magnetic stack having reference layers with orthogonal magnetization orientation directions |
8004883, | Sep 30 2008 | Seagate Technology LLC | Thermally assisted multi-bit MRAM |
8035177, | Oct 10 2008 | Seagate Technology LLC | Magnetic stack with oxide to reduce switching current |
8039913, | Oct 09 2008 | Seagate Technology LLC | Magnetic stack with laminated layer |
8040154, | Mar 26 2008 | Qualcomm Incorporated | Software programmable logic using spin transfer torque magnetoresistive devices |
8043732, | Nov 11 2008 | Seagate Technology LLC | Memory cell with radial barrier |
8045366, | Nov 05 2008 | Seagate Technology LLC | STRAM with composite free magnetic element |
8053255, | Mar 03 2009 | Everspin Technologies, Inc | STRAM with compensation element and method of making the same |
8054677, | Aug 07 2008 | Seagate Technology LLC | Magnetic memory with strain-assisted exchange coupling switch |
8072014, | Nov 07 2008 | Everspin Technologies, Inc | Polarity dependent switch for resistive sense memory |
8077502, | Oct 08 2008 | Seagate Technology LLC | Electronic devices utilizing spin torque transfer to flip magnetic orientation |
8077503, | Oct 08 2008 | Seagate Technology LLC | Electronic devices utilizing spin torque transfer to flip magnetic orientation |
8089132, | Oct 09 2008 | Seagate Technology LLC | Magnetic memory with phonon glass electron crystal material |
8098510, | Oct 30 2008 | Seagate Technology LLC | Variable resistive memory punchthrough access method |
8154914, | Mar 30 2009 | Seagate Technology LLC | Predictive thermal preconditioning and timing control for non-volatile memory cells |
8158964, | Jul 13 2009 | Seagate Technology LLC | Schottky diode switch and memory units containing the same |
8159856, | Jul 07 2009 | Seagate Technology LLC | Bipolar select device for resistive sense memory |
8169810, | Oct 08 2008 | Seagate Technology LLC | Magnetic memory with asymmetric energy barrier |
8178864, | Nov 18 2008 | Seagate Technology LLC | Asymmetric barrier diode |
8179716, | May 23 2008 | Everspin Technologies, Inc | Non-volatile programmable logic gates and adders |
8198181, | Jul 13 2009 | Seagate Technology LLC | Schottky diode switch and memory units containing the same |
8199558, | Oct 30 2008 | Seagate Technology LLC | Apparatus for variable resistive memory punchthrough access method |
8199563, | Jul 10 2008 | Everspin Technologies, Inc | Transmission gate-based spin-transfer torque memory unit |
8199564, | Sep 30 2008 | Seagate Technology LLC | Thermally assisted multi-bit MRAM |
8199569, | Jul 18 2008 | Seagate Technology LLC | Diode assisted switching spin-transfer torque memory unit |
8203192, | Mar 03 2009 | Everspin Technologies, Inc | STRAM with compensation element and method of making the same |
8203869, | Dec 02 2008 | Seagate Technology LLC | Bit line charge accumulation sensing for resistive changing memory |
8203871, | May 23 2008 | Everspin Technologies, Inc | Reconfigurable magnetic logic device using spin torque |
8203874, | Jan 29 2009 | Seagate Technology LLC | Staggered magnetic tunnel junction |
8213216, | Jul 13 2009 | Everspin Technologies, Inc | Shared bit line and source line resistive sense memory structure |
8213221, | Jun 27 2007 | SAMSUNG SEMICONDUCTOR INC | Magnetic shielding in magnetic multilayer structures |
8217478, | Oct 10 2008 | Seagate Technology LLC | Magnetic stack with oxide to reduce switching current |
8218356, | Apr 21 2008 | Everspin Technologies, Inc | Spin-torque memory with unidirectional write scheme |
8223532, | Aug 07 2008 | Seagate Technology LLC | Magnetic field assisted STRAM cells |
8233319, | Jul 18 2008 | Seagate Technology LLC | Unipolar spin-transfer switching memory unit |
8258812, | Apr 20 2010 | Qualcomm Incorporated | Software programmable logic using spin transfer torque magnetoresistive devices |
8288749, | Jul 13 2009 | Seagate Technology LLC | Schottky diode switch and memory units containing the same |
8289746, | Oct 20 2008 | Seagate Technology LLC | MRAM diode array and access method |
8289756, | Nov 25 2008 | Seagate Technology LLC | Non volatile memory including stabilizing structures |
8294227, | Jul 13 2009 | Seagate Technology LLC | Magnetic stack having reference layers with orthogonal magnetization orientation directions |
8295072, | Oct 08 2008 | Seagate Technology LLC | Magnetic random access memory (MRAM) utilizing magnetic flip-flop structures |
8358153, | May 19 2010 | International Business Machines Corporation | Magnetic logic circuits formed with tapered magnetic wires |
8362534, | Sep 29 2008 | Seagate Technology LLC | Flux-closed STRAM with electronically reflective insulative spacer |
8400823, | Aug 26 2008 | Seagate Technology LLC | Memory with separate read and write paths |
8400825, | Aug 07 2008 | Seagate Technologies LLC | Magnetic field assisted stram cells |
8406042, | Aug 07 2008 | Seagate Technology LLC | Magnetic memory with strain-assisted exchange coupling switch |
8416615, | Jul 10 2008 | Everspin Technologies, Inc | Transmission gate-based spin-transfer torque memory unit |
8416619, | Oct 09 2008 | Seagate Technology LLC | Magnetic memory with phonon glass electron crystal material |
