The present invention relates to composite core/shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core/shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule or specific binding substance-core/shell nanoparticle conjugates.
|
1. A method for preparing core/shell nanoparticles comprising the steps of:
(a) providing inner metal-containing nanoparticle cores;
(b) treating the inner metal-containing nanoparticle cores simultaneously with a solution comprising a gold salt and a solution comprising a reducing agent at 0° C. to produce a non-alloying gold shell surrounding the nanoparticle cores; and
(c) isolating the core/shell nanoparticles.
2. The method according to
6. The method of
7. The method of
|
This application is a divisional of U.S. application Ser. No. 10/034,451, filed Dec. 28, 2001, which claims the benefit of priority from U.S. Provisional application No. 60/293,861, filed May 25, 2001, which is incorporated by reference in its entirety.
The work reported in this application has been supported, in part, by NSF grant no. CHE-9871903; ARO grant no. DAAG55-97-1-0133, and AFOSR grant no. DURINT. Accordingly, the U.S. government may have some rights to the invention.
The present invention relates to core/shell nanoparticles, materials based on core/shell nanoparticles, kits containing core/shell nanoparticles, and methods of making and using core/shell nanoparticles for the detection of target molecules, including nucleic acids, peptides, and proteins. In particular, the present invention relates to specific binding substance-modified core/shell nanoparticles such as DNA-modified core/shell nanoparticles and their use for detecting target molecules such as nucleic acids.
In 1996, a method was reported for utilizing biomolecules, such as DNA, and their molecular recognition properties to guide the assembly of nanoparticle building blocks modified with complementary recognition elements into functional materials.1 These materials have found wide application in the development of highly sensitive and selective diagnostic methods for DNA.2 This material synthesis approach has been extended to a wide range of biomolecules, including peptides and proteins,3 and a modest collection of nanoparticles including gold and semiconductor quantum dots.4-9 In each case, when a new nanoparticle composition is designed, new modification methods must be developed for immobilizing biomolecules on the surface of the particles of interest. This approach has been extensively utilized but with limited success. The methods for modifying gold nanoparticles have now been optimized and generalized for a wide range of particle sizes and surface compositions, including spheres and rods.1,2,4,10 Gold particles are particularly easy to modify because they are often stabilized with a weakly binding layer of charged ligands (e.g. citrate) that can be replaced with molecules with chemical functionalities that bind more strongly (e.g. thiols, amines, and disulfides) to their surfaces than these ligands. The CdSe and CdS quantum dots have proven more difficult to modify because they have a surfactant layer that is very strongly bound to their surfaces and, consequently, difficult to displace.5 No successful routes have been developed for creating stable oligonucleotide conjugates with silver nanoparticles, primarily because they tend to chemically degrade under conditions used to effect DNA hybrization. A major advance would be to devise a method for designing particles with the physical properties of a chosen nanoparticle composition but the surface chemistry of gold. Herein, a low temperature method is provided for generating core/shell particles consisting of a silver core and a non-alloying gold shell that can be readily functionalized with oligonucleotides using the proven preparatory methods for pure gold particle oligonucleotide conjugates.2d Moreover, the novel nanoparticle composition can be used to access a colorimetric detection system distinct from the pure gold system.2a,2d
The present invention relates to composite core/shell nanoparticles, compositions and kits including these core/shell nanoparticles, and methods for preparing and using composite core/shell nanoparticles, particularly Ag/gold core/shell nanoparticles, for the detection of target molecules such as nucleic acids, proteins and the like. These Ag/gold core/shell nanoparticles were prepared by reduction of HAuCl4 by NaBH4 in the presence of Ag-nanoparticle “templates” and characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) microanalysis. Significantly, these particles do not alloy, yielding structures with the optical properties of silver and the surface chemistry and high stability of Au. Experimental and theoretical data support the structural characterization of these novel materials as silver cores (˜12 nm in diameter) coated with approximately one atomic monolayer of gold(˜3 Å). The core/shell nanoparticles may be further modified with alkanethiol-oligonucleotides forming structures that undergo reversible hybridization with complementary oligonucleotides to form extended nanoparticle network structures. By spotting aliquots of a solution containing the oligonucleotide-modified nanoparticles without and with DNA target on a reverse-phase alumina plate, a distinct colorimetric transition from yellow to dark brown can be observed by the naked eye. The optical properties of the dispersed and aggregated core/shell particles form a new colorimetric channel for nanoparticle based DNA detection.
Accordingly, one object of the invention is to provide straightforward method of preparing core/shell nanoparticles with the optical, and many of the physical, properties of silver but the stability of gold. The surfaces of these nanoparticles can be modified with a variety of moieties such as, for example, natural and synthetic polymers, molecules capable of selective molecular recognition including, but not limited to, nucleotides, nucleosides, poly- or oligonucleotides, proteins, peptides, carbohydrates, sugars, and haptens, thereby providing useful biorecognition properties to the nanoparticles.
Another object of the invention is to provide a general method for preparing core/shell particles with tailorable physical properties by virtue of choice of core, e.g., Fe3O4, Cu or Pt, but the surface chemistry and stability of the native, and oligonucleotide modified, pure gold particles.
Another object of the invention is to provide methods for detection of molecules capable of selective molecular recognition comprising use of core/shell nanoparticle probes. These methods comprise contacting the core/shell nanoparticle probes with one or a plurality of target molecules under conditions that allow for selective molecular recognition, and the detection of an optical change. The physical properties of the particular core/shell nanoparticle probes can allow for various additional steps in these methods such as, for example, inducing their migration through application of electrical or magnetic fields.
Another object of the invention is to provide nanomaterials based on the core/shell nanoparticles of the invention.
These and other objects of the invention will become apparent in light of the detailed description below.
In one aspect the present invention provides for core/shell nanoparticles, comprising a nanoparticle core and a gold shell. The core material can comprise any nanoparticle known to those of skill in the art including, but not limited to, metal, semiconductor, and magnetic nanoparticles. In a preferred embodiment, the core material is comprised of metal or magnetic nanoparticles including, but not limited to, Ag, Pt, Fe, Co, Ni, FePt, FeAu, Fe3O4, and Co3O4. Methods for preparing such nanoparticles are well known in the art. For example, see, e.g. Schmid, G. (ed.) Clusters and Colloids (VCH, Weinheim, 1994); Hayat, M. A. (ed.) Colloidal Gold: Principles, Methods, and Applications (Academic Press, San Diego, 1991); Massart, R., IEEE Taransactions On Magnetics, 17, 1247 (1981); Ahmadi, T. S. et al., Science, 272, 1924 (1996); Henglein, A. et al., J. Phys. Chem., 99, 14129 (1995); Curtis, A. C., et al., Angew. Chem. Int. Ed. Engl., 27, 1530 (1988).
In yet another aspect the present invention provides a method for preparation of non-alloying gold core/shell nanoparticles and product produced therefrom. The method of the invention comprises providing an inner nanoparticle core, treating the core simultaneously with a solution comprising a gold salt and a solution comprising a reducing agent, and isolating the core/shell nanoparticles. The method provides for the first time a non-alloying gold shell surrounding a nanoparticle core. These non-alloying gold core/shell nanoparticles exhibit surprising superior spectroscopic properties not found in conventional gold core/shell nanoparticles and can be functionalized with molecules such as nucleic acids and receptors, to produce nanoparticle conjugates that can be used for targeting and detecting target analytes such as nucleic acids, antigens, proteins, carbohydrates and other substances.
In practicing the method of the invention, the method can be performed at any temperature favorable in producing a non-alloying gold shell surrounding the core. Generally, the temperature depends on the choice of reaction solvent used to generate the gold shell. Suitable, but non-limiting, examples of reaction solvents include water, aqueous buffer solutions, oleic acid and trioctylphosphine oxide. In practicing this invention, trisodium citrate solution is preferred.
In practicing the method of the invention, the temperature generally ranges from about 0° C. to about 45° C. in water or aqueous reaction solutions. For organic solvents, the temperature generally ranges from about 130° C. to about 180° C. when oleic acid and trioctylphosphine oxide are used.
The gold salt can comprise any suitable gold salt including, but not limited to, HAuCl4, NaAuCl4, KAuCl4, or KAu(CN)2. In practicing the invention, the preferred gold salt is HAuCl4.
The reducing agent can comprise any suitable reducing agent capable of reducing the valency of the gold that comprises the gold salt solution including, but not limited to, NaBH4, ascorbic acid, NH2OH and N2H4. In practicing the invention, the preferred reducing agent is NaBH4.
In one aspect of the invention, the core/shell nanoparticles have specific binding substances bound to the gold shell surrounding the nanoparticle. The specific binding substance may be natural and synthetic nucleic acids, natural and synthetic polypeptides, antibodies, Fab and Fab′ antibody fragments, biotin, avidin and haptens such as digoxin. Those skilled in these arts will recognize a wide variety of specific binding substances that can be linked to the gold shell surrounding the nanoparticles.
In another aspect, the present invention provides for core/shell nanoparticle oligonucleotide conjugaies, comprising a nanoparticle core, a gold shell surrounding the nanoparticle, and an oligonucleotide attached to the gold surface of the core/shell nanoparticle. The size of the nanoparticles is preferably from about 5 nm to about 150 nm (mean diameter), more preferably from about 5 to about 50 nm, most preferably from about 10 to about 30 nm. Any suitable method for attaching oligonucleotides onto a gold surface may be used. A particularly preferred method for attaching oligonucleotides onto a gold surface is based on an aging process described in U.S. application Ser. No. 09/344,667, filed Jun. 25, 1999; Ser. No. 09/603,830, filed Jun. 26, 2000; Ser. No. 09/760,500, filed Jan. 12, 2001; Ser. No. 09/820,279, filed Mar. 28, 2001; Ser. No. 09/927,777, filed Aug. 10, 2001; and in International application nos. WO 98/04740, filed Jul. 21, 1997; WO 01/00876, filed Jun. 26, 2000; WO 01/51665, filed Jan. 12, 2001; WO 01/73123, filed Mar. 28, 2001, the disclosures which are incorporated by reference in their entirety. The aging process provides nanoparticle-oligonucleotide conjugates with unexpected enhanced stability and selectivity. The method comprises providing oligonucleotides preferably having covalently bound thereto a moiety comprising a functional group which can bind to the nanoparticles. The moieties and functional groups are those that allow for binding (i.e., by chemisorption or covalent bonding) of the oligonucleotides to nanoparticles. For instance, oligonucleotides having an alkanethiol, an alkanedisulfide or a cyclic disulfide covalently bound to their 5′ or 3′ ends can be used to bind the oligonucleotides to a variety of nanoparticles, including gold nanoparticles.
The oligonucleotides are contacted with the nanoparticles in water for a time sufficient to allow at least some of the oligonucleotides to bind to the nanoparticles by means of the functional groups. Such times can be determined empirically. For instance, it has been found that a time of about 12–24 hours gives good results. Other suitable conditions for binding of the oligonucleotides can also be determined empirically. For instance, a concentration of about 10–20 nM nanoparticles and incubation at room temperature gives good results.
Next, at least one salt is added to the water to form a salt solution. The salt can be any suitable water-soluble salt. For instance, the salt may be sodium chloride, magnesium chloride, potassium chloride, ammonium chloride, sodium acetate, ammonium acetate, a combination of two or more of these salts, or one of these salts in phosphate buffer. Preferably, the salt is added as a concentrated solution, but it could be added as a solid. The salt can be added to the water all at one time or the salt is added gradually over time. By “gradually over time” is meant that the salt is added in at least two portions at intervals spaced apart by a period of time. Suitable time intervals can be determined empirically.
The ionic strength of the salt solution must be sufficient to overcome at least partially the electrostatic repulsion of the oligonucleotides from each other and, either the electrostatic attraction of the negatively-charged oligonucleotides for positively-charged nanoparticles, or the electrostatic repulsion of the negatively-charged oligonucleotides from negatively-charged nanoparticles. Gradually reducing the electrostatic attraction and repulsion by adding the salt gradually over time has been found to give the highest surface density of oligonucleotides on the nanoparticles. Suitable ionic strengths can be determined empirically for each salt or combination of salts. A final concentration of sodium chloride of from about 0.1 M to about 1.0 M in phosphate buffer, preferably with the concentration of sodium chloride being increased gradually over time, has been found to give good results.
After adding the salt, the oligonucleotides and nanoparticles are incubated in the salt solution for an additional period of time sufficient to allow sufficient additional oligonucleotides to bind to the nanoparticles to produce the stable nanoparticle-oligonucleotide conjugates. As will be described in detail below, an increased surface density of the oligonucleotides on the nanoparticles has been found to stabilize the conjugates. The time of this incubation can be determined empirically. A total incubation time of about 24–48, preferably 40 hours, has been found to give good results (this is the total time of incubation; as noted above, the salt concentration can be increased gradually over this total time). This second period of incubation in the salt solution is referred to herein as the “aging” step. Other suitable conditions for this “aging” step can also be determined empirically. For instance, incubation at room temperature and pH 7.0 gives good results.
The conjugates produced by use of the “aging” step have been found to be considerably more stable than those produced without the “aging” step. As noted above, this increased stability is due to the increased density of the oligonucleotides on the surfaces of the nanoparticles which is achieved by the “aging” step. The surface density achieved by the “aging” step will depend on the size and type of nanoparticles and on the length, sequence and concentration of the oligonucleotides. A surface density adequate to make the nanoparticles stable and the conditions necessary to obtain it for a desired combination of nanoparticles and oligonucleotides can be determined empirically. Generally, a surface density of at least 10 picomoles/cm2 will be adequate to provide stable nanoparticle-oligonucleotide conjugates. Preferably, the surface density is at least 15 picomoles/cm2. Since the ability of the oligonucleotides of the conjugates to hybridize with nucleic acid and oligonucleotide targets can be diminished if the surface density is too great, the surface density is preferably no greater than about 35–40 picomoles/cm2.
As used herein, “stable” means that, for a period of at least six months after the conjugates are made, the nanoparticles remain dispersed, a majority of the oligonucleotides remain attached to the nanoparticles, and the oligonucleotides are able to hybridize with nucleic acid and oligonucleotide targets under standard conditions encountered in methods of detecting nucleic acid and methods of nanofabrication.
In yet a further aspect the invention provides methods for the detection of a target analytes such as nucleic acids comprising contacting the core/shell nanoparticle oligonucleotide conjugates of the instant invention with a target nucleic acid sequence under conditions that allow hybridization between at least a portion of the oligonucleotides bound to the nanoparticle and at least a portion of the target nucleic acid sequence. In addition, protein receptors and other specific binding pair members can be functionalized with oligonucleotides and immobilized onto oligonucleotide-modified nanoparticles to generate a new class of hybrid particles (nanoparticle-receptor conjugates) that exhibit the high stability of the oligonucleotide modified particles but with molecular recognition properties that are dictated by the protein receptor rather than DNA. Alternatively, one could functionalize a protein that has multiple receptor binding sites with receptor-modified oligonucleotides so that the protein receptor complex could be used as one of the building blocks, in place of one of the inorganic nanoparticles, in the original nanomaterials assembly scheme discussed above. The use of these novel nanoparticle-receptor conjugates in analyte detection strategies have been evaluated in a number of ways including identification of targets and screening for protein-protein interactions. For suitable hybridization conditions for nucleic acid detection, and methods for preparing nanoparticle-receptor conjugates are described in U.S. application Ser. No. 09/344,667, filed Jun. 25, 1999; Ser. No. 09/603,830, filed Jun. 26, 2000; Ser. No. 09/760,500, filed Jan. 12, 2001; Ser. No. 09/820,279, filed Mar. 28, 2001; Ser. No. 09/927,777, filed Aug. 10, 2001; and in International application nos. WO 98/04740, filed Jul. 21, 1997; WO 01/00876, filed Jun. 26, 2000; WO 01/51665, filed Jan. 12, 2001; WO 01/73123, filed Mar. 28, 2001, the disclosures which are incorporated by reference in their entirety. Once a core/shell nanoparticle conjugate of the invention binds to a target molecule, a change in the optical characteristics of the core/shell nanoparticle conjugates can be readily detected. In another embodiment the detection step is performed in the presence of an applied magnetic field which further enhances hybridization or binding of the nanoparticle conjugate with the target molecule such as a nucleic acid.
The invention further provides a method of nanofabrication based on the core-shell nanoparticle conjugates of the invention. Nanostructures and methods for prepare the materials from nanoparticles have been described in U.S. application Nos. 09/344,667, filed Jun. 25, 1999; 09/603,830, filed Jun. 26, 2000; 09/760,500, filed Jan. 12, 2001; Ser. No. 09/820,279, filed Mar. 28, 2001; Ser. No. 09/927,777, filed Aug. 10, 2001; and in International application nos. WO 98/04740, filed Jul. 21, 1997; WO 01/00876, filed Jun. 26, 2000; WO 01/51665, filed Jan. 12, 2001; WO 01/73123, filed Mar. 28, 2001, the disclosures which are incorporated by reference in their entirety. The method comprises providing at least one type of linking oligonucleotide having a selected sequence; the sequence of each type of linking oligonucleotide having at least two portions. The method further comprises providing one or more types of core/shell nanoparticles having oligonucleotides attached thereto, the oligonucleotides on each type of nanoparticles having a sequence complementary to a portion of the sequence of a linking oligonucleotide. The linking oligonucleotides and nanoparticles are contacted under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles to the linking oligonucleotides so that a desired nanomaterials or nanostructure is formed.
The invention provides another method of nanofabrication. This method comprises providing at least two types of core-shell nanoparticles of the invention having oligonucleotides attached thereto. The oligonucleotides on the first type of nanoparticles have a sequence complementary to that of the oligonucleotides on the second type of nanoparticles. The oligonucleotides on the second type of nanoparticles have a sequence complementary to that of the oligonucleotides on the first type of nanoparticle-oligonucleotide conjugates. The first and second types of nanoparticles are contacted under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles to each other so that a desired nanomaterials or nanostructure is formed.
The invention further provides nanomaterials or nanostructures composed of core-shell nanoparticles having oligonucleotides attached thereto, the nanoparticles being held together by oligonucleotide connectors.
The following examples serve to illustrate certain embodiments of the present invention, and do not limit it in scope or spirit. Certain obvious alternatives and variations will be apparent to those of skill in the art.
This Example illustrates the inventive process for preparing Ag/Au core/shell nanoparticles. In part A, methods for preparing silvercores are described. In part B, a method for preparing Ag/gold core/shell nanoparticles is provided. Silver nanoparticles are desired compositions for building blocks in material synthesis and as biological labels for two important reasons: (1) silver particles exhibit a surface plasmon band between ˜390 and 420 nm, depending on the particle size;11 this is a spectral regime that is distinct from that of gold(520–580 nm). (2) The extinction coefficient of the surface plasmon band for a silver particle is approximately 4 times as large as that for an gold particle of the same size.12 Therefore, silver particles functionalized with DNA would provide not only an opportunity to tailor the optical properties of DNA/nanoparticle composite structures but also routes to new diagnostic systems that rely on the position and intensity of the surface plasmon band (e.g. calorimetric systems based on absorption or scattering, or SPR and SERS detection systems).
Experimentally, it has been determined that silver nanoparticles cannot be effectively passivated by alkylthiol-modified-oligonucleotides using the established protocols for modifying goldparticles.2 Indeed, silver particles prepared via such methods irreversibly aggregate when heated in a solution with a salt concentration necessary to effect DNA hybridization (0.05 M NaCl or greater). Herein, a core/shell approach was applied to overcome this problem. In this approach, a thin goldshell was grown upon a silver nanoparticle, forming a particle with a gold outer surface that can be easily modified with alkylthiol-oligonucleotides. This approach could be generalized to prepare other particles such as Cu and Pt to create a series of core/shell particles with tailorable physical properties by virtue of choice of core but the surface chemistry and stability of the native, and oligonucleotide modified, pure gold particles.
A. Preparation of Silver Nanoparticle Cores
Silver nanoparticles were synthesized silver nanocrystals by reduction of silver nitrate by sodium borohydride in a trisodium citrate solution. Two methods for synthesizing the silver nanocrystals are described below and the resulting core nanocrystals are compared.
Method No. 1: AgNO3 (2.2 mg) and sodium citrate dihydrate (8.2 mg) were dissolved in 99 ml of Nanopure water in a 250-ml flask. With stirring and under Ar, this flask was placed in a ice bath for 15 min. Then 1 ml of sodium borohydride solution (0.14 M) was injected into the solution. After stirring for 1 hr, the solution was warmed to room temperature. The silver nanoparticles (˜12 nm in diameter) were obtained. Without further purification, these silver nanoparticles could be directly used for the gold shell growth.
Method No. 2: AgNO3 (2.2 mg) and sodium citrate dihydrate (8.2 mg) were dissolved in 98 ml of Nanopure water in a 250-ml flask. With stirring and under an Ar atmosphere, this flask was placed in an ice bath for 15 min. Then 1 ml of sodium borohydride solution (0.14 M) was injected into the solution. After stirring for 1 hr, the solution was warmed to room temperature. The Ag nanoparticles (˜12 nm in diameter) were obtained. Bis(p-sulfonatophenyl)-phenylphosphine (BSPP, 17 mg) was put into the silver nanoparticle solution and stirred overnight. The silver nanoparticles were subsequently purified and isolated by gradient centrifugation between 12 kRPM˜20 kRPM. The resulting silver nanoparticle-containing aliquots from the precipitation were combined, and dispersed in Nanopure water.
Comparison results: Silver particles prepared by method no. 2 have better size distribution compared with those prepared by method no. 1 (σ=18% for method no. 2; σ=30% for method no. 1). Subsequent studies have shown, however, that silver particles prepared by either method serve well as cores for generating silver/gold core/shell nanoparticles.
B. Preparation of Silver/Gold Core/Shell Nanoparticles
This step describes gold shell growth on the surface of silver cores described above. For silver nanoparticles, gold shells were grown on the silver core surface by reduction of HAuCl4 with the reducing agent NaBH4. Generally, the gold salt and reducing agent may be present at a ratio ranging from about 1:2 to about 1:20. The reduced gold has affinity for the silver surface, in part, because of the low surface chemical potential of the silver nanoparticles and near-zero lattice mismatch between these two materials. Two methods for growing gold shells on silver core nanocrystals are described below and the resulting core/shell nanoparticles were compared. silver core particles were prepared by method no. 1 described above.
Method No. 1: Gold shells (approximately one-monolayer thick) were grown on the surface of the silver nanoparticles (0.25 nmol of silver particles in 100 ml of 0.3 mM sodium citrate aqueous solution) by simultaneous dropwise addition, at a rate of between about 50 μL˜600 μL/min., of HAuCl4 and NaBH4 solutions (in Nanopure water) at 0° C. to the silver nanoparticle suspension. The simultaneous dropwise addition of dilute gold precursors inhibits the formation of gold cluster nucleation sites by keeping the concentration of these gold forming reagents at about 2 μM. After enough HAuCl4 and NaBH4 was added to the nanoparticles to produce one monolayer of gold on the particles (see Equation 1 for a calculation of shell thickness), addition was halted.
Vcore=4/3*π*R3;
Vcore/shell=4/3*π*(R+a)3, Equation 1:
Gold was added 5% excess, calculated assuming 12-nm spheres: 0.8 mg of HAuCl4.3H2O and 3.7 mg of NaBH4. Once 5% excess was achieved, addition of the solutions was stopped (halting formation of the shell) and 30 μmol of Bis(p-sulfonatophenyl)phenylphosphine (BSPP) was added. The silver/gold core/shell nanoparticles were then purified by centrifugation and dispersed in Nanopure water (12.4 nm in diameter, (σ=18%)), giving a 96% yield and a ratio of silver to gold of about 5.5:1.
Method No. 2: Gold shells (approximately one-monolayer thick) were grown on the surface of the silver nanoparticles (0.25 nmol of silver particles in 100 ml of 0.3 mM sodium citrate aqueous solution) by simultaneously treating them with HAuCl4 (2 mM) and NaBH4 (6 mM) via dropwise addition at room temperature at a rate of between about 50 μL˜600 μL/min. The simultaneous dropwise addition of dilute gold precursors inhibits the formation of gold cluster nucleation sites by keeping the concentration of these gold forming reagents at about 2 μM. After sufficient HAuCl4 and NaBH4 were added to the nanoparticles to produce one monolayer of gold on the particles (5% excess, calculated assuming 12-nm spheres: 0.8 mg of HAuCl4.3H2O and 3.7 mg of NaBH4), the reaction was stopped and 30 μmol of BSPP was added. The silver/gold core/shell nanoparticles were then purified by centrifugation and dispersed in nanopure water, giving a weight percent yield of about 90%, and average particle size of about 12.5 nm, and an silver to gold ratio of about 6.3:1.
Comparison results: The core/shell nanoparticles produced via method no. 1 (synthesis at 0° C.) were found to have better stability in 0.5 M NaCl solution compared to core/shell nanoparticles produced by method no. 2 (synthesis at room temperature). This result may be due, in part, to a slower rate of shell growth at 0° C. than the growth rate at room temperature.
(c) Discussion
Silver nanoparticles were prepared by literature methods.13 The particles were then passivated with BSPP (0.3 mM), purified by gradient centrifugation (collecting the primary fraction; ˜12 nm in diameter), and dispersed in Nanopure water. Gold shells, approximately one-monolayer thick, were grown on the surface of the silver nanoparticles (0.32 nmol of silver particles in 100 mL of 0.3 mM sodium citrate aqueous solution) by simultaneously treating them with HAuCl4 and sodium borohydride via dropwise addition at 0° C. The reduced gold has an affinity for the silver surface, in part, because of its near zero lattice mismatch.14 The simultaneous dropwise addition of dilute gold precursors inhibits the formation of gold cluster nucleation sites by keeping the concentration of these gold forming reagents at about 2 μM. After enough HAuCl4 and NaBH4 were added to the nanoparticles to produce one monolayer of gold on the particles (5% excess, calculated assuming 12-nm spheres: 0.8 mg of HAuCl4.3H2O and 3.7 mg of NaBH4), the reaction was stopped and 30 mM of BSPP was added. Then, the silver/gold core/shell nanoparticles were purified by centrifugation and dispersed in nanopure water (12.4 nm in diameter particles, (σ=18%).
Significantly, the extinction spectrum of the core/shell particles is very similar to that for the citrate-stabilized pure silver particles. The surface plasmon band of the silver remains at the same wavelength but is dampened by about 10%, and the gold plasmon band is observed as a slight buckle at 500 nm. These spectral features provide strong evidence for gold shell growth. It should be noted that using different procedures, others have prepared gold-coated silver nanoparticles.15 However, those procedures lead to silver/gold alloys;15a the extinction spectra of such particles exhibit characteristic red shifting and broadening of the plasmon resonance. Moreover, if one intentionally makes a solution of alloyed silver/gold particles, they can be easily distinguished from core/shell particles with comparable silver/gold ratios (see Supporting Information). Indeed, the core/shell silver/gold nanoparticles prepared by the methods of the instant invention retain the optical properties of the core with no observed red shifting of the silver plasmon band, (
This Example describes the preparation of silver/gold core/shell nanoparticle oligonucleotide conjugates as probes for detecting a target nucleic acid. Two methods were employed and the resulting probes were then compared for stability. The oligonucleotide sequences used in making the conjugates are shown in
(a) Preparation of Core/Shell Nanoparticle Conjugates
Method No. 1: Nanoparticle probes with appropriate probe oligonucleotides were prepared by derivatizing 10 mL of aqueous core/shell nanoparticle colloid (from method no. 1) with 8˜10 OD (in about 500 uL) of alkanethiol-oligonucleotide (final oligonucleotide concentration is about 2 μM). After standing overnight (about 15 h), the solution was brought to 10 mM phosphate buffer (pH 7), using 100 mM concentrated phosphate stock buffer, and salt (from a 2 M aqueous NaCl solution) added to 0.05 M NaCl after 0.5 h, allowed to stand for about 8 h, then further addition of NaCl to 0.1 M, and after another standing time of about 8 h, another addition of NaCl to about 0.3 M and allowed to stand for a final ˜8 h. To remove excess DNA, colloids were centrifuged for 30 min at 18,000 rpm using 1.5 mL eppendorf tubes. Following removal of the supernatant, the oily precipitate was washed with a volume equal to the discarded supernatant with 0.3 M NaCl, 10 mM phosphate buffer (pH 7) solution, centrifuged, and dispersed in 0.3 M NaCl, 10 mM phosphate buffer (pH 7), 0.01% azide solution. The final colloids were refrigerated and stored for later use.
Method No. 2: Nanoparticle probes with appropriate probe oligonucleotides were prepared by derivatizing 10 mL of aqueous colloid with 8˜10 OD of alkanethiol-oligonucleotide (final oligonucleotide concentration is about 2 μM). After standing overnight (˜15 h), the solution was brought to 10 mM phosphate buffer (pH 7), using 100 mM concentrated phosphate stock buffer, and salt added to 0.1 M NaCl, allowed to stand for about 20 h, and again, salt added to 0.3 M after another ˜8 h. The mixture was allowed to stand for about 4 to 8 hours. To remove excess DNA, colloids were centrifuged for 30 min at 18,000 rpm using 1.5 mL eppendorf tubes. Following removal of the supernatant, the oily precipitate is washed with 0.3 M NaCl, 10 mM phosphate buffer (pH 7) solution in the same volume as the discarded supernatant, centrifuged, and dispersed in 0.3 M NaCl, 10 mM phosphate buffer (pH 7), 0.01% azide solution. The final colloids were refrigerated and stored for later use.
(b) Evaluation of Stability of Core/Shell Nanoparticle Oligonucleotide Conjugates
The core/shell nanoparticle oligonucleotide conjugates prepared by the two methods described above were compared using a salting procedure as described in each of the above 2 methods.
By method 1, the salt concentration was increased from 0.05 M NaCl to 0.1 M NaCl, and then to 0.3 M NaCl. By method 2, the salt concentration was increased in two steps: directly to 0.1 M NaCl and then to 0.3 M NaCl. Method 1 generates a higher quality nanoparticle-oligonucleotide conjugate when compared with those prepared by method 2. Via method 2, about 15% of the nanoparticle-oligonucleotide conjugates are not of adequate quality. Core/shell nanoparticle-oligonucleotide conjugate quality is evaluated by UV-Vis spectroscopy. Acceptable quality conjugates show a UV-Vis spectrum with the surface plasmon absorption peak centering at 400 nm, while poor (inadequate) quality conjugates show an absorption peak which is significantly damped and red-shifts to 450–550 nm.
(c) Discussion
The surface modification of these core/shell nanoparticles with 3′- and 5′-alkanethiol-capped oligonucleotides was accomplished using a procedure identical to the one used for 13-nm gold particles.2d Significantly, the oligonucleotide-modified core/shell particles exhibit the stability of oligonucleotide modified particles prepared using pure gold nanoparticles and can be suspended in 1M NaCl solution indefinitely. This represents a significant advantage over the oligonucleotide modified silver/gold alloy particles which irreversibly aggregate under comparable solution conditions and do not exhibit the stability of the oligonucleotide-modified core/shell particles of the instant invention.
Moreover, the core/shell particles undergo hybridization with complementary linking oligonucleotides to form aggregated structures with a concomitant darkening of the solution; (
The particle assembly process induced by the complementary DNA also can be monitored on a C18-reverse-phase alumina TLC plate, allowing for comparison with the pure gold system. The spot test results shown in
As shown in
In this Example, the silver/gold core/shell nanoparticles prepared as described in Example 1 (method no. 1) were compared to gold nanoparticles2 and to silver/gold alloy nanoparticles.
The silver/gold alloy nanoparticles were prepared by the method of Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3529. Following literature procedure, 0.8 mg of HAuCl4.3H2O and 1.8 mg of silverNO3 were dissolved in 95 ml of nanopure water. The solution was heated to reflux, and 5 ml of 1% sodium citrate was added to the solution. After refluxing an additional 30 min., the solution was allowed to cool to room temperature.
The UV-Vis spectrum of the alloy particles exhibits a surface plasmon band at 428 nm with a full width at half-maximum (FWHM) of 90 nm (0.62 eV). In contrast, the UV-Vis spectrum of the silver/gold core/shell nanoparticle, with a comparable silver/gold ratio, exhibits a surface plasmon band at 400 nm with a FWHM of 58 nm (0.45 eV).
The surface modification of these core/shell and alloy nanoparticles with 3′- and 5′-alkanethiol-capped oligonucleotides was accomplished using a procedure identical to the one used for 13-nm gold particles. See Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998 120, 1959. Significantly, the oligonucleotide-modified core/shell nanoparticles exhibit the stability of the pure gold nanoparticles and can be suspended in 1M NaCl solutions indefinitely. In contrast, the oligonucleotide-modified silver/gold alloy particles irreversibly aggregate when brought to a salt concentration of 0.1 M.
Another way to evaluate stability of the particle/DNA conjugate uses a DNA melting test. The core/shell nanoparticle/DNA conjugate can reversibly hybridize with target DNA in a salt concentration range from 0.1 to 1.0 M, and the resulting nanoparticle aggregates can “melt” off when heated above the melting temperature. This hybridization/dehybridization process is completely reversible for core/shell particles. The core/shell particle/DNA conjugates show no degradation after 100 cycles. In sharp contrast, the silver/gold-alloy particle/DNA conjugates irreversibly aggregate even under minimal salt concentrations (˜0.05 M NaCl) necessary to effect hybridization of oligonucleotides.
This Example describes the preparation of Pt/gold core/shell nanoparticles by the inventive process. In Part A, Pt core nanoparticles were prepared by hydrogen reduction of K2PtCl4 in an overnight reaction. In Part B, goldshells were grown on the Pt cores.
(a) Preparation of Pt Core Nanoparticles
In a 500-ml three-neck flask, K2PtCl4 (8.3 mg) and sodium polyacrylate (20 mg) were dissolved in 200 ml of Nanopure water. H2 was bubbled into the reaction solution overnight with stirring. This resulted in Pt nanoparticles that were purified and isolated, yielding nanoparticles of about 12 nm in diameter.
(b) Preparation of Pt/Gold Core/Shell Nanoparticles
100 ml of 12-nm Pt nanoparticle solution (as prepared according to the above procedure) was put into a 250-ml three-neck flask. To the nanoparticle solution were added HAuCl4 and NaBH4 dropwise, simultaneously, at 0° C. The simultaneous dropwise addition of dilute goldprecursors inhibits the formation of gold cluster nucleation sites by keeping the concentration of these gold forming reagents at about 2 μM. After sufficient amounts of HAuCl4 and NaBH4 were added to the nanoparticles to produce one monolayer of gold on the Pt nanoparticles (5% excess, calculated assuming 12-nm spheres: 16 mg of HAuCl4.3H2O and 8 mg of NaBH4), addition of these reagents to the reaction was stopped. UV-Vis spectra of Pt core and Pt/gold core/shell nanoparticle are shown in
This Example describes the preparation of magnetic gold nanoparticles by the inventive process. In Part A, Fe3O4 magnetic core nanoparticles were prepared. In Part B, goldshells were grown on the magnetic cores. Other magnetic cores could be used in place of Fe3O4 such as Co, Fe, Ni, FePt, and FeAu.
(a) Preparation of Fe3O4 Core Nanoparticles
In a typical synthesis, Fe3O4 nanoparticles were prepared as follows. First, 0.86 g FeCl2.4H2O and 2.35 g FeCl3.6H2O were dissolved in 50 mL nanopure water under an inert Ar(g) atmosphere. The solution was heated to 80° C. with vigorous stirring. A solution of 100 mg of neat decanoic acid in 5 mL of acetone was added to the Fe solution, followed by 5 mL of 28% (w/w) NH3/H2O. Additional neat decanoic acid was added to the suspension in 5×0.2 g amounts over 5 min. The reaction was allowed to proceed for 30 min at 80° C. with stirring to produce a stable, water-based suspension. Following formation of the suspension, the reaction was cooled slowly to room temperature. The resulting Fe3O4 nanoparticles (5.0 nmol) were treated further with Na2S (8.0 mg) solution overnight to allow for sulfur exchange at the particle surface. Sulfur ions replace oxygen on the surface of the Fe3O4 nanoparticles, providing the growth site for the goldshell. This sulfur exchange process is also necessary for the preparation of Co3O4 magnetic cores.
(b) Preparation of Fe3O4/Gold Core/Shell Nanoparticles
The procedure for growing goldshell is similar to that of core/shell silver/goldpreparation described in Example 1. The UV-Vis spectrum, of the Fe3O4/gold shell growth is shown in
This Example describes the preparation of magnetic gold nanoparticles by the inventive process. In Part A, Co magnetic core nanoparticles were prepared. In Part B, goldshells were grown on the Co magnetic cores.
(a) Preparation of Co Nanoparticle Cores
O-dichlorobenzene (15.9 g), trioctylphosphine oxide (0.1 g), and 0.2 ml of oleic acid were placed into a 50-ml tri-neck flask, and heated to 180° C. A solution of Co2(CO)8 (0.65 g in 3 ml of O-dichlorobenzene) was added by injection into the heated solution. After this addition, the reaction temperature was maintained at 180° C. for an hour. The reaction solution was then cooled to room temperature. Co nanoparticles of about 12 nm in diameter were produced in a yield of 95%.
(b) Preparation of Co/Gold Core/Shell Nanoparticles
The following is a typical coating protocol for Co/gold core/shell nanoparticles.
After Co nanoparticles (0.01 μmol) were dissolved in O-dichlorobenzene (12 g) in a 50-ml tri-neck flask, trioctylphosphine oxide (0.1 g) was added in the Co solution. The solution was heated to 180° C., at which point the gold-shell stock solutions 1 and 2 (see below) were added dropwise, simultaneously, to the hot reaction solution, at a rate of about 50 μl–500 μl/min. After sufficient amount of stock solutions 1 and 2 were added (about 5% excess), the reaction solution was maintained at 180° C. for another 30 mins. Subsequently, the reaction was cooled to room temperature in order to halt it.
The gold shell stock solutions were prepared as follows: stock solution 1, HAuCl4.3H2O (0.1 g) and n-hexadecyltrimetyl ammonium bromide (0.1 g) were dissolved in O-dichlorobenzene (10 g); stock solution 2, 1,1-hexadecanediol (0.12 g) was dissolved in O-dichlorobenzene (10 g).
The above examples merely serve to illustrate certain embodiments of the present invention and do not serve to limit it in its scope or spirit.
Mirkin, Chad A., Jin, Rongchao, Cao, Yun-Wei
Patent | Priority | Assignee | Title |
10035192, | Jan 15 2009 | CLENE NANOMEDICINE, INC | Continuous, semicontinuous and batch methods for treating liquids and manufacturing certain constituents (e.g.,nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) and colloids resulting therefrom |
10092007, | Jul 11 2007 | Clene Nanomedicine, Inc. | Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom |
10178735, | Aug 22 2017 | Northrop Grumman Systems Corporation | Dynamically tunable materials for parity-time symmetric electro-optical devices |
10244637, | Apr 20 2007 | Cambrios Film Solutions Corporation | Composite transparent conductors and methods of forming the same |
10398005, | Aug 22 2017 | Northrop Grumman Systems Corporation | Dynamically tunable materials for parity-time symmetric electro-optical devices |
10441608, | Jan 14 2009 | CLENE NANOMEDICINE, INC | Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom |
10449217, | Jul 08 2009 | Clene Nanomedicine, Inc. | Gold-based nanocrystals for medical treatments and electrochemical manufacturing processes therefor |
10629338, | Sep 14 2015 | Elwha LLC | Magnetic plasmonic nanoparticle positioned on a magnetic plasmonic substrate |
10749048, | Oct 12 2006 | Cambrios Film Solutions Corporation | Nanowire-based transparent conductors and applications thereof |
10980832, | Jul 08 2009 | Clene Nanomedicine, Inc. | Gold-based nanocrystals for medical treatments and electrochemical manufacturing processes therefor |
11000042, | Jul 11 2007 | CLENE NANOMEDICINE, INC | Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom |
11007573, | Jan 15 2009 | CLENE NANOMEDICINE, INC | Continuous, semicontinuous and batch methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) and colloids resulting therefrom |
7625637, | May 31 2006 | Cabot Corporation | Production of metal nanoparticles from precursors having low reduction potentials |
7648554, | Aug 01 2002 | Osaka Research Institute of Industrial Science and Technology | Metal nanoparticles and method for manufacturing same |
7700193, | Sep 29 2005 | Industrial Technology Research Institute | Core-shell structure with magnetic, thermal, and optical characteristics and manufacturing method thereof |
7718094, | Jun 18 2004 | RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK THE | Preparation of metallic nanoparticles |
7879625, | Dec 03 2008 | The United States of America as represented by the Secretary of the Navy | Preparation of SERS substrates on silica-coated magnetic microspheres |
8018563, | Apr 20 2007 | Cambrios Film Solutions Corporation | Composite transparent conductors and methods of forming the same |
8018568, | Oct 12 2006 | Cambrios Film Solutions Corporation | Nanowire-based transparent conductors and applications thereof |
8049333, | Aug 12 2005 | Cambrios Film Solutions Corporation | Transparent conductors comprising metal nanowires |
8094247, | Oct 12 2006 | Cambrios Film Solutions Corporation | Nanowire-based transparent conductors and applications thereof |
8174667, | Oct 12 2006 | Cambrios Film Solutions Corporation | Nanowire-based transparent conductors and applications thereof |
8304365, | May 16 2008 | Audi AG | Stabilized platinum catalyst |
8323888, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
8348134, | Jan 17 2008 | Applied Nanoparticle Laboratory Corporation | Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method |
8389175, | May 16 2008 | Audi AG | Fuel cell having a stabilized cathode catalyst |
8459529, | Jan 17 2008 | Applied Nanoparticle Laboratory Corporation | Production method of composite silver nanoparticle |
8618531, | Aug 12 2005 | Cambrios Film Solutions Corporation | Transparent conductors comprising metal nanowires |
8760606, | Oct 12 2006 | Cambrios Film Solutions Corporation | Nanowire-based transparent conductors and applications thereof |
8865027, | Aug 12 2005 | Cambrios Film Solutions Corporation | Nanowires-based transparent conductors |
8906317, | Jan 17 2008 | Applied Nanoparticle Laboratory Corporation | Production apparatus of composite silver nanoparticle |
8920985, | May 16 2008 | Audi AG | Power generation method using a fuel cell having a stabilized cathode catalyst |
9387452, | Jan 14 2009 | CLENE NANOMEDICINE, INC | Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom |
9494581, | Aug 24 2004 | UNIVERSITY OF WYOMING | System and method for Raman spectroscopy assay using paramagnetic particles |
9512468, | Nov 06 2012 | Industrial Technology Research Institute | Detection method uses magnetic and detectable nanoparticles with oligonucleotides attached thereto |
9534124, | Feb 05 2010 | Cambrios Film Solutions Corporation | Photosensitive ink compositions and transparent conductors and method of using the same |
9603870, | Jul 08 2009 | CLENE NANOMEDICINE, INC | Gold-based nanocrystals for medical treatments and electrochemical manufacturing processes therefor |
9627114, | Sep 14 2015 | Elwha LLC | Magnetic plasmonic nanoparticle positioned on a magnetic plasmonic substrate |
9627115, | Sep 14 2015 | Elwha LLC | Magnetic plasmonic nanoparticle dimer |
9743672, | Jul 11 2007 | CLENE NANOMEDICINE, INC | Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom |
9899123, | Aug 12 2005 | Cambrios Film Solutions Corporation | Nanowires-based transparent conductors |
Patent | Priority | Assignee | Title |
4193983, | May 16 1978 | Dade Behring Marburg GmbH | Labeled liposome particle compositions and immunoassays therewith |
4256834, | Apr 09 1979 | Dade Behring Marburg GmbH | Fluorescent scavenger particle immunoassay |
4261968, | Aug 12 1974 | Dade Behring Marburg GmbH | Fluorescence quenching with immunological pairs in immunoassays |
4313734, | Jul 13 1978 | Akzona Incorporated | Metal sol particle immunoassay |
4318707, | Nov 24 1978 | Dade Behring Marburg GmbH | Macromolecular fluorescent quencher particle in specific receptor assays |
4650770, | Apr 27 1981 | Dade Behring Marburg GmbH | Energy absorbing particle quenching in light emitting competitive protein binding assays |
4713348, | Apr 05 1983 | Dade Behring Marburg GmbH | Fluorescent multiparameter particle analysis |
4853335, | Sep 28 1987 | Aberlyn Capital Management Limited Partnership | Colloidal gold particle concentration immunoassay |
4868104, | Sep 06 1985 | Dade Behring Marburg GmbH | Homogeneous assay for specific polynucleotides |
4996143, | Dec 23 1985 | Syngene, Inc. | Fluorescent stokes shift probes for polynucleotide hybridization |
5225064, | Jan 15 1992 | ESA BIOSCIENCES, INC | Peroxidase colloidal gold oxidase biosensors for mediatorless glucose determination |
5284748, | Mar 25 1986 | CRYSTAL MEDICAL PRODUCTS, INC | Method for electrical detection of a binding reaction |
5288609, | Apr 27 1984 | Enzo Diagnostics, Inc. | Capture sandwich hybridization method and composition |
5294369, | Dec 05 1990 | Life Technologies Corporation | Ligand gold bonding |
5360895, | Apr 22 1987 | Brookhaven Science Associates | Derivatized gold clusters and antibody-gold cluster conjugates |
5384073, | Dec 05 1990 | Life Technologies Corporation | Ligand gold bonding |
5384265, | Mar 26 1993 | Science Applications International Corporation | Biomolecules bound to catalytic inorganic particles, immunoassays using the same |
5460831, | Jun 22 1990 | Regents of the University of California, The | Targeted transfection nanoparticles |
5472881, | Nov 12 1992 | University of Utah | Thiol labeling of DNA for attachment to gold surfaces |
5508164, | Oct 29 1990 | Dekalb Genetics Corporation | Isolation of biological materials using magnetic particles |
5514602, | Jun 09 1986 | Ortho Diagnostic Systems, Inc. | Method of producing a metal sol reagent containing colloidal metal particles |
5521289, | Jul 29 1994 | NANOPROBES, INC | Small organometallic probes |
5543158, | Jul 23 1993 | Massachusetts Institute of Technology | Biodegradable injectable nanoparticles |
5571726, | Jun 09 1986 | Ortho Diagnostic Systems, Inc. | Kit containing glutaraldehyde coated colloidal metal particles of a preselected size |
5599668, | Sep 22 1994 | Abbott Laboratories | Light scattering optical waveguide method for detecting specific binding events |
5609907, | Feb 09 1995 | SICPA HOLDING SA | Self-assembled metal colloid monolayers |
5637508, | Mar 26 1993 | Leidos, Inc | Biomolecules bound to polymer or copolymer coated catalytic inorganic particles, immunoassays using the same and kits containing the same |
5665582, | Oct 29 1990 | Dekalb Genetics Corporation | Isolation of biological materials |
5681943, | Apr 12 1993 | Northwestern University | Method for covalently linking adjacent oligonucleotides |
5751018, | Nov 22 1991 | The Regents of the University of California | Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers |
5830986, | Oct 28 1996 | Massachusetts Institute of Technology | Methods for the synthesis of functionalizable poly(ethylene oxide) star macromolecules |
5900481, | Nov 06 1996 | BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC | Bead linkers for immobilizing nucleic acids to solid supports |
5922537, | Nov 08 1996 | CARESTREAM HEALTH, INC | Nanoparticles biosensor |
5939021, | Jan 23 1997 | Homogeneous binding assay | |
5972615, | Jan 21 1998 | Dianon Systems, Inc | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
5990479, | Nov 25 1997 | Regents of the University of California; Regents of the University of California, The | Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes |
6025202, | Feb 09 1995 | SICPA HOLDING SA | Self-assembled metal colloid monolayers and detection methods therewith |
6149868, | Oct 28 1997 | SICPA HOLDING SA | Surface enhanced raman scattering from metal nanoparticle-analyte-noble metal substrate sandwiches |
6159378, | Feb 23 1999 | Battelle Memorial Institute | Apparatus and method for handling magnetic particles in a fluid |
6180415, | Feb 20 1997 | Life Technologies Corporation | Plasmon resonant particles, methods and apparatus |
6203989, | Sep 30 1998 | Affymetrix, Inc | Methods and compositions for amplifying detectable signals in specific binding assays |
6214560, | Apr 18 1997 | Life Technologies Corporation | Analyte assay using particulate labels |
6251303, | Sep 18 1998 | Massachusetts Institute of Technology | Water-soluble fluorescent nanocrystals |
6264825, | Jun 23 1998 | CLINICAL MICRO SENSORS, INC , DBA OSMETECH TECHNOLOGY INC | Binding acceleration techniques for the detection of analytes |
6277489, | Dec 04 1998 | Regents of the University of California, The | Support for high performance affinity chromatography and other uses |
6306610, | Sep 18 1998 | Massachusetts Institute of Technology | Biological applications of quantum dots |
6344272, | Mar 12 1997 | Wm. Marsh Rice University | Metal nanoshells |
6361944, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6365418, | Jul 14 1998 | Zyomyx, Incorporated | Arrays of protein-capture agents and methods of use thereof |
6417340, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6428811, | Mar 11 1998 | WM MARSH RICE UNIVERSITY | Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery |
6495324, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6506564, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6530944, | Feb 08 2000 | Rice University | Optically-active nanoparticles for use in therapeutic and diagnostic methods |
6579721, | Jul 30 1999 | SICPA HOLDING SA | Biosensing using surface plasmon resonance |
6582921, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses thereof |
6602669, | Jul 11 2000 | Northwestern University | Method of detection by enhancement of silver staining |
6610491, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6645517, | Mar 11 1998 | William Rice Marsh Rice University | Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery |
6645721, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6660381, | Nov 03 2000 | William Marsh Rice University | Partial coverage metal nanoshells and method of making same |
6673548, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6677122, | Jul 29 1996 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6682895, | Jul 29 1996 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6685730, | Sep 26 2001 | Rice University | Optically-absorbing nanoparticles for enhanced tissue repair |
6685986, | Mar 12 1997 | William Marsh Rice University | Metal nanoshells |
6699724, | Mar 11 1998 | WM MARSH RICE UNIVERSITY | Metal nanoshells for biosensing applications |
6709825, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6720147, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6720411, | Jul 29 1996 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6726847, | Dec 06 2000 | Northwestern University | Silver stain removal by chemical etching and sonication |
6730269, | Jul 29 1996 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6740491, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6750016, | Jul 26 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6759199, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6767702, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6773884, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6777186, | Jul 29 1996 | Northwestern University | Nanoparticles having oligonucleotides attached thereto and uses therefor |
6778316, | Oct 24 2001 | William Marsh Rice University | Nanoparticle-based all-optical sensors |
6783569, | Aug 16 2001 | Korea Advanced Institute of Science and Technology | Method for synthesis of core-shell type and solid solution alloy type metallic nanoparticles via transmetalation reactions and applications of same |
6852252, | Mar 12 1997 | WM MARSH RICE UNIVERSITY | Use of metalnanoshells to impede the photo-oxidation of conjugated polymer |
6875475, | Apr 01 2002 | William Marsh Rice University | Methods for producing submicron metal line and island arrays |
20020068187, | |||
20020137070, | |||
20020155461, | |||
20020160381, | |||
20020177143, | |||
20020192687, | |||
20030054358, | |||
20030068622, | |||
20030068638, | |||
20030087242, | |||
20030113740, | |||
20030124528, | |||
20030129608, | |||
20030143538, | |||
20030143598, | |||
20030148282, | |||
20030207296, | |||
20030211488, | |||
20040038255, | |||
20040053222, | |||
20040072231, | |||
20040086897, | |||
20040101889, | |||
EP630974, | |||
EP667398, | |||
WO25136, | |||
WO33079, | |||
WO100876, | |||
WO106257, | |||
WO151665, | |||
WO173123, | |||
WO186301, | |||
WO204681, | |||
WO2079490, | |||
WO2096262, | |||
WO218643, | |||
WO236169, | |||
WO246472, | |||
WO246483, | |||
WO2003008539, | |||
WO2003035829, | |||
WO2003081202, | |||
WO2003087188, | |||
WO2003095973, | |||
WO2004004647, | |||
WO2004053105, | |||
WO8906801, | |||
WO9002205, | |||
WO9204469, | |||
WO9310564, | |||
WO9325709, | |||
WO9429484, | |||
WO9522639, | |||
WO9740181, | |||
WO9804740, | |||
WO9810289, | |||
WO9817317, | |||
WO9920789, | |||
WO9921934, | |||
WO9923258, | |||
WO9960169, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 26 2003 | Nanosphere, Inc. | (assignment on the face of the patent) | / | |||
Jul 13 2007 | Northwestern University | NATIONAL SCIENCE FOUNDATION | CONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS | 024570 | /0740 | |
Jun 19 2013 | NANOSPHERE, INC | Northwestern University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035598 | /0393 | |
Aug 19 2013 | MIRKIN, CHAD A | Northwestern University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035598 | /0393 | |
Sep 18 2013 | JIN, RONGCHAO | Northwestern University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035598 | /0393 | |
Oct 28 2013 | CAO, YUN-WEI | Northwestern University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035598 | /0393 | |
Jun 30 2016 | NSPH FUNDING LLC | NANOSPHERE, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039313 | /0919 |
Date | Maintenance Fee Events |
May 14 2010 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 16 2014 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Mar 09 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 14 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 14 2009 | 4 years fee payment window open |
May 14 2010 | 6 months grace period start (w surcharge) |
Nov 14 2010 | patent expiry (for year 4) |
Nov 14 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 14 2013 | 8 years fee payment window open |
May 14 2014 | 6 months grace period start (w surcharge) |
Nov 14 2014 | patent expiry (for year 8) |
Nov 14 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 14 2017 | 12 years fee payment window open |
May 14 2018 | 6 months grace period start (w surcharge) |
Nov 14 2018 | patent expiry (for year 12) |
Nov 14 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |