A locking ring designed to work in a self restraining pipe joint. This locking ring is designed (which may include attention to a combination of shape and material properties) to twist when exposed to a concentrated load and thereby distribute this load across broader area of the pipe joint to increase the thrust restraining capabilities of the joint

Patent
   7137653
Priority
Sep 25 2003
Filed
Sep 24 2004
Issued
Nov 21 2006
Expiry
Mar 16 2025
Extension
173 days
Assg.orig
Entity
Large
13
89
all paid
2. A pipe joint comprising
a. A first pipe comprising a pipe bell and a bell groove disposed annularly within the pipe bell, said bell groove being bounded on an axially outward side by a bell thrust surface,
b. A second pipe comprising a pipe spigot and a weld bead located on the pipe spigot, said pipe spigot located partially within the pipe bell in a position in which the weld bead is further, by an axially measured distance, within the pipe bell than is the bell thrust surface, wherein the pipe spigot is radially separated from the pipe bell at a location around the pipe spigot periphery by an annular gap, and
c. A locking ring being located between and in substantially continuous contact with the bell thrust surface and with the weld bead, which bell thrust surface and weld bead are separated by a gap having different measurements when measured at different locations in the pipe joint,
in which the locking ring twists in response to radial displacement of an axis of the first pipe from an axis of the second pipe.
1. A pipe joint comprising
a. A first pipe comprising a pipe bell and a bell groove disposed annularly within the pipe bell, said bell groove being bounded on an axially outward side by a bell thrust surface,
b. A second pipe comprising a pipe spigot and a weld bead located on the pipe spigot, said pipe spigot located partially within the pipe bell in a position in which the weld bead is further, by an axially measured distance, within the pipe bell than is the bell thrust surface, wherein the pipe spigot is radially separated from the pipe bell at a location around the pipe spigot periphery by an annular gap, and
c. A locking ring being located between and in substantially continuous contact with the bell thrust surface and with the weld bead, which bell thrust surface and weld bead are separated by a gap having different measurements when measured at different locations in the pipe joint,
in which the locking ring twists in response to angular displacement of an axis of the first pipe from an axis of the second pipe.

This application claims the benefit of and priority to U.S. Provisional Application 60/506,081, filed Sep. 25, 2003.

A locking ring designed to work in a self restraining pipe joint. This locking ring is designed (which may include attention to a combination of shape and material properties) to deform when exposed to a concentrated load and thereby distribute this load across broader area of the pipe joint to increase the thrust restraining capabilities of the joint

A current state of the art self restraining pipe joint is commonly known as the TR FLEX® Pipe joint as manufactured by U.S. Pipe and Foundry Co. Inc. This is described in U.S. Pat. No. 4,540,204 among others, which relies on individual locking segments engaging a weld bead on the spigot (male) end of one pipe with a cavity formed into the bell (female) end of the joining or mating pipe.

Several areas for improvement have been identified concerning the prior art involving this concept. The first is that the individual locking segments may not fully engage the weld bead placed on the spigot end of the pipe under all assembly conditions (including layout configurations and dimensional variations). These conditions may be so severe that the segments may, in fact, miss the weld bead entirely. This condition will greatly affect the thrust restraining capability of the joint. The second issue is that when the joint is deflected, the spigot approaches the bell at an angle instead of being concentric and parallel. This condition alters the longitudinal gap between the segment cavity (the bell groove) in the bell of one pipe and the weld bead on the spigot end of the other pipe. In short, the gap has a varying magnitude of separation. This gap is what is typically bridged by the individual locking segments. Only the locking segment(s) in the area of the smallest gap therefore will be engaged, creating a concentrated load on the bell and spigot of the mating pipe. The third issue is that assembly may be difficult in all but the most ideal circumstances since the individual locking segments must slide into the gap between the spigot and bell of mating pipes and this gap must be kept small in order to allow the segments to engage both halves of the pipe joint. The fourth issue is that the joint is sensitive to manufacturing tolerances. If the tolerances are allowed to vary too much, then the locking segments may not engage the spigot end of the mating pipe resulting in reduced joint performance.

The following stated objects of the invention are alternative and exemplary objects only, and no one or any should be read as required for the practice of the invention, or as an exhaustive listing of objects accomplished.

Improve the state of the art restrained joint performance over a wide variety of installation conditions, assembly conditions and manufacturing tolerances.

Make the joint easier and faster to assemble in a wide variety of assembly conditions and manufacturing tolerances.

Allow larger manufacturing tolerances to be used with no compromise in performance. The above objects and advantages are neither exhaustive nor individual critical to the spirit and practice of the invention, except as stated in the claims as issued. Other alternative objects and advantages of the present invention will become apparent to those skilled in the art from the following description of the invention.

A locking ring designed to work in a self restraining pipe joint. This locking ring is designed (which may include attention to a combination of shape and material properties) to twist when exposed to a concentrated load and thereby distribute this load across broader area of the pipe joint to increase the thrust restraining capabilities of the joint.

FIG. 1 shows a cut-away view of a portion of a pipe joint using an embodiment of a locking ring of the present invention, showing the locking ring in place between a pipe bell and pipe spigot the axes of which are aligned radially and angularly.

FIG. 2 shows a cross section of an embodiment of a locking ring of the present invention.

FIG. 3 shows an isometric view of an embodiment of a locking ring of the present invention.

FIG. 4 shows a view of an embodiment of a locking ring of the present invention as seen looking along the plane of the ring, with the ears to the side.

FIG. 5 shows a view of an embodiment of a locking ring of the present invention as seen looking along the plane of the ring, with the ears centered in the view to show a split.

FIG. 6 shows a side view of an embodiment of ears on an embodiment of a locking ring of the present invention.

FIG. 7 shows a top-down view of an embodiment of a locking ring of a the present invention (i.e., seen as viewed from a position outside the plane of the locking ring).

FIG. 8 shows a top-down view of an embodiment of ears on an embodiment of a locking ring of the present invention.

FIG. 9 shows a pipe joint incorporating an embodiment of a locking ring of the present invention, in which the axes of the pipe bell and the pipe spigot are angularly displaced from one another.

FIG. 10 shows another view as in FIG. 9, with stronger angular displacement.

FIG. 11 shows a view of an embodiment of a locking ring of the present invention, demonstrating a twist occurring along the centroidal axis.

The following is a detailed exemplary description of an embodiment of the invention, in a number of its various aspects. Those skilled in the art will understand that the specificity provided herein is intended for illustrative purposes with respect to an exemplary embodiment, only, and is not to be interpreted as limiting the scope of the invention or claims.

Turning to FIG. 1, a cross-sectional view of a joint of the present invention is shown, with the locking ring 2, a substantially ring-shaped body in place to prevent extraction of the pipe spigot 6 from the bell 1. In FIG. 1, the locking ring 2 is shown in a resting state (in the absence of forces exerted upon it in an angularly or radially displaced joint). As is apparent from the depiction in FIG. 1, particularly to those of ordinary skill in the art, in the joint the pipe spigot 6 is partially disposed within the pipe bell 1 in such a manner that there is some annular gap 20 between the two, but locking ring 2 has a greater radial height than the annular gap 20. Accordingly, locking ring 2 cannot pass through the annular gap 2. The shown embodiments used by the inventors are pipes and bells of metal, specifically, ductile iron. Those in the art will understand that in normal assembly the locking ring 2 is inserted into the pipe bell 1, and disposed in the bell groove 12 prior to insertion of the pipe spigot 6 into the pipe bell 1. bell groove 12 may approximate the configuration of locking ring 2 as shown in FIG. 1, but in any event the size of the bell groove 12 is greater than the size of the locking ring 2, so as to allow some freedom of movement of the locking ring 2 within the confines of bell groove 12 (until the locking ring 2 is clamped in place or the joint is subjected to thrust loads). Because of this freedom of movement, the pipe spigot 6 can be inserted until at least the position shown in FIG. 1 by passing the weld bead 5 under the locking ring 2, such as occurs when locking ring 2 is held away from the pipe spigot 6 (e.g. by spring tension of the ring) or otherwise is not held firmly against pipe spigot 6. It will be appreciated from the drawing in FIG. 1 that the weld bead 5 is axially inward (to the right in the drawings) of bell thrust face 4. Sealing rings, such as gaskets, may be disposed at locations in the joint to provide fluid seal in addition to the restraint effected by the locking ring 2 of the present invention. By way of example, bell groove 12 in FIG. 1 is shown radially outward of (to the left of, in the drawings) such a sealing area.

As shown, pipe Bell 1 engages locking ring 2 via ring thrust face 3 and bell thrust face 4. These surfaces (thrust faces) are oriented, in the embodiment shown at FIG. 1, at approximately 30 degrees to a radial projecting from the centerline of the pipe bell. This mating angle determines the relationship of thrust load (restraint) to radial (locating) load. Restraint of the thrust load is the objective, but a minimal radial load is required to locate and retain the locking ring. The relationship of these two forces influences the overall restraint of the joint, and is addressed by the invention. The locking ring 2 is located between bell thrust face 4 and the weld bead 5. The locking ring is clamped to the outside surface of the pipe spigot 6 during assembly such that the inside corner 7 of the locking ring engages the weld bead 5, such engagement occurring at least when the pipe spigot 6 is drawn outward of the pipe bell 1. The load path is thus complete. Thrust is transferred from the pipe bell 1 to the locking ring 2 via the thrust faces (3 and 4) and then to the pipe spigot 6 via the inside corner 7 and weld bead 5 interface. After initial assembly, the action of the bell groove 12 around the locking ring 2 may render continued use of the clamping force unnecessary in some embodiments. As shown in the Figures, ring spigot face 9, and in fact locking ring 2, is not intended to bite into or cause deformation of the pipe spigot 6, as the resistance to movement is imparted by the weld bead 5. In the shown embodiments it is therefore devoid of teeth adapted to bite into pipe spigot 6.

Non-exhaustive examples of ways to clamp the locking ring 2 to the outside surface of pipe spigot 6 include use of a ring with a resting configuration having a smaller diameter than the pipe spigot 6 (which can be manually expanded to allow passage of the weld bead 5 thereunder) or use of calipers or other mechanisms to draw the split ends of the locking ring 2 together after weld bead 5 has passed by the locking ring 2 on its passage into the pipe bell 1. As shown in FIGS. 3 through 8, a particularly shown embodiment of the invention uses ears (“tabs”) at the split ends of the locking ring 2, which tabs extend axially of the locking ring 2 (i.e., they are perpendicular to the plane of the locking ring 2). These tabs in the shown drawings are configured to extend outside of the pipe bell 1 even while locking ring 2 is within the bell groove 12, allowing them to be gripped, ratcheted together, bolted in place, or otherwise acted on in a way to draw the split ends of locking ring 2 together, or to press locking ring 2 into clamped association with the pipe spigot 2. In one configuration used by the inventors, the pipe bell 1 includes a slot or cut-out at some point along its outer face 13, which slot or cut-out is big enough to allow passage of the tabs therethrough. Alternatively, the tabs could be configured to pass through the annular gap 20 to become accessible outside of the pipe bell 1. As seen from the immediately preceding paragraph, when the locking ring 2 is clamped to the pipe spigot 6, either by way of a clamping force generated as discussed in this paragraph, or by the action of the pipe bell 1 around the locking ring 2, the locking ring 2 cannot slide outward of pipe bell 1 because it is greater in radial height than the height of annular gap 20, and weld bead 5 cannot slide past locking ring 2 because of its abutment with pipe spigot 6. As suggested in the preceding paragraph, and as would be understood from the drawing in FIG. 1, the abutment of locking ring 2 and pipe spigot 6 is further ensured (during movement of the pipe spigot 6 outward of pipe bell 1, which is movement of the pipe spigot 6 to the left in FIG. 1) by the fact that bell thrust face 4 and ring thrust face 3 meet at an angle which results in a “sliding wedge” action. In other words, for every unit of movement of locking ring 2 in an outward direction of the pipe bell 1 (i.e., to the left in FIG. 1), the locking ring 2 is also urged radially inwardly, which is toward more forced contact with the pipe spigot 6.

When the centerlines of the two halves of the mating joint (e.g. the pipe bell 1 and the pipe spigot 6) are concentric, and ignoring manufacturing imperfections, the thrust load is evenly distributed annularly around the mating surfaces of the locking ring 2. If the joint is deflected such that the centerline of one half of the joint (e.g. bell or spigot) is no longer concentric with the centerline of the other half of the joint (i.e. one centerline is offset by an angular or radial displacement), then the load is no longer evenly distributed annularly around the locking ring, but is concentrated in a specific region of the ring. This region of concentrated load is generally located at the closest longitudinal point between the bell thrust face 4 and the weld bead 5. Current state of the art restrained joints would suffer reduced performance (e.g. a reduced ability to withstand full thrust loads) due to this concentrated loading condition. In this invention, the one piece locking ring 2 distributes this concentrated load by twisting (deforming) about its centroidal axis. This twisting alters the apparent longitudinal length of the locking ring, and allows the locking ring to bridge a constantly varying gap between the bell thrust face 4 and the weld bead 5 Where the joint is not displaced, the locking ring 2, as shown in FIG. 1, does not twist. See, for example, FIG. 9, which shows a locking ring 2 in position in an angularly displaced joint. As shown in the FIG. 9, locking ring 2 is twisted about its centroidal axis (see that the ring spigot face 9 is essentially horizontal, or parallel to the bell axis, in the upper locations at location x and at the same time is at an angle essentially parallel to the axis of the Spigot 6, at location y, which can only occur if the locking ring 2 is twisting along its length). By way of example, the action of this twisting causes the ring to rotate about the centroidal axis at one location to a greater degree (or even in a different direction) than at another location along the locking ring 2, such as would occur if a rubber ring stretched over a tube were held in place in one location, and were rolled along the surface of the tube at another location. FIG. 10 shows a more extremely deflected joint, also depicting twisting. FIG. 11 shows a cut-away of the locking ring 2, depicting the twisting by showing a cut-away of the locking Ring 2 resting on a flat surface, to exemplify the twisting that can occur. This ability of the locking ring to twist is affected by the shape of the cross section of the locking ring and the material properties of the ring.

In practice, in a deflected joint wherein the locking ring 2 has twisted, the ring spigot face 9 may enjoy a range of angular relationships to the pipe spigot 6. That is, varying angles may be presented between the ring spigot face 9 and the pipe spigot 6 along the ring's inner circumferential length. By way of example, it may be substantially flat (parallel) abutment to pipe spigot 6 at some locations, while the ring outside corner 11 or the inside corner 7 (or both at different locations) rise to varying degrees along the length.

In the shown embodiments, for instance, the cross sectional shape of the ring is generally a trapezoid (if ring top 10 is considered a “side”; otherwise, consistent with the drawing shown it could be considered a triangular cross section) with a horizontal bottom surface, a ring thrust face 3 of about 30 degrees (measured from the vertical), a ring back face 8 of about 10 degrees (measured from the vertical) and overall dimensions of approximately about 1 inch high by about 1 inch wide (as seen from the figures, the edges may be rounded, rather than coming to precise points). The material in the shown instance is 65-45-12 Ductile Iron. The weight for a ring as shown in the embodiment depicted in the drawings, assuming an inner diameter of 44.3 inches and ear length of 4.5 inches has been seen to be approximately 27.8 lbs. As shown from FIGS. 3, 4, 5, and 7, the locking ring 2 in its resting state is essentially flat along its plane (i.e., is not yet twisted, the twisting occurring, as discussed above, in response to radial or particularly angular displacement).

The ring thrust face 3 angle in the shown embodiment matches the angle of the bell thrust face 4, though precise matching is not required. This angle typically is between about 10 and about 45 degrees from a direct radial line (vertical) and is dependent on the desired ratio between thrust (longitudinal) load and radial load. Overall length and width of the cross section can be any desired value corresponding to the strength and stiffness desired. The back face can be any angle between 0 and 60 degrees depending on the desired stiffness (resistance to twist) and location of the centroid. The material may be any material of suitable ductility and resistance to bearing stress.

In some embodiments the invention allows the joint to maintain substantially its full thrust restraint rating over substantially the full range of assembly conditions (including layout configurations and dimensional variations) whereas joints of the prior art may exhibit reduced performance in some assembly conditions.

Likewise, in some embodiments, the invention allows quicker and easier assembly in the field over the prior art. Some embodiments of the invention may allow the use of larger manufacturing tolerances in the pipe bell without risk of losing contact with the mating pipe's weld bead. Some embodiments of the invention allow the potential reduction of manufacturing cost of the joint through reduced material requirements compared to rigid rings or individual segments.

The foregoing represents certain exemplary embodiments of the invention selected to teach the principles and practice of the invention generally to those in the art so that they may use their standard skill in the art to make these embodiments or other and variable embodiments of the claimed invention, based on industry skill, while remaining within the scope and practice of the invention, as well as the inventive teaching of this disclosure. The inventor stresses that the invention has numerous particular embodiments, the scope of which shall not be restricted further than the claims as issued. Unless otherwise specifically stated, applicant does not by consistent use of any term in the detailed description in connection with an illustrative embodiment intend to limit the meaning of that term to a particular meaning more narrow than that understood for the term generally. Moreover, stated advantages are exemplary and alternative, only, and should not be interpreted as required in all cases.

The figures shown are of illustrative embodiments, only. Notes, finishing, and measurements in such images are precise for such embodiments shown, but variation may be made as would be appreciable to one of ordinary skill in the art.

Copeland, Daniel A.

Patent Priority Assignee Title
10550973, Dec 12 2013 UNITED STATES PIPE AND FOUNDRY CO , LLC Separation-resistant pipe joint
11306849, Jun 17 2016 BANK OF AMERICA, N A A NATIONAL BANKING INSTITUTION Separation-resistant pipe joint with enhanced ease of assembly
8511690, May 24 2010 Mueller International, LLC Simplified low insertion force sealing device capable of self restraint and joint deflection
8511691, May 24 2010 Mueller International, LLP Simplified low insertion force sealing device capable of self restraint and joint deflection
8528184, May 24 2010 Mueller International, LLC Method of creating and maintaining a sealed interface between a spigot and bell
8533926, Oct 09 2009 Mueller International, LLC Method of coupling at least two conduits
8544851, Aug 24 2010 Mueller International, LLC Gasket for parabolic ramp self restraining bell joint
8857861, Oct 12 2009 MUELLER INTERNATIONAL, INC Self-restrained pipe joint system
8870188, Aug 24 2010 Mueller International, LLC Gasket for parabolic ramp self restraining bell joint
8925977, Oct 09 2009 Mueller International, LLC Simplified low insertion force sealing device capable of self restraint and joint deflection
9121532, Aug 24 2010 Mueller International, LLC Gasket for parabolic ramp self restraining bell joint
9194519, Aug 24 2010 Mueller International, LLC Gasket for parabolic ramp self restraining bell joint
9506591, Oct 12 2009 Mueller International, LLC Self-restrained pipe joint method of assembly
Patent Priority Assignee Title
1818493,
1930194,
2201372,
2473046,
2491004,
2508914,
2953398,
3400950,
3445120,
3582112,
3606402,
3724880,
3726549,
3731955,
3733093,
3877733,
3963298, May 29 1972 Socket connection of tubes or tubular elements, in particular of metal
4119333, Jul 21 1976 Pipe coupling
4119335, Nov 01 1976 SMITH-BLAIR, INC Pipe and tubing connectors
4229026, Mar 03 1978 Eisenwerke Friedr. Wilh. Duker GmbH & Co. Socket connection for pipes and pipe elements
4396210, Oct 30 1980 JACUZZI INC Tape joint for cylindrical members
4428604, Mar 12 1981 American Cast Iron Pipe Company Restrained pipe joint and associated snap-ring
4524505, Mar 12 1981 American Cast Iron Pipe Company Method of assembling a pipe joint
4540204, Apr 04 1983 UNITED STATES PIPE AND FOUNDRY COMPANY, INC Restrained pipe joint
4602792, Oct 09 1984 UPR ACQUISITION, LTD Dual function gasket with dual lips and optional locking ring
4606559, Oct 11 1983 TTHYSSEN INDUSTRIE AG, A GERMAN COMPANY Axially secure sleeve connection for socket tubes
4643466, Mar 29 1984 American Cast Iron Pipe Company Pipe joint assembly with snap ring and associated method
4647083, Sep 07 1984 Kubota, Ltd. Separation preventive pipe joint
4660866, May 12 1986 United States Pipe and Foundry Company, LLC Restrained pipe joint
4662656, Sep 09 1983 Foster-Miller, Inc.; Foster-Miller, Inc Pipeline coupling
4664426, Sep 06 1984 KANTO CHUUTETSU KABUSHIKI KAISHA, Retainer ring for coupling together water supply pipes or the like
4685708, Mar 07 1986 AMERICAN CAST IRON PIPE COMPANY, A CORP OF GEORGIA Axially restrained pipe joint with improved locking ring structure
4789167, Feb 20 1987 IPEX INCORPORATED Pipe gasket with reinforcing means in its base self-energizing
4805932, Mar 05 1986 EISENWERKE FRIEDRICH WILHELM DUKER GMBH & CO Joint secured against sliding
4848805, Oct 01 1987 Pont-A-Mousson S.A. Packing for telescopically locked pipe joints
4867488, Aug 13 1987 United States Pipe and Foundry Company, LLC Restrained joint with gripper gland
4878698, Jan 12 1987 MIDLAND MANUFACTURING COMPANY Restraining pipe joint
5024454, Aug 25 1987 Compensating seal
5037144, May 02 1990 GRIFFIN PIPE PRODUCTS CO , INC Restrained pipe joint
5058907, Jun 28 1989 PONT-A-MOUSSON S A Pipe joint gasket with annular anchoring heel
5067751, Jul 27 1990 American Cast Iron Pipe Company Gasket for field adaptable push-on restrained joint and joint thus produced
5094467, Jun 30 1989 Pont-A-Mousson S.A. Pipe gasket with limited penetration locking elements
5150929, Jan 06 1988 Stanton plc Pipe joints
5176413, Nov 30 1988 Anchoring means for pipes with rhomboid-shaped grip ring
5197768, Oct 10 1991 American Cast Iron Pipe Company Restrained joint having elastomer-backed locking segments
5219189, Dec 11 1989 Pont-A-Mousson S.A. Composite gasket for the locked assembly of spigot and socket pipes
5269569, Nov 18 1992 United States Pipe and Foundry Company, LLC Bell lip restraining configuration for pressure pipe
5295697, Nov 04 1992 United States Pipe and Foundry Company, LLC Restraining element for pressure pipe joints
5297826, Nov 07 1991 PONT-A-MOUSSON S A Locking joint for pipe systems
5328215, Sep 14 1992 Rovac Corporation Pipe joint assembly
5332043, Jul 20 1993 ABB Vetco Gray Inc. Wellhead connector
5335946, Jul 28 1992 Romac Industries Inc. Cooperating combination of a gland and a grip ring installed in restrained sealed bolted joints of fluid piping systems including both plastic pipe and metallic pipe
5340169, Oct 14 1991 PONT-A-MOUSSON S A Locking device for laid pipes with embedded insert
5360218, Jan 13 1992 Pont-A-Mousson S.A.; PONT-A-MOUSSON S A Pipe socket joint and sealing gasket therefor
5398980, Nov 16 1993 TYLER PIPE COMPANY, A DIVISION OF RANSOM INDUSTRIES, INC Mechanical pipe joint
5431453, Apr 28 1993 Suiken Technology Co., Ltd. Pipe coupling arrangement
5464228, Nov 04 1992 United States Pipe and Foundry Company, LLC Restraining element for pressure pipe joints
5476290, Aug 02 1993 EISENWERKE FRIED WILH DUKER GMBH & CO Plug-in socket joint secured against sliding movement
5476292, Nov 07 1994 Crane Limited Pipe couplings
5496073, Nov 29 1993 Rovac Corporation Disengagement tool for use with a pipe joint assembly
5603530, Sep 14 1994 John Guest International Limited Grab rings
5609368, Jul 26 1995 Kubota Corporation Separation preventive pipe joint
5645285, Jul 23 1993 Pont-A-Mousson S.A. Electrically insulating locking insert for a seal, corresponding seal, and method of manufacturing such inserts
5803513, Jun 13 1996 ROMAC INDUSTRIES, INC Restrained sealed bolted joints of fluid piping systems, inclusive of an improved gland, an added compression control ring, and/or added skid pads placed on a grip ring
5897146, Mar 21 1996 Yano Giken Co., Ltd. Flexible pipe connector
5918914, Nov 25 1997 Sealing lock joint pipe fitting
5992905, Apr 07 1998 Suiken + Kennedy, LLP Breech lock fitting joint
6019396, Aug 21 1998 WATERWORKS TECHNOLOGY DEVELOPMENT ORGANIZATION CO , LTD Pipe connecting apparatus
6062611, Apr 09 1997 Pont-a-Mousson SA Locked pipe joint and split metal retaining ring therefor
6168210, Jun 19 1998 Sensus Spectrum LLC Pipe coupling
6173993, Sep 06 1996 EBAA IRON, INC Joint restraint
6220635, Jul 25 1997 PONT-A-MOUSSON S A Assembly set up between two pipes, and applied pipe assembles
6299217, Mar 21 1996 Flexible pipe connector
6502865, Aug 09 2000 Dynamic Air Pipe coupler and method of coupling
6502867, Jun 16 1999 Micron Technology, Inc Flanged pipe fitting
6568658, Dec 22 2000 CraneVeyor Corporation Quick-connect railing connector
6688652, Dec 12 2001 United States Pipe and Foundry Company, LLC Locking device and method for securing telescoped pipe
6921114, Dec 20 2002 DURA-LINE CORPORATION, AS SUCCESSOR IN INTEREST TO ARNCO CORPORATION; BOREFLEX LLC Coupler for conduits
784400,
20020158466,
20040075217,
20040155458,
20050006855,
D398504, Apr 17 1995 SUIKEN TECHNOLOGY CO , LTD Apparatus for advancing axially aligned pipes telescopically into or out of engagement
JP5229625,
WO113023,
WO3050421,
WO2005031174,
WO2005047745,
///////////////////////////////////////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 24 2004United States Pipe and Foundry Company, LLC(assignment on the face of the patent)
Sep 24 2004COPELAND, DANIEL A UNITED STATES PIPE AND FOUNDRY COMPANY, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0158370749 pdf
Sep 23 2005UNITED STATES PIPE AND FOUNDRY COMPANY, INC United States Pipe and Foundry Company, LLCCHANGE OF NAME AND CONVERSION OF ENTITY FROM CORPORATION TO LLC PURSUANT TO ALABAMA CODE SECTION 10-15-30168710096 pdf
Oct 03 2005United States Pipe and Foundry Company, LLCBANK OF AMERICA, N A, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0170820394 pdf
Oct 03 2005United States Pipe and Foundry Company, LLCBANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0170650107 pdf
Aug 26 2010BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTUnited States Pipe and Foundry Company, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0248920350 pdf
Mar 29 2012BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTUnited States Pipe and Foundry Company, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0280990372 pdf
Apr 02 2012United States Pipe and Foundry Company, LLCWELLS FARGO CAPITAL FINANCE, LLC, AS AGENTSECURITY AGREEMENT0279770086 pdf
Jul 23 2013United States Pipe and Foundry Company, LLCSJC DLF II-B, LLCSECURITY AGREEMENT0308880502 pdf
Apr 15 2016GRIFFIN PIPE PRODUCTS CO , LLCBANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0388540922 pdf
Apr 15 2016United States Pipe and Foundry Company, LLCBANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0388540922 pdf
Apr 15 2016GRIFFIN PIPE PRODUCTS CO , LLCCREDIT SUISSE AG, AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0387100410 pdf
Apr 15 2016CUSTOM FAB, INC CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0387100410 pdf
Apr 15 2016United States Pipe and Foundry Company, LLCCREDIT SUISSE AG, AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0387100410 pdf
Apr 15 2016Wells Fargo Capital Finance, LLCUnited States Pipe and Foundry Company, LLCRELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 027977 FRAME 00860387090636 pdf
Apr 15 2016SJC DLF II-B, LLCUnited States Pipe and Foundry Company, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0383030507 pdf
Oct 25 2016Bio Clean Environmental Services, IncCredit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Oct 25 2016CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTFORTERRA PIPE & PRECAST LLCRELEASE AGREEMENT0407070337 pdf
Oct 25 2016CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTFORTERRA PIPE & PRECAST LLC F K A HANSON PIPE & PRECAST LLC RELEASE AGREEMENT0407070337 pdf
Oct 25 2016CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTFORTERRA PRESSURE PIPE, INC F K A HANSON PRESSURE PIPE, INC RELEASE AGREEMENT0407070337 pdf
Oct 25 2016CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTFORTERRA CONCRETE PRODUCTS, INC F K A CRETEX CONCRETE PRODUCTS, INC RELEASE AGREEMENT0407070337 pdf
Oct 25 2016CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTUnited States Pipe and Foundry Company, LLCRELEASE AGREEMENT0407070337 pdf
Oct 25 2016CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTCUSTOM FAB, INC RELEASE AGREEMENT0407070337 pdf
Oct 25 2016CREDIT SUISSE AG, AS ADMINISTRATIVE AGENTGRIFFIN PIPE PRODUCTS CO , LLCRELEASE AGREEMENT0407070337 pdf
Oct 25 2016Forterra Pipe & Precast, LLCCredit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Oct 25 2016FORTERRA PRESSURE PIPE, INC Credit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Oct 25 2016MODULAR WETLAND SYSTEMS, INC BANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0412250793 pdf
Oct 25 2016Bio Clean Environmental Services, IncBANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0412250793 pdf
Oct 25 2016CUSTOM FAB, INC Credit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Oct 25 2016United States Pipe and Foundry Company, LLCCredit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Oct 25 2016MODULAR WETLAND SYSTEMS, INC Credit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Oct 25 2016FORTERRA PIPE & PRECAST LLC F K A HANSON PIPE & PRECAST LLC BANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0412250793 pdf
Oct 25 2016FORTERRA PRESSURE PIPE, INC F K A PRICE BROTHERS COMPANY BANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0412250793 pdf
Oct 25 2016United States Pipe and Foundry Company, LLCBANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0412250793 pdf
Oct 25 2016GRIFFIN PIPE PRODUCTS CO , LLCCredit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Oct 25 2016FORTERRA CONCRETE PRODUCTS, INC F K A CRETEX CONCRETE PRODUCTS, INC BANK OF AMERICA, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0412250793 pdf
Oct 25 2016FORTERRA CONCRETE PRODUCTS, INC Credit Suisse AG, Cayman Islands BranchSENIOR LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT0407750692 pdf
Jul 16 2020United States Pipe and Foundry Company, LLCDEUTSCHE BANK TRUST COMPANY AMERICAS, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT NOTES 0532290924 pdf
Jul 16 2020MODULAR WETLAND SYSTEMS, INC DEUTSCHE BANK TRUST COMPANY AMERICAS, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT NOTES 0532290924 pdf
Jul 16 2020GRIFFIN PIPE PRODUCTS COMPANY, LLCDEUTSCHE BANK TRUST COMPANY AMERICAS, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT NOTES 0532290924 pdf
Jul 16 2020FORTERRA CONCRETE PRODUCTS, INC DEUTSCHE BANK TRUST COMPANY AMERICAS, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT NOTES 0532290924 pdf
Jul 16 2020Bio Clean Environmental Services, IncDEUTSCHE BANK TRUST COMPANY AMERICAS, AS NOTES COLLATERAL AGENTSECURITY AGREEMENT NOTES 0532290924 pdf
Mar 18 2022BANK OF AMERICA, N A MODULAR WETLAND SYSTEMS, INC RELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTFORTERRA PRECAST CONCEPTS, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTBio Clean Environmental Services, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTCUSTOM FAB, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTGRIFFIN PIPE PRODUCTS CO , LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTUnited States Pipe and Foundry Company, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTForterra Pipe & Precast, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022United States Pipe and Foundry Company, LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTMODULAR WETLAND SYSTEMS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENTFORTERRA CONCRETE PRODUCTS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0601990286 pdf
Mar 18 2022BANK OF AMERICA, N A Forterra Pipe & Precast, LLCRELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022BANK OF AMERICA, N A FORTERRA PRESSURE PIPE, INC RELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022BANK OF AMERICA, N A FORTERRA CONCRETE PRODUCTS, INC RELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022BANK OF AMERICA, N A United States Pipe and Foundry Company, LLCRELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022BANK OF AMERICA, N A GRIFFIN PIPE PRODUCTS CO , LLCRELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022BANK OF AMERICA, N A CUSTOM FAB, INC RELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022BANK OF AMERICA, N A Bio Clean Environmental Services, IncRELEASE OF ABL SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 041225 FRAME 07930602050101 pdf
Mar 18 2022United States Pipe and Foundry Company, LLCWELLS FARGO BANK, N A , AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0593140075 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchMODULAR WETLAND SYSTEMS, INC RELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchBio Clean Environmental Services, IncRELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022KEYSTONE RETAINING WALL SYSTEMS LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022CONTECH ENGINEERED SOLUTIONS LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022Pavestone, LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022FORTERRA PRECAST CONCEPTS, LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022FORTERRA CONCRETE PRODUCTS, INC Wells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022Forterra Pipe & Precast, LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022MODULAR WETLAND SYSTEMS, INC Wells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022Bio Clean Environmental Services, IncWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022CUSTOM FAB, INC Wells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022GRIFFIN PIPE PRODUCTS CO , LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchForterra Pipe & Precast, LLCRELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchFORTERRA PRESSURE PIPE, INC RELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchFORTERRA CONCRETE PRODUCTS, INC RELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchUnited States Pipe and Foundry Company, LLCRELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchGRIFFIN PIPE PRODUCTS CO , LLCRELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022Credit Suisse AG, Cayman Islands BranchCUSTOM FAB, INC RELEASE OF SENIOR LIEN SECURITY INTEREST IN INTELLECTUAL PROPERTY RECORDED AT REEL 040775 FRAME 06920594370967 pdf
Mar 18 2022BEST BLOCK, LLCWells Fargo Bank, National Association, As AgentPATENT SECURITY AGREEMENT ABL 0594790437 pdf
Date Maintenance Fee Events
May 03 2010M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 23 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 10 2018M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 21 20094 years fee payment window open
May 21 20106 months grace period start (w surcharge)
Nov 21 2010patent expiry (for year 4)
Nov 21 20122 years to revive unintentionally abandoned end. (for year 4)
Nov 21 20138 years fee payment window open
May 21 20146 months grace period start (w surcharge)
Nov 21 2014patent expiry (for year 8)
Nov 21 20162 years to revive unintentionally abandoned end. (for year 8)
Nov 21 201712 years fee payment window open
May 21 20186 months grace period start (w surcharge)
Nov 21 2018patent expiry (for year 12)
Nov 21 20202 years to revive unintentionally abandoned end. (for year 12)