8422278, | Aug 26 2008 | Everspin Technologies, Inc | Memory with separate read and write paths |
8422279, | Nov 05 2008 | Seagate Technology LLC | STRAM with composite free magnetic element |
8426222, | Oct 10 2008 | Seagate Technology LLC | Magnetic stack with oxide to reduce switching current |
8440330, | Nov 11 2008 | Seagate Technology, LLC | Memory cell with radial barrier |
8456903, | Nov 12 2008 | Seagate Technology LLC | Magnetic memory with porous non-conductive current confinement layer |
8462543, | Sep 30 2008 | Seagate Technology LLC | Thermally assisted multi-bit MRAM |
8476723, | Aug 22 2007 | SAMSUNG SEMICONDUCTOR, INC | Magnetic element having low saturation magnetization |
8487390, | Oct 08 2008 | Seagate Technology LLC | Memory cell with stress-induced anisotropy |
8489801, | Mar 04 2009 | Seagate Technology LLC | Non-volatile memory with hybrid index tag array |
8508005, | Mar 03 2009 | Seagate Technology LLC | STRAM with compensation element and method of making the same |
8508980, | Nov 07 2008 | Everspin Technologies, Inc | Polarity dependent switch for resistive sense memory |
8508981, | Oct 30 2008 | Seagate Technology LLC | Apparatus for variable resistive memory punchthrough access method |
8514605, | Oct 20 2008 | Seagate Technology LLC | MRAM diode array and access method |
8514608, | Jul 07 2009 | Seagate Technology LLC | Bipolar select device for resistive sense memory |
8519495, | Feb 17 2009 | Seagate Technology LLC | Single line MRAM |
8519498, | Jul 13 2009 | Seagate Technology LLC | Magnetic stack having reference layers with orthogonal magnetization orientation directions |
8520432, | Aug 08 2008 | Seagate Technology LLC | Magnetic memory with separate read and write paths |
8531876, | Jul 18 2008 | Seagate Technology LLC | Unipolar spin-transfer switching memory unit |
8537607, | Jan 29 2009 | Seagate Technology LLC | Staggered magnetic tunnel junction |
8553454, | Mar 30 2009 | Seagate Technology LLC | Predictive thermal preconditioning and timing control for non-volatile memory cells |
8634223, | Oct 08 2008 | Seagate Technology LLC | Magnetic memory with asymmetric energy barrier |
8638597, | Dec 02 2008 | Seagate Technology LLC | Bit line charge accumulation sensing for resistive changing memory |
8648426, | Dec 17 2010 | Seagate Technology LLC | Tunneling transistors |
8650355, | Oct 15 2008 | Seagate Technology LLC | Non-volatile resistive sense memory on-chip cache |
8659852, | Apr 21 2008 | Seagate Technology LLC | Write-once magentic junction memory array |
8659939, | Apr 21 2008 | Everspin Technologies, Inc | Spin-torque memory with unidirectional write scheme |
8681539, | Nov 05 2008 | Seagate Technology LLC | STRAM with composite free magnetic element |
8681541, | Aug 08 2008 | Seagate Technology LLC | Magnetic memory with separate read and write paths |
8686524, | Oct 10 2008 | Seagate Technology LLC | Magnetic stack with oxide to reduce switching current |
8687413, | Oct 09 2008 | Seagate Technology LLC | Magnetic memory with phonon glass electron crystal material |
8711608, | Aug 26 2008 | Everspin Technologies, Inc | Memory with separate read and write paths |
8750036, | Jul 18 2008 | Seagate Technology, LLC | Unipolar spin-transfer switching memory unit |
8982613, | Jun 17 2013 | New York University | Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates |
9030867, | Oct 20 2008 | Seagate Technology LLC | Bipolar CMOS select device for resistive sense memory |
9041083, | Sep 29 2008 | Seagate Technology LLC | Flux-closed STRAM with electronically reflective insulative spacer |
Patent | Priority | Assignee | Title |
6774391, | Oct 25 1999 | Cambridge University Technical Svcs. | Magnetic logic element |
6914807, | Mar 29 2002 | Kioxia Corporation | Magnetic logic element and magnetic logic element array |
20030227807, | |||
20050128801, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 16 2004 | Grandis, Inc. | (assignment on the face of the patent) | ||||
Jun 16 2004 | PAKALA, MAHENDRA | GRANDIS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015486 | 0216 | |
Jun 16 2004 | HUAI, YIMING | GRANDIS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015486 | 0216 | |
Feb 24 2016 | GRANDIS, INC | SAMSUNG SEMICONDUCTOR INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037958 | 0728 |
Date | Maintenance Fee Events |
Dec 14 2009 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Mar 01 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 28 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 24 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 29 2009 | 4 years fee payment window open |
Mar 01 2010 | 6 months grace period start (w surcharge) |
Aug 29 2010 | patent expiry (for year 4) |
Aug 29 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 29 2013 | 8 years fee payment window open |
Mar 01 2014 | 6 months grace period start (w surcharge) |
Aug 29 2014 | patent expiry (for year 8) |
Aug 29 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 29 2017 | 12 years fee payment window open |
Mar 01 2018 | 6 months grace period start (w surcharge) |
Aug 29 2018 | patent expiry (for year 12) |
Aug 29 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |