An apparatus for bracing a plurality of vertebrae of the human spine has at least two pedicle screws, each having an annular head with an opening therewithin and including a slot therewithin. Each slot extends into the corresponding opening and includes internal threaded portions. A securing screw to be screwed in each slot is provided. A relatively stiff threaded rod is also provided and is to be inserted into the opening in the head of each of the pedicle screws and to be secured by the securing screws. Adjusting nuts are screwed on the rod and at least one cooperates with each head.

Patent
   7128743
Priority
Mar 02 1992
Filed
Jan 10 2003
Issued
Oct 31 2006
Expiry
Apr 30 2014
Extension
424 days
Assg.orig
Entity
Large
241
30
EXPIRED
1. A method for fixing a spinal rod with respect to a fastener in the spine having a head portion and a body portion comprising:
providing a cage having an interior cavity including a first portion and a second portion, the first portion having an opening to receive the body portion of the fastener, the second portion of the cage having an opening to receive the spinal rod;
inserting the body portion of the fastener through the opening in the cage first portion;
attaching the fastener to the spine;
placing the spinal rod in the opening in the cage second portion;
inserting a locking member in the second cage portion after said rod is placed therein;
moving the locking member towards said first cage portion; and
securing the fastener in the first cage portion by the action of said locking member on said rod and by the resultant action of said rod on said head portion.
19. A method for securing a spinal rod to vertebra comprising:
placing a cage on a securing member, said cage having an interior with a spinal rod receiving portion and a seat portion for receiving a part-spherical head portion of said securing member;
attaching a bone engaging portion of said securing member to the vertebra with the said part-spherical head portion of said securing member rotatably engaging said seat portion of said cage for angular movement of said securing member with respect to a longitudinal axis of said cage,
thereafter placing the spinal rod into said spinal rod receiving portion of said cage;
inserting a locking member into said spinal rod receiving portion of said cage at a location in said interior of said cage where said spinal rod is located between said locking member and said seat portion of said cage;
moving the spinal rod in a direction along said longitudinal axis of said cage towards said seat portion of said cage into engagement with the head portion of the said securing member by movement of said locking member towards said seat portion of said cage.
12. A method of securing a spinal rod to vertebral bodies of the vertebrae, comprising:
providing a spinal rod;
providing a fastener having a head portion and a body portion;
providing a cage having an interior cavity including a first portion and a second portion and a longitudinal axis, the first portion having an opening along the longitudinal axis to receive the body portion of the fastener and a seat for receiving the head portion of the fastener, the second portion of the cage having a rod passage to receive the spinal rod;
providing a securing member configured to be arranged in the second portion of the cage above the rod and being movable along the longitudinal axis;
attaching the fastener to the vertebral body while allowing the cage can be pivoted relative to the fastener in a limited angle;
positioning the cage with respect to the body portion of the fastener after the fastener is attached to the vertebral body;
placing the spinal rod in the rod passage of the second portion;
arranging the securing member in the second portion of the cage; and
securing the assembly of the cage, fastener and spinal rod by moving the securing member along the longitudinal axis and exerting a force on the rod and from the rod to the head portion of the fastener forcing the head portion against the seat of the cage.
2. The method as set forth in claim 1, wherein the head portion of the fastener has a curved surface.
3. The method as set forth in claim 2, wherein the first portion of the cage has a curved seat for receiving the curved surface of the head portion of the fastener.
4. The method as set forth in claim 1, wherein the spinal rod directly contacts the fastener head by the action of the locking member.
5. The method as set forth in claim 1, wherein said second portion of the cage is threaded.
6. The method as set forth in claim 5, wherein the locking member has a screw thread for engaging the threaded portion of the second cage portion.
7. The method as set forth in claim 1, wherein the body of the fastener is a threaded shaft having a longitudinal axis.
8. The method as set forth in claim 7, wherein the spinal rod extends in a direction transverse to the longitudinal axis of said threaded shaft.
9. The method as set forth in claim 1, wherein the cage has a longitudinal axis through said opening and wherein said body has a longitudinal axis wherein said locking member fixes the orientation of said fastener and the longitudinal axis of the cage by the action of the locking member on the spinal rod.
10. The method as set forth in claim 9, wherein the locking member contacts said rod and said rod contacts the head portion to fix the longitudinal axis at said orientation.
11. The method as set forth in claim 1 wherein the cage has a longitudinal axis extending between said first and second cage portions and the locking member acts against said spinal rod by movement in a direction along said longitudinal axis.
13. The method as set forth in claim 12, wherein the head portion has a curved surface that cooperates with the seat of the cage.
14. The method as set forth in claim 13, wherein the seat of the cage is curved for receiving the curved surface of the head portion.
15. The method as set forth in claim 12, wherein the spinal rod directly contacts the head portion of the fastener as the securing member is moved.
16. The method as set forth in claim 12, wherein said second portion of the cage is threaded and the securing member is threaded for engaging the threads on the first portion of the cage.
17. The method as set forth in claim 12, wherein the body of the fastener is a threaded shaft having a longitudinal axis.
18. The method as set forth in claim 17, wherein the spinal rod extends in a direction transverse to the longitudinal axis of said threaded shaft.
20. The method as set forth in claim 19 further comprising positioning said cage seat portion with respect to said securing member head portion prior to moving the spinal rod into engagement with the head portion of the fastener.
21. The method as set forth in claim 19 further comprising preventing movement of said cage with respect to said securing member by the engagement of said spinal rod and said head portion of the fastener.

This application is a continuation of U.S. Ser. No. 09/846,819 filed on May 1, 2001, now U.S. Pat. 6,537,276, which is a continuation of U.S. Ser. No. 09/495,261 filed Jan. 31, 2000, now U.S. Pat. No. 6,261,287 B1 which is a continuation of U.S. Ser. No. 08/839,540, filed Apr. 14, 1997, now U.S. Pat. No. 6,090,110 which is a continuation of U.S. Ser. No. 08/384,639, filed Feb. 6, 1995 abandoned, which is a continuation of U.S. Ser. No. 08/025,196 filed Mar. 2, 1993, now abandoned.

The present invention relates to an apparatus for bracing a plurality of vertebrae of the human spine.

Known supporting means operate with so-called lamina hooks which are disposed on a threaded rod. A compressing means is disclosed in British patent 2 131 300. A distracting means is disclosed in U.S. Pat. No. 4,382,438. The threaded rod bridges a plurality of vertebras and is not suited to act on vertebras which are disposed between the lamina hooks. Before using the supporting means a distraction or, respectively, compression has to be provided by means of an additional device.

German 90 06 646 U1 discloses an apparatus in which a lamina hook is replaced by a clamp-shaped holding member having a pair of legs of which one can be bent with respect to the other. Thereby the giapophysis of the vertebras may be used as anchoring points for the compressing and distracting apparatus.

German 88 02 112 U1 teaches a supporting device for the human spine, according to which the so-called pedicle screws are screwed in the pedicle body of the vertebras. The pedicle screws cooperate with tensioning means which bridge across one or more vertebrae to introduce forces between the vertebrae. The known device affords a primary stabilization of the vertebrae with respect to all degrees of freedom. However, when a number of vertebrae of a non-traumatic spine for example, are to be repositioned, separate means necessary to perform the reposition before the known supporting device may be effectively used.

WO 91/01691 discloses an apparatus for bracing vertebras of the human spine, comprising pedicle screws having slotted heads to receive a rod. The legs of the slotted screw heads include an outer thread on which a nut is screwed which contacts the rod to fix a predetermined position.

EP 0 443 892 discloses a similar device comprising a pedicle screw, the slotted head thereof including internal threaded portions for receiving a fixing screw which is brought into engagement with a serrated or similarly roughened rod to fix the relative position of the rod and the individual pedicle screw. A ring disposed around the head of a pedicle screw is provided so that the legs of the screw head do not spread apart while fixing the rod, as otherwise the engagement between the fixing screw and the screw head may be lost. A similar apparatus is disclosed in WO 90/09156.

Again, the devices last mentioned require separate means for repositioning, thus being suited to maintain a repositioned condition, but not suited to perform repositioning.

It is an object of the present invention to provide an apparatus which is suited to reposition the vertebrae of the human spine as well as to support the vertebrae in the repositioned position thereafter.

The objects are solved by the apparatus of the invention.

According to the invention, the apparatus uses a threaded rod (i.e., a distracting rod) in combination with lamina hooks. The thread of the rod, however, is not only used to fix the pedicle screws, but further is used to reposition the vertebrae in that an adjusting nut sitting on the threaded rod is turned with respect to the head of the pedicle screw and thus the vertebra has obtained the desired position. By means of the apparatus according to the invention a spine portion is not only distracted or compressed, but individual vertebrae can be effectively repositioned with respect to each other. To this end the threaded rod is designed to be relatively stiff and has a diameter between 7 to 8 mm, for example. On the other hand the rod must be bent to be implanted close to the spine along a bent spine portion. This is facilitated by the design of the pedicle screw heads having slots for receiving the threaded rod. Whereas the screw in the pedicle screw head according to EP 0 443 892, for example, axially fixes the rod, the securing screw of the present invention is merely used to prevent a deflection of the rod out of the receiving slot.

After resetting, the adjusting nut must be fixed on the threaded rod. This can be obtained by means of a suitable counter-nut. Still further, it is possible, to provide the adjusting nut and the front faces of the pedicle screw head with a rotary safety means in form of a toothing or another irregularity cooperating in a clamping fashion. In both cases the nuts are merely fixed by a frictional force. According to a further embodiment of the invention, however, the head of the pedicle screw has a width smaller than the diameter of the securing screw, whereas at least one front face of the adjusting nut has a recess cooperating with the securing screw. Preferably, the adjusting nut includes a plurality of peripherally spaced indentations, wherein the final rotary position of the nut is such that the securing screw cooperates with the indentation. This affords a positive locking of the adjusting nut resulting in a precise rotary locking which cannot be loosened.

The pedicle screws must take up relatively large forces. There is the danger that a pedicle screw breaks out of the bone, primarily when the available bony substance does not provide a sufficiently rigid seat in the vertebra. According to an embodiment of the invention, a mounting strap is attached to the shaft of the pedicle screw laterally extending therefrom, which strap includes an opening for receiving a spongiose screw. The strap has, for example, a pair of openings, wherein one opening receives the shaft of the pedicle screw, while the other opening disposed at the other end of the strap, for example, receives a spongiose screw which is screwed into the vertebra. In this manner, the pedicle screw is laterally stabilized and can receive substantial forces. According to an alternate embodiment of the invention, a mounting strap may be provided to the shaft of the pedicle screw extending therefrom, which strap has a blade or the like to be mounted in the vertebra. The blade is preferably integral with the strap. The blade is beaten into the vertebra wherein the strap may additionally include a hole for receiving a spongiose screw which is screwed into the vertebra. In some cases, a vertebra is displaced with respect to the adjacent vertebra. When the pedicle screw is completely screwed in, it cannot be connected any more with the threaded rod. To accomplish a connection, the pedicle screw is partly screwed into the vertebra bone. According to an embodiment of the invention, the head of the pedicle screw is then rotatably mounted on the screw shaft so that by rotating the shaft the vertebra can be pulled up to the threaded rod for resetting. Preferably the shaft includes tool engaging faces adjacent the head to rotate the shaft of the screw in the desired manner.

In case of very specially displaced individual vertebrae, not even the features referred to above are sufficient. According to a further embodiment of the invention, the upper end of the pedicle screw shaft is ball-shaped, while the pedicle screw head is defined by a ball-engaging cage including a slot for the rod. The cage can be arbitrarily positioned with respect to the shaft of the screw, but can exert a tensioning force to the screw shaft when being screwed in the vertebra. According to both embodiments just referred to, the threaded rod is inserted through a slot of the pedicle screw head, wherein a securing screw referred to several times prevents the rod from sliding out of the slot. Alternatively a closed passage may be provided in the head of the pedicle screw as it is known per se.

Instead of or in addition to the pedicle screw the apparatus of the present invention provides a hook cooperating with a lamina of a vertebra. Those lamina hooks are generally known. According to the invention, however, the lamina hook is provided with a slotted receiving portion to insert the threaded rod. The slot has threaded portions again to secure the rod in the receiving slot.

Preferred embodiments of the invention will now be described by way of example with reference to the accompanying drawing.

FIG. 1 schematically shows an apparatus according to the invention to be used as a distracting system,

FIG. 2 schematically shows an apparatus according to the invention used as a compressing system,

FIG. 3 shows a pedicle screw for the apparatuses according to FIGS. 1 and 2,

FIG. 4 shows the pedicle screw of FIG. 3 cooperating with a threaded rod,

FIG. 5 schematically shows a side view of a further embodiment of a pedicle screw for the apparatuses of FIGS. 1 and 2,

FIG. 6 shows a side view of the pedicle screw of FIG. 5 rotated about 90°,

FIG. 7 shows a plain view of the pedicle screw of FIG. 5,

FIG. 8 shows a side view of an adjusting nut of the apparatus of FIGS. 1 and 2,

FIG. 9 shows a stabilizing strap for the apparatus of FIGS. 1 and 2,

FIG. 10 shows a further embodiment of a stabilizing strap of the apparatus of FIGS. 1 and 2,

FIG. 11 shows a section of a lamina hook for the apparatus of FIGS. 1 and 2,

FIG. 12 shows a plain view of the hook of FIG. 11,

FIG. 13 shows a side view of a further embodiment of a pedicle screw for an apparatus according to the invention,

FIG. 14 shows a side view of the pedicle screw of FIG. 13 turned about 90°,

FIG. 15 shows a side view partly in section of a further embodiment of a pedicle screw for an apparatus according to the invention and

FIG. 16 shows a side view of the pedicle screw of FIG. 15 turned around 90°.

FIG. 1 shows a bent spine portion 10 wherein the individual vertebras shall be distracted by means of a distracting system 12. The system comprises a relatively stiff threaded rod 14 having a diameter of 6 to 9 mm, preferably 7 to 8 mm. It cooperates with an individual pedicle screw 16 screwed in the vertebras. Details of the screws are shown in the following figures. The threaded rod 14 is received in slots of the pedicle screw heads 16 and a plurality of adjusting nuts 18 are disposed on the rod 14, at least one nut each for a pedicle screw 16. Stabilizing latches 20 cooperate with the pedicle screws, which latches include a hole 22 in a distance from the pedicle screw to receive a spongiose screw screwed in the vertebra. By means of the adjusting nut 18 the vertebrae of the portion 10 may be thus adjusted to accomplish a distraction.

The spine portion 30 shown in FIG. 2 comprises a compressing means including components identical with those shown in the system 12 so that identical components carry identical reference numerals. To reduce the bending of the spine portion 30 a tension force must be exerted on the vertebras to straighten the bent threaded rod 14. This is accomplished by adjusting the individual pedicle screws 16 as described in FIG. 1. In the following the components of the system referred to are described in more detail.

FIG. 3 shows a pedicle screw 16a having a shaft 32 and an annular head 34. The head 34 includes a slot 36 in which the rod 14 is inserted. A securing screw 38a cooperating with threaded portions in the slot 36 holds the threaded rod 14 in the slot 36. FIG. 4 shows adjusting nuts 18a located on either side of the head 34 to displace the screw 16a along the rod 14.

In the embodiment of FIGS. 5 and 6 the pedicle screw 16b has a relatively narrow head 34b so that the securing screw 38b laterally projects. This is shown by the dashed line in FIG. 7. When an adjusting nut 40 according to FIG. 8 is used, which nut is provided with indentations 42 on the opposite front faces thereof, the nut 40 can be secured to the rod 14 when an indentation 42 of the screw 28b cooperates with the adjusting nut 38b.

FIG. 9 shows a mounting strap. The plate-shaped strap 20 includes a first hole 44 receiving the shaft of a pedicle screw. A second hole 22 receives a spongiose screw as mentioned before.

FIG. 10 shows an alternate embodiment 20a of a stabilizing latch, again comprising a hole 44a for a pedicle screw and a hole 22a located substantially in the center for receiving a spongiose screw. FIG. 10 further shows a blade 46 integrally shaped on the end opposite the hole 44a which blade is driven home in the vertebra.

FIGS. 11 and 12 show a lamina hook 50 comprising a hook portion 52 and a receiving portion 54 including a slot 56. The slot 56 receives a threaded rod such as the rod 14 shown in FIGS. 1 and 2. Threaded portions as indicated at 58 in FIG. 11 are provided inside the slot 56 to receive a securing screw not shown to hold the rod in the slot 56. The position of the rod in the slot 56 is determined by the position of the securing screw not shown, wherein a relative position between the hook 50 and the rod is possible to a limited extent.

FIGS. 13 and 14 show a pedicle screw 16c comprising a shaft 32c and an annularly closed head 34b through which a rod 14 extends. A fixing screw 60 in the head 34b is used to fix the threaded rod 14. However, adjusting nuts may be used as mentioned before. According to the embodiment of FIGS. 13, 14, the shaft 32c is rotatably mounted in the head 34b. Accordingly, a circular blind bore 62 holds a ring 64 cooperating with an annular groove 66 in the shaft 32. Tool faces 68 facilitate a rotation of the shaft 32c relative to the head 34c when it fixedly sits on the rod 14 for example. It should be understood that the head 34c may provide a slot as shown in FIGS. 3 to 7 for example.

In the embodiment of FIGS. 15 and 16 a pedicle screw 16d is provided comprising a shaft 32d which upper end is formed as a ball 70. A cage 72 cooperates with the ball, the cage further having a passage 74 to receive a threaded rod 14. Furthermore, the cage 72 has threaded portions to receive a securing screw 38d. This allows to rotate the shaft 32, wherein tool faces 68d are provided. Furthermore, the shaft 32d may be pivoted relative to the cage 72 in a limited angle.

Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Metz-Stavenhagen, Peter

Patent Priority Assignee Title
10039577, Nov 23 2004 Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
10039578, Dec 16 2003 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
10064688, Mar 23 2006 Cilag GmbH International Surgical system with selectively articulatable end effector
10076361, Feb 22 2005 NuVasive, Inc Polyaxial bone screw with spherical capture, compression and alignment and retention structures
10098666, May 27 2011 DePuy Synthes Products, Inc. Minimally invasive spinal fixation system including vertebral alignment features
10105163, Apr 15 2009 DEPUY SYNTHES PRODUCTS, INC Revision connector for spinal constructs
10117652, Mar 28 2012 Cilag GmbH International End effector comprising a tissue thickness compensator and progressively released attachment members
10136923, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
10154859, Sep 29 2008 DePuy Synthes Products, Inc. Polyaxial bottom-loading screw and rod assembly
10182844, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
10194951, May 10 2005 NuVasive, Inc Polyaxial bone anchor with compound articulation and pop-on shank
10258382, Jan 18 2007 Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
10299839, Dec 16 2003 Medos International Sárl Percutaneous access devices and bone anchor assemblies
10342581, Nov 16 2011 K2M, Inc. System and method for spinal correction
10357287, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
10363070, Nov 02 2010 JACKSON, ROGER P Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers
10383660, May 01 2007 Soft stabilization assemblies with pretensioned cords
10405892, Nov 03 2008 DePuy Synthes Products, Inc. Uni-planer bone fixation assembly
10426523, Jun 06 2007 K2M, Inc. Medical device and method to correct deformity
10441325, Apr 11 2006 DePuy Synthes Products, Inc. Minimally invasive fixation system
10512490, Aug 03 2004 Albany Medical College; K2M, Inc. Device and method for correcting a spinal deformity
10543107, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10548740, Oct 25 2016 Devices and methods for vertebral bone realignment
10575961, Sep 23 2011 Spinal fixation devices and methods of use
10595908, Nov 21 2005 DePuy Sythes Products, Inc. Polaxial bone anchors with increased angulation
10610380, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10675062, Jun 03 2011 K2M, Inc. Spinal correction system actuators
10695105, Aug 28 2012 Spinal fixation devices and methods of use
10702311, Nov 16 2011 K2M, Inc. Spinal correction and secondary stabilization
10709479, Sep 29 2008 DePuy Synthes Products, Inc. Polyaxial bottom-loading screw and rod assembly
10729469, Jan 09 2006 Flexible spinal stabilization assembly with spacer having off-axis core member
10736669, Sep 15 2009 K2M, Inc. Growth modulation system
10744000, Oct 25 2016 Devices and methods for vertebral bone realignment
10792074, Jan 22 2007 Pivotal bone anchor assemly with twist-in-place friction fit insert
10842536, Nov 11 2008 K2M, Inc. Growth directed vertebral fixation system with distractible connector(s) and apical control
10857003, Oct 14 2015 Devices and methods for vertebral stabilization
10857004, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10888360, Apr 23 2010 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices, and related methods
10898234, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
10918498, Nov 24 2004 Devices and methods for inter-vertebral orthopedic device placement
10925646, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
10945766, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
10945861, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10973648, Oct 25 2016 Devices and methods for vertebral bone realignment
10993739, May 20 2009 DePuy Synthes Products, Inc. Patient-mounted retraction
11006978, Jun 17 2009 DePuy Synthes Products, Inc. Revision connector for spinal constructs
11006982, Feb 22 2012 Spinous process fixation devices and methods of use
11013538, Nov 16 2011 K2M, Inc. System and method for spinal correction
11020152, Apr 15 2009 DEPUY SYNTHES PRODUCTS, INC Revision connector for spinal constructs
11058548, Oct 25 2016 Samy, Abdou Devices and methods for vertebral bone realignment
11096799, Nov 24 2004 Devices and methods for inter-vertebral orthopedic device placement
11129648, Sep 12 2008 DePuy Synthes Products, Inc. Spinal stabilizing and guiding fixation system
11134992, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
11154329, Mar 26 2009 K2M, Inc. Semi-constrained anchoring system
11166751, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
11173040, Oct 22 2012 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
11179248, Oct 02 2018 Samy, Abdou Devices and methods for spinal implantation
11246628, Jun 06 2007 K2M, Inc. Medical device and method to correct deformity
11246718, Oct 14 2015 Devices and methods for vertebral stabilization
11259935, Oct 25 2016 Devices and methods for vertebral bone realignment
11324608, Sep 23 2011 Spinal fixation devices and methods of use
11357550, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
11389213, Apr 23 2010 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices, and related methods
11389214, Nov 23 2004 Spinal fixation tool set and method
11419642, Dec 16 2003 MEDOS INTERNATIONAL SARL Percutaneous access devices and bone anchor assemblies
11426216, Dec 16 2003 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
11432850, Nov 21 2005 DePuy Synthes Products, Inc. Polyaxial bone anchors with increased angulation
11484348, Nov 03 2008 DePuy Synthes Products, Inc. Uni-planer bone fixation assembly
11517449, Sep 23 2011 Spinal fixation devices and methods of use
11559336, Aug 28 2012 Spinal fixation devices and methods of use
11612417, Aug 20 2010 K2M, Inc. Spinal fixation system
11752008, Oct 25 2016 Devices and methods for vertebral bone realignment
11812998, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
11819247, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
11839413, Feb 22 2012 Spinous process fixation devices and methods of use
11890037, Sep 12 2008 DePuy Synthes Products, Inc. Spinal stabilizing and guiding fixation system
7628799, Aug 23 2005 AESCULAP AG & CO KG Rod to rod connector
7658753, Aug 03 2004 K2M, INC Device and method for correcting a spinal deformity
7708765, Aug 03 2004 K2M, INC Spine stabilization device and method
7722652, Jan 27 2006 Warsaw Orthopedic, Inc Pivoting joints for spinal implants including designed resistance to motion and methods of use
7744632, Dec 20 2006 Aesculap Implant Systems, Inc. Rod to rod connector
7763057, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Biased angle polyaxial pedicle screw assembly
7789901, Oct 11 2007 Zimmer GmbH Bone anchor system
7819902, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Medialised rod pedicle screw assembly
7833252, Jan 27 2006 Warsaw Orthopedic, Inc. Pivoting joints for spinal implants including designed resistance to motion and methods of use
7862594, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Polyaxial pedicle screw assembly
7875065, Nov 23 2004 Polyaxial bone screw with multi-part shank retainer and pressure insert
7892257, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Spring loaded, load sharing polyaxial pedicle screw assembly and method
7942909, Aug 13 2009 Ortho Innovations, LLC Thread-thru polyaxial pedicle screw system
7942910, May 16 2007 Ortho Innovations, LLC Polyaxial bone screw
7942911, May 16 2007 Ortho Innovations, LLC Polyaxial bone screw
7947065, Nov 14 2008 Ortho Innovations, LLC Locking polyaxial ball and socket fastener
7951173, May 16 2007 Ortho Innovations, LLC Pedicle screw implant system
7955363, Apr 18 2002 AESCULAP IMPANT SYSTEMS, LLC; AESCULAP IMPLANT SYSTEMS, LLC Screw and rod fixation assembly and device
7967850, Jun 18 2003 Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
8002801, Aug 03 2004 K2M, INC Adjustable spinal implant device and method
8016860, Aug 03 2004 K2M, INC Device and method for correcting a spinal deformity
8043345, Aug 03 2004 K2M, INC Device and method for correcting a spinal deformity
8057519, Jan 27 2006 Warsaw Orthopedic, Inc. Multi-axial screw assembly
8062340, Aug 16 2006 PIONEER SURGICAL TECHNOLOGY INC Spinal rod anchor device and method
8066739, Feb 27 2004 NuVasive, Inc Tool system for dynamic spinal implants
8075590, Feb 05 2004 PIONEER SURGICAL TECHNOLOGY, INC Low profile spinal fixation system
8075603, Nov 14 2008 Ortho Innovations, LLC Locking polyaxial ball and socket fastener
8096996, Mar 20 2007 Exactech, Inc Rod reducer
8100915, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8100946, Nov 21 2005 Synthes USA, LLC Polyaxial bone anchors with increased angulation
8105368, Sep 30 2005 Dynamic stabilization connecting member with slitted core and outer sleeve
8114158, Aug 03 2004 K2M, INC Facet device and method
8137386, Aug 28 2003 Polyaxial bone screw apparatus
8152810, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
8162948, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8162979, Jun 06 2007 K2M, INC Medical device and method to correct deformity
8167911, Jul 20 2005 ZIMMER BIOMET SPINE, INC Apparatus for connecting a longitudinal member to a bone portion
8197518, May 16 2007 Ortho Innovations, LLC Thread-thru polyaxial pedicle screw system
8221472, Apr 25 2005 Depuy Synthes Products, LLC Bone anchor with locking cap and method of spinal fixation
8226690, Jul 22 2005 The Board of Trustees of the Leland Stanford Junior University Systems and methods for stabilization of bone structures
8241340, Oct 11 2007 Zimmer GmbH Bone anchor system
8241341, Mar 20 2009 LOAN ADMIN CO LLC Pedicle screws and methods of using the same
8257396, Jun 18 2003 Polyaxial bone screw with shank-retainer inset capture
8257398, Jun 18 2003 Polyaxial bone screw with cam capture
8267969, Oct 20 2004 Choice Spine, LP Screw systems and methods for use in stabilization of bone structures
8273089, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
8292892, May 13 2009 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8308773, Dec 21 2005 MEDYSSEY CO , LTD Pedicle screw
8308782, Nov 23 2004 Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
8348952, Jan 26 2006 DePuy International Ltd System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
8353932, Sep 30 2005 Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
8357182, Mar 26 2009 K2M, INC Alignment system with longitudinal support features
8357183, Mar 26 2009 K2M, INC Semi-constrained anchoring system
8366745, May 01 2007 Dynamic stabilization assembly having pre-compressed spacers with differential displacements
8366747, Oct 20 2004 ZIMMER BIOMET SPINE, INC Apparatus for connecting a longitudinal member to a bone portion
8377067, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8377102, Jun 18 2003 Polyaxial bone anchor with spline capture connection and lower pressure insert
8394133, Feb 27 2004 Dynamic fixation assemblies with inner core and outer coil-like member
8398682, Jun 18 2003 JACKSON, ROGER P AN INDIVIDUAL Polyaxial bone screw assembly
8409255, Apr 18 2002 AESCULAP IMPLANT SYSTEMS, LLC Screw and rod fixation assembly and device
8414614, Oct 22 2005 DePuy International Ltd Implant kit for supporting a spinal column
8425563, Jan 13 2006 DePuy International Ltd Spinal rod support kit
8430914, Oct 24 2007 Depuy Synthes Products, LLC Assembly for orthopaedic surgery
8439954, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Spring-loaded, load sharing polyaxial pedicle screw assembly and method
8444681, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
8465530, Nov 14 2008 Ortho Innovations, LLC Locking polyaxial ball and socket fastener
8475498, Jan 18 2007 Dynamic stabilization connecting member with cord connection
8506601, Oct 14 2008 PIONEER SURGICAL TECHNOLOGY, INC Low profile dual locking fixation system and offset anchor member
8518086, Mar 26 2009 K2M, INC Semi-constrained anchoring system
8523865, Jul 22 2005 Choice Spine, LP Tissue splitter
8535318, Apr 23 2010 DEPUY SYNTHES PRODUCTS, INC Minimally invasive instrument set, devices and related methods
8545538, Dec 19 2005 Devices and methods for inter-vertebral orthopedic device placement
8551142, Oct 20 2004 Choice Spine, LP Methods for stabilization of bone structures
8556938, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
8591515, Nov 23 2004 Spinal fixation tool set and method
8591560, Sep 30 2005 Dynamic stabilization connecting member with elastic core and outer sleeve
8613760, Sep 30 2005 Dynamic stabilization connecting member with slitted core and outer sleeve
8636769, Jun 18 2003 Polyaxial bone screw with shank-retainer insert capture
8636778, Feb 11 2009 XTANT MEDICAL HOLDINGS, INC Wide angulation coupling members for bone fixation system
8652178, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Polyaxial pedicle screw assembly and method
8663298, Jul 20 2007 DEPUY SYNTHES PRODUCTS, INC Polyaxial bone fixation element
8679162, Nov 21 2005 Depuy Synthes Products, LLC Polyaxial bone anchors with increased angulation
8696711, Sep 30 2005 Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
8740946, Apr 25 2005 Depuy Synthes Products, LLC Bone anchor with locking cap and method of spinal fixation
8771319, Apr 16 2012 AESCULAP IMPLANT SYSTEMS, LLC Rod to rod cross connector
8814911, Jun 18 2003 Polyaxial bone screw with cam connection and lock and release insert
8814913, Sep 06 2002 Helical guide and advancement flange with break-off extensions
8828056, Apr 16 2012 AESCULAP IMPLANT SYSTEMS, LLC Rod to rod cross connector
8828058, Nov 11 2008 K2M, INC Growth directed vertebral fixation system with distractible connector(s) and apical control
8840652, Nov 23 2004 Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
8845649, Sep 24 2004 Spinal fixation tool set and method for rod reduction and fastener insertion
8882809, Mar 20 2009 LOAN ADMIN CO LLC Pedicle screws and methods of using the same
8882817, Aug 20 2010 K2M, INC Spinal fixation system
8894657, Feb 27 2004 NuVasive, Inc Tool system for dynamic spinal implants
8911479, Jan 10 2012 JACKSON, ROGER P Multi-start closures for open implants
8920472, Nov 16 2011 K2M, INC Spinal correction and secondary stabilization
8936623, Jun 18 2003 Polyaxial bone screw assembly
8979898, Feb 20 2013 K2M, INC Iliosacral polyaxial screw
8979904, May 01 2007 JACKSON, ROGER P Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
8998959, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
9011491, Aug 03 2004 K2M, INC Facet device and method
9050139, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
9055978, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
9113959, Nov 16 2011 K2M, INC Spinal correction and secondary stabilization
9131962, May 24 2011 Globus Medical, Inc Bone screw assembly
9144444, Jun 18 2003 Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
9168069, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
9168071, Sep 15 2009 K2M, INC Growth modulation system
9173681, Mar 26 2009 K2M, INC Alignment system with longitudinal support features
9198695, Aug 30 2010 ZIMMER BIOMET SPINE, INC Polyaxial pedicle screw
9211150, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
9216039, Feb 27 2004 NuVasive, Inc Dynamic spinal stabilization assemblies, tool set and method
9216041, Jun 15 2009 JACKSON, ROGER P Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
9241739, Sep 12 2008 DEPUY SYNTHES PRODUCTS, INC Spinal stabilizing and guiding fixation system
9254151, Mar 20 2009 LOAN ADMIN CO LLC Pedicle screws and methods of using the same
9282998, Sep 05 2008 DEPUY SYNTHES PRODUCTS, INC Bone fixation assembly
9314274, May 27 2011 DEPUY SYNTHES PRODUCTS, INC Minimally invasive spinal fixation system including vertebral alignment features
9320545, Nov 23 2004 Polyaxial bone screw with multi-part shank retainer and pressure insert
9320546, Sep 29 2008 DEPUY SYNTHES PRODUCTS, INC Polyaxial bottom-loading screw and rod assembly
9326796, Nov 03 2008 DEPUY SYNTHES PRODUCTS, INC Uni-planer bone fixation assembly
9333009, Jun 03 2011 K2M, INC Spinal correction system actuators
9358044, Mar 26 2009 K2M, INC Semi-constrained anchoring system
9393047, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
9393048, Feb 23 2010 K2M, INC Polyaxial bonescrew assembly
9393049, Aug 20 2010 K2M, INC Spinal fixation system
9402663, Apr 23 2010 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices and related methods
9408638, Jun 03 2011 K2M, Inc. Spinal correction system actuators
9414863, Feb 22 2005 Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
9439681, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
9439700, Apr 25 2005 DePuy Synthes Products, Inc. Bone anchor with locking cap and method of spinal fixation
9451987, Nov 16 2011 K2M, INC System and method for spinal correction
9451989, Jan 18 2007 Dynamic stabilization members with elastic and inelastic sections
9451997, Aug 03 2004 K2M, INC Facet device and method
9453526, Apr 30 2013 DEGEN MEDICAL, INC Bottom-loading anchor assembly
9468468, Nov 16 2011 K2M, INC Transverse connector for spinal stabilization system
9468469, Sep 17 2013 K2M, INC Transverse coupler adjuster spinal correction systems and methods
9468471, Sep 17 2013 K2M, INC Transverse coupler adjuster spinal correction systems and methods
9480517, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock
9498262, Apr 11 2006 DEPUY SYNTHES PRODUCTS, INC Minimally invasive fixation system
9504496, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
9504497, Feb 20 2013 K2M, Inc. Iliosacral polyaxial screw
9504498, Nov 21 2005 DEPUY SYNTHES PRODUCTS, INC Polyaxial bone anchors with increased angulation
9510862, Jun 17 2009 DEPUY SYNTHES PRODUCTS, INC Revision connector for spinal constructs
9510865, Nov 11 2008 K2M, INC Growth directed vertebral fixation system with distractible connector(s) and apical control
9554829, May 24 2011 Globus Medical, Inc. Bone screw assembly
9629669, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
9636148, Aug 30 2010 ZIMMER BIOMET SPINE, INC Polyaxial pedicle screw
9743957, Nov 10 2004 Polyaxial bone screw with shank articulation pressure insert and method
9757157, Nov 16 2011 K2M, Inc. System and method for spinal correction
9801666, Aug 03 2004 K2M, INC Device and method for correcting a spinal deformity
9808281, May 20 2009 DEPUY SYNTHES PRODUCTS, INC Patient-mounted retraction
9827017, Nov 16 2011 K2M, Inc. Spinal correction and secondary stabilization
9827022, Sep 15 2009 K2M, LLC Growth modulation system
9848917, Jun 06 2007 K2M, INC Medical device and method to correct deformity
9848918, Nov 21 2005 DePuy Synthes Products, Inc. Polyaxial bone anchors with increased angulation
9872710, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
9895168, Jun 03 2011 K2M, Inc. Spinal correction system actuators
9907574, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
9918745, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
9918751, Feb 27 2004 NuVasive, Inc Tool system for dynamic spinal implants
9936979, Apr 25 2005 DePuy Synthes Products, Inc. Bone anchor with locking cap and method of spinal fixation
9974571, Sep 12 2008 DePuy Synthes Products, Inc. Spinal stabilizing and guiding fixation system
9980753, Jun 15 2009 JACKSON, ROGER P pivotal anchor with snap-in-place insert having rotation blocking extensions
RE46431, Jun 18 2003 Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
RE47551, Feb 22 2005 NuVasive, Inc Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
Patent Priority Assignee Title
4047524, Apr 28 1975 Downs Surgical Limited Surgical implant spinal staple
4383438, Jun 02 1981 Baker Hughes Incorporated Fouling test apparatus
4805602, Nov 03 1986 EBI, LLC Transpedicular screw and rod system
4854304, Mar 19 1987 Oscobal AG Implant for the operative correction of spinal deformity
4946458, Apr 25 1986 Pedicle screw
4987892, Jan 30 1987 KRAG, MARTIN; POPE, MALCOLM, PHD Spinal fixation device
5042982, Jul 08 1987 Positioning device
5067955, Apr 13 1989 SOFAMOR DANEK GROUP, INC Vertebral implant for osteosynthesis device
5129388, Feb 09 1989 Stryker Corporation Device for supporting the spinal column
5176678, Mar 14 1991 Orthopaedic device with angularly adjustable anchor attachments to the vertebrae
5176680, Feb 08 1990 Stryker Corporation Device for the adjustable fixing of spinal osteosynthesis rods
5207678, Jul 20 1989 BIEDERMANN TECHNOLOGIES GMBH & CO KG Pedicle screw and receiver member therefore
5352224, Nov 29 1990 STRYKER TRAUMA GMBH, CORPORATION OF REPUBLIC OF GERMANY Correction implant for the human vertebral column
5360421, Aug 16 1993 Absorbent textile garment with bicomponent textile liner
5474555, Apr 26 1990 CROSS MEDICAL PRODUCTS, LLC Spinal implant system
DE2649042,
DE3722590,
DE3916198,
DE8915443,
EP284559,
EP443892,
EP452792,
EP468264,
FR2309199,
GB2131300,
WO9009156,
WO9101115,
WO9101691,
WO9116020,
WO9203100,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 02 1993METZ-STAVENHAGEN, PETERHowmedica GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0221770639 pdf
Nov 18 1999Howmedica GmbHStryker Trauma GmbHCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0221910358 pdf
Jan 10 2003Stryker Trauma GmbH(assignment on the face of the patent)
Date Maintenance Fee Events
Apr 30 2010M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
May 07 2010ASPN: Payor Number Assigned.
Jun 13 2014REM: Maintenance Fee Reminder Mailed.
Oct 31 2014EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 31 20094 years fee payment window open
May 01 20106 months grace period start (w surcharge)
Oct 31 2010patent expiry (for year 4)
Oct 31 20122 years to revive unintentionally abandoned end. (for year 4)
Oct 31 20138 years fee payment window open
May 01 20146 months grace period start (w surcharge)
Oct 31 2014patent expiry (for year 8)
Oct 31 20162 years to revive unintentionally abandoned end. (for year 8)
Oct 31 201712 years fee payment window open
May 01 20186 months grace period start (w surcharge)
Oct 31 2018patent expiry (for year 12)
Oct 31 20202 years to revive unintentionally abandoned end. (for year 12)