A toroidally shaped LPE with a plurality of microtubes extending through the LPE is disclosed. The LPEs are placed into thermal connection with heat producing components. A heat transfer fluid is contained in the microtubes of the LPEs and removes the heat from the heat producing components. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b)
|
11. A method for cooling heat generating elements, the method comprising:
placing a generally planar portion of a generally toroidally-shaped heat pipe substantially near at least one of the heat generating elements, the generally toroidally-shaped heat pipe including a low-profile extrusion having a first sealed end and a second sealed end, the low-profile extrusion being curved upon itself forming a generally toroidal shape such that said second sealed end is disposed generally opposite said first sealed end;
drawing air across the generally toroidally-shaped heat pipe via a fan structure; and
wherein said first sealed end and said second sealed end are oriented opposite from said generally planar portion and
wherein the low-profile extrusion includes a first arcuate portion extending from the generally planar portion to the first sealed end, and a second arcuate portion extending from the generally planar portion to the second sealed end, the first arcuate portion and the second arcuate portion forming segments of a generally circular body portion, each of the first arcuate portion and the second arctuate portion having the same generally constant arc radius measured from a common focus point central to the generally circular body portion.
5. A generally toroidally-shaped heat pipe cooling system for removing heat from at least one heat generating component, the system comprising:
a low-profile extrusion having a first sealed end and a second sealed end, the low-profile extrusion being curved upon itself and forming a generally toroidal shape such that said second sealed end is disposed generally opposite said first sealed end;
at least one fin structure extending from at least one surface of the low-profile extrusion;
a generally planar portion for positioning substantially near said at least one heat generating component;
wherein said first sealed end and said second sealed end are oriented opposite from said generally planar portion;
wherein the low-profile extrusion includes said generally planar portion a first arcuate portion extending from the generally planar portion to the first sealed end, and a second arcuate portion extending from the generally planar portion to the second sealed end, the first arcuate portion and the second arcuate portion forming segments of a generally circular body portion, each of the first arcuate portion and the second arctuate portion having the same generally constant arc radius measured from a common focus point central to the generally circular body portion.
1. A cooling system for removal of heat from at least one heat generating component, the cooling system comprising:
a generally planar portion for positioning substantially near said at least one heat generating component;
a low-profile extrusion having an inner and outer external surface and having a first sealed end and a second sealed end, said low-profile extrusion including said generally planar portion and being curved upon itself into a generally toroidal shape such that said second sealed end is disposed generally opposite said first sealed end, wherein said first sealed end and said second sealed end are oriented opposite from said generally planar portion; and
wherein the low-profile extrusion includes a first arcuate portion extending from the generally planar portion to the first sealed end, and a second arcuate portion extending from the generally planar portion to the second sealed end, the first arcuate portion and the second arcuate portion forming segments of a generally circular body portion, each of the first arcuate portion and the second arctuate portion having the same generally constant arc radius measured from a common focus point central to the generally circular body portion;
an interior space formed by said inner external surface of said low-profile extrusion; said low-profile extrusion having an external surface adapted for thermal connection to said at least one heat generating component;
a plurality of micro-tubes formed in the interior of said low-profile extrusion and adapted for containing a heat transfer fluid inside the micro-tubes; and
a fin structure in thermal connection with the exterior surfaces of said extrusion.
2. The cooling system of
a spring structure abutting said fin structure and adapted for thermal connection of said cooling system to said heat generating component.
3. The cooling system of
4. The cooling system of
6. The cooling system of
7. The cooling system of
9. The cooling system of
10. The generally toroidally-shaped heat pipe cooling system of
12. The method of
14. The method of
15. The method of
16. The method of
|
This application claims priority from, and incorporates by reference for any purpose the entire disclosure of U.S. Provisional Application Ser. No. 60/463,961, filed Apr. 18, 2003. This application is a Continuation-in-Part of, and incorporates by reference for any purpose the entire disclosure of U.S. patent application Ser. No. 09/328,183 filed Jun. 8, 1999 now U.S. Pat. No. 6,935,409 which claims benefit of U.S. Provisional Application Ser. No. 60/088,428 filed Jun. 8, 1998.
1. Field of the Invention
Embodiments of the present invention pertain to a cooling apparatus, and more particularly, but not by way of limitation, to cooling systems incorporating toroidally shaped, low-profile extrusions (LPEs).
2. History of Related Art
As is explained in greater detail hereinbelow, LPE cooling devices are extremely useful in printed circuit board (PCB) level cooling of electronic components, and for use as heat exchangers in applications where space is limited and/or low weight is critical.
LPE refers to a heat exchange apparatus including an integral piece of metal having a series of micro extruded hollow tubes formed therein for containing a fluid. LPEs preferably have multi-void extruded tubes (micro-tubes) designed to operate under the pressures and temperatures required by modern environmentally safe refrigeration gases and to resist corrosion. Aspects of the LPE application to the present invention are set forth and shown in co-pending U.S. patent application Ser. No. 09/328,183 and Ser. No. 10/305,662 assigned to the assignee of the present invention and incorporated herein by reference.
LPEs can currently be manufactured with a profile, or height, as low as about 0.05 inches and with tubes of varying inner diameters. Of course, future advances may allow such low-profile extrusions to be manufactured with an even smaller profile. Such low-profile extrusions have been conventionally used in heat exchanger applications in the automotive industry, and are commercially available in strip form (having a generally rectangular geometry) or coil form (a continuous strip coiled for efficient transport).
An example of a low-profile extrusion is described in a brochure entitled “Thermalex, Inc.—Setting A Higher Standard in Aluminum Extrusions” (hereinafter the “Thermalex Brochure”). The Thermalex Brochure provides additional detail regarding the Thermalex LPEs and is incorporated herein by reference.
U.S. Pat. No. 5,342,189 to Inamura, et al, which is incorporated herein by reference, provides additional detail regarding an extrusion die for making such LPEs. The extrusion die is used for making multi-cavity flat aluminum tubes, which are used for small heat exchanger components, in automotive air-conditioners, condensers, and radiators. The insert die is composed of a male die section having a protrusion part and a female die section, having a die cavity, and is held detachably in a die holder. The male section is a roughly rectangular plate-shaped component, and has an integrally formed twist prevention region which is inserted into the receiver groove of the female section which is integrally formed on the female section. The protrusion part defines the cavity shape of the multi-cavity flat tube, and the female section has the die cavity of the required cross sectional shape to define the outer shape of the tube.
U.S. Pat. No. 5,353,639 to Brookins, et al, which is incorporated herein by reference, provides additional detail regarding a method and apparatus for sizing a plurality of micro-extruded tubes used in such LPEs. As described by the Brookins patent, a predetermined number of micro-extruded tubes are stacked on the base fence between the fixed side fence and the clamping fence. The internal webs of the tubes are aligned throughout the stack, perpendicular to the plane of the base fence. The clamping fence is moved toward the stack of tubes to prevent the stack from moving laterally. The die platen is moved toward the stack of tubes and the mating surface of the die platen is in mating engagement with a side surface of the uppermost tube in the stack. A predetermined amount of pressure is applied to the stack of tubes through the die platen. The pressure is applied equally across the entire side surface of the uppermost tube and is transmitted equally through all the tubes of the stack in the sizing die.
Other developments in cooling apparatus may be seen in U.S. Pat. No. 5,285,347 to Fox et al., which describes a hybrid cooling system for electrical components. A hybrid heat sink is specially adapted to transfer heat to two heat transfer fluids. The heat sink is incorporated into a cooling system in which some of the electronic components of an electronic device may be cooled by two heat transfer fluids and some electronic components may be cooled by one heat transfer fluid. The electronic components are mounted on a circuit board. In the Fox reference, one of the heat transfer fluids is air and one is a liquid. The hybrid heat sink is attached to electronic components that cannot be cooled to the normal operating range by the cooling air alone. The cooling air is caused to flow over the surface of the heat sink, removing some of the heat. In addition, the liquid heat transfer fluid is caused to flow through the heat sink, thereby removing additional heat.
In addition, U.S. Pat. No. 5,901,037 to Hamilton, et al. describes a system for closed loop liquid cooling for semiconductor RF amplifier modules. The system includes a combination of a plurality of elongated micro-channels connected between a pair of coolant manifolds for conducting liquid coolant beneath the transistors to dissipate the heat generated by the transistors. The system also includes a heat exchanger, a miniature circulating pump located on the module, and passive check valves having tapered passages for controlling the flow of coolant in the loop. The valve includes a truncated pyramid-shaped micro-channel valve having no moving parts and is fabricated so as to be a part of either the circulating pump assembly, the coolant manifold, or the micro-channels.
It has been shown that the use of low-profile heat pipes greatly improves the efficiency of the heat removal process, while making the cooling package lightweight and compact. It is shown in co-pending U.S. patent application Ser. No. 09/328,183, Ser. No. 10/328,438, Ser. No. 10/328,537, Ser. No. 10/335,373 and Ser. No. 10/345,475 that heat pipes of the unstacked variety provide superior performance in a low-profile, light weight package.
Embodiments of the present invention provide a cooling element utilizing a heat pipe with a toroidal shape. The toroidal shape allows the heat pipe to remove heat from a heat generating element while exhibiting a small footprint. The toroidal heat pipe is useful in environments having little space but requiring efficient heat removal.
The present invention relates to a heat pipe cooling system and method of manufacture. More particularly, the present invention relates to a cooling system for removal of heat from at least one heat generating component. The system includes a low-profile extrusion having an inner and outer external surface and having a first end and a second end. The low-profile extrusion is curved upon itself such that the second end is disposed generally opposite the first end. The system also includes an interior spaced formed by the inner external surface of the curved low-profile extrusion. The low-profile extrusion has an external surface adapted for thermal connection to the at least one heat generating component. The system also includes a plurality of microtubes formed in the interior of the low-profile extrusion and adapted for containing a heat transfer fluid inside the microtubes, and a fin structure in thermal connection with the exterior surfaces of the extrusion.
In another aspect, the present invention relates to a method for cooling heat generating elements. The method comprises placing a generally toroidally-shaped heat pipe substantially near at least one of the heat generating elements, and drawing air across the generally toroidally-shaped heat pipe via a fan structure.
A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
Various aspects of the present invention are illustrated herein by example in
The cooling apparatus 10 generally includes a conventional liquid-to-air heat exchanger 16, an inlet tube 18, a low-profile extrusion 20, an outlet tube 22, a conventional pump 24, and tubing 26. The low-profile extrusion 20 has a plurality of micro-tubes 21, each micro-tube 21 having a micro-tube inlet 21a and a micro-tube outlet 21b.
Micro-tubes 21 are formed by a plurality of longitudinal members. The longitudinal members may be vertical or may be offset from vertical. A preferred offset from vertical is between about 5° and 60°. More preferably, longitudinal members are offset from vertical by about 30°. Furthermore, longitudinal members may be provided with a capillary groove. The capillary groove may be positioned on an external surface or on the longitudinal members. Further, the capillary grooves may be provided in groups of one, two, three or more.
Referring again to
The micro-tube inlets 21a of the micro-tubes 21 in the extrusion 20 are interconnected in fluid communication, and to the inlet tube 18, by an inlet endcap 28a. Similarly, the micro-tube outlets 21b of the micro-tubes 21 in the extrusion 20 are interconnected in fluid communication, and to the outlet tube 22, by an outlet endcap 28b. Alternatively, micro-tube outlets 21a and/or 21 may be sealed by crimping the low-profile member 20. Micro-tubes outlets 21a and/or 21b may be individually sealed or connected in fluid communication. The heat exchanger 16 may contain a fluid reservoir (not shown) for housing a heat transfer fluid such as water, glycol, alcohol, or other conventional refrigerants. In addition, a wick, such as a screen may be provided within one or all of micro-tubes 21. The fluid from the heat exchanger 16 is circulated through the inlet tube 18, the low-profile extrusion 20, the outlet tube 22, and the tubing 26 via the pump 24. Alternatively, the entire cooling apparatus 10 may be evacuated and charged with fluid which is then circulated via the pump 24.
During operation of the host electronic device, heat generated by heat generating components 12 is transferred from heat generating components 12 to an evaporator section of low-profile extrusion 20, to the fluid circulating within low-profile extrusion 20, and then to heat exchanger 16 from a condenser section of low-profile extrusion 20. Heat exchanger 16 removes the heat from the fluid in a conventional manner. Preferably, an airflow 30 is passed over heat exchanger 16 to aid in such heat removal. Cooling apparatus 10 thus efficiently removes heat from a limited space, low-profile area within the host electronic device (the location of low-profile extrusion 20) to an area where it can be removed at a more convenient location and envelope (the location of heat exchanger 16).
To form a heat pipe, the micro-tubes 41 of the low-profile heat pipe extrusion 42 are evacuated and then charged with a fluid such as water, glycol, alcohol, or other conventional refrigerants before sealing the ends 41a and 41b of the micro-tubes 41. The ends may be sealed by crimping. By providing vertically offset longitudinal members, longitudinal members tend to lay over during crimping rather than buckling. Therefore, vertically offset members may be advantageous. As is known in the art, a heat pipe generally has an effective thermal conductivity of several multiples higher than that of a solid rod. Efficiency is increased due to the fact that the phase change heat transfer coefficients are high compared to the thermal conductivity of conventional materials.
The low-profile heat pipe extrusion 42 is preferably formed into an evaporator section or first portion 44 for contacting heat generating components 12 and a raised or condenser section second portion 46. First portion 44 and second portion 46 are preferably substantially similar in construction to low-profile extrusion 20 of
During operation of the host electronic device, heat generated by heat generating components 12 is transferred from heat generating components 12 to first portion 44. Heat causes the liquid within the micro-tubes 41 in first portion 44 to change to vapor, consuming some of the generated heat. Because the vapor is less dense than the surrounding liquid, the vapor and associated heat rise into the micro-tubes 41 in second portion 46. Of course, heated liquid may also be transferred from first portion 44 to second portion 46 via the capillary action of the wick structures of the micro-tubes. In second portion 46, the vapor condenses into liquid onto the inner side walls of the micro extruded tubes 41. The heat generated by the condensation reaction, as well as any heat transferred via capillary action of the wick structure, is then transferred to air flow 48. Cooling apparatus 40 thus efficiently removes heat from a limited space, low-profile area within the host electronic device (the location of first portion 44) to an area where it can be removed at a more convenient location and envelope (the location of second portion 46). Of course, if low-profile heat pipe extrusion 42 is formed with internal wick structures, it is not necessary that second portion 46 be raised from, or higher than, first portion 44.
Referring now to
Cooling apparatus 60 generally includes a low-profile extrusion 64, an inlet endcap 63a, an inlet tube 66, an outlet endcap (not shown), an outlet tube (not shown), thermoelectric coolers 52, and conventional bonded fin heat sinks 68 and 70. The low-profile extrusion 64 is preferably substantially similar in construction to low-profile extrusion 20 of
The low-profile extrusion 64 preferably has generally flat bottom and top surfaces for contact with TECs 52. The conventional bonded fin heat sink 68 is coupled to TECs 52 on the top surface of low-profile extrusion 64, and the conventional bonded fin heat sink 70 is coupled to TECs 52 on the bottom surface of low-profile extrusion 64.
In operation, the low-profile extrusion 64 serves as a manifold, and the TECs 52 remove heat from fluid 62 flowing through the micro-tubes of the low-profile extrusion 64. Heat removed is transferred from TECs 52 to bonded fin heat sinks 68 and 70, which dissipate the heat to atmosphere in a conventional manner. Preferably, airflows 72 and 74 pass over and through heat sinks 68 and 70 to facilitate such heat dissipation.
Low-profile extrusion 64 has a smaller size and mass than conventional heat exchanger manifolds. For example, a conventional manifold has a minimum profile, or height, in the “z” direction of about 0.75 inches, and low-profile extrusion 64 may have a profile as low as about 0.1 inches. The reduced mass of low-profile extrusion 64 is believed to produce a cooling apparatus 60 with a near zero time constant, increasing startup performance and temperature control. Therefore, cooling apparatus 60 is especially advantageous in applications involving lasers. The wavelength of a laser beam, and thus beam properties, is strongly influenced by temperature, and the tighter temperature control believed to be provided by cooling apparatus 60 is extremely beneficial.
Cooling apparatus 80, 90, and 100 have the same applications and advantages of cooling apparatus 60 described hereinabove. As will be appreciated by one skilled in the art, cooling apparatus 60, 80, and 90 may also be operated as heating apparatus by using thermoelectric coolers (TECs) 52 to heat, rather than to cool, a fluid.
Apparatus 110 generally includes an oven 112 having an insulated housing. A vacuum station 114 and a fluid charging station 116 are in fluid communication with oven 112. Alternatively, stations 114 and 116 may be separate from oven 112. A coil 118 is disposed within a portion of oven 112 on a conventional automatic feed system. Coil 118 may be a coil of hollow tubing, a coil of low-profile extrusion, or a coil of other conventional extrusion having a series of extruded hollow tubes. Furthermore, coil 118 includes any material that can be formed and welded with any fluid fill. The material includes, but is not limited to aluminum, stainless steel, carbon steel, copper, and titanium alloys. An ultrasonic welder/sealer is also provided. One model of ultrasonic welder/sealer is the Ultraseal7 series sold by American Technology, Inc. of Shelton, Conn. A brochure entitled “Ultraseal7–20 20 kHz Portable Ultrasonic Metal Tube Sealer” (hereinafter the “Amtech Brochure”) provides additional information regarding the Ultraseal7 series of ultrasonic welder/sealers and is incorporated herein by reference. A preferred ultrasonic welder/sealer is the Stapla Ultrasonic gantry style seam welder.
In a conventional process, the first step is actually forming and cutting the heat exchanger, heat pipe, or extruded tubes into the desired configuration. Next, the preformed system is evacuated and charged with a fluid such as water, glycol, alcohol, or other conventional refrigerants. The system is then sealed, completing the process. Conventional processes are expensive because they are labor intensive and require long setup times for different configurations of heat exchangers, heat pipes, or extruded tubes.
However, apparatus 110 may be used to efficiently and economically produce heat exchangers, heat pipes, and extruded tubes, including LPEs, according to the following preferred process. First, coil 118 is placed within a heat producing device such as oven 112 on the automatic feed system. Second, coil 118 is evacuated using vacuum station 114. Preferably, coil 118 is pulled down to a vacuum of about 10−7 torr for a period lasting approximately twenty four hours to many weeks depending on performance requirements. Third, coil 118 is charged with a known amount of fluid, such as water, glycol, alcohol, acetone or other refrigerants, using charging station 116. Acetone is the preferred fluid. Alternatively, coil 118 may be evacuated and charged outside oven 112. Fourth, oven 112 heats coil 118 until at least some of the fluid is in the vapor phase, and the vapor fills the interior of coil 118 evenly. Fifth, using the automatic feed system, the heated and charged coil 118 is reeled out.
Preferably the fluid exits the oven 112 at approximately 40° C. to 60° C. allowing enough thermal inertia to draw vapor into the extrusion external to the oven. A temperature sender container may be provided to ensure that the fluid exit temperature is maintained at a desired level. The coil is then processed by crimping, sealing, and cutting the coil 118 into desired lengths. The temperature difference between the oven 118 and the ambient air (or air-conditioned air) temperature condenses the charging fluid in each pipe before it is crimped. These temperatures and flows are used to control the individual heat pipe fills via a weight analysis. A computer and scale monitor the weight of each part and adjust the oven temperatures accordingly.
Subsequent steps include crimping, sealing, and cutting the coil 118. A hydraulic press, pneumatic or mechanical means may be used for crimping. An ultrasonic welder/sealer, or another standard welding method such as laser electron beam, resistive, TIG, or MIG welding may be used during the sealing stage. Ultrasonic welding is the preferred process.
A plasma cutter, or other standard welding method mentioned herein may be used in the cutting stage. However, the plasma cutter is the preferred method. Finished product is collected within container 122. Thus, heat exchangers, heat pipes, and extruded tubes, including LPEs, are formed while charged with fluid, significantly reducing the setup time and vacuum expense over conventional processes.
In addition, by separating the coil side of the process from the crimping, sealing, and welding process steps, the temperatures for the process steps can be adjusted so as to be in the fluid range for the working fluid. Thus, if a cryogenic heat pipe (charging fluid is typically a gas at normal room temperature) is to be manufactured, the temperature of the process steps would be adjusted such that the charging fluid is a liquid. In a similar manner, high temperature heat pipes, where the charging fluid is typically a solid at room temperatures, can be manufactured.
Referring now to
Referring still to
Still referring to
Referring now to
Referring still to
Still referring to
Referring still to
Referring now to
As shown herein, an angle between 0 and 90 degrees is suggested relative to the angulated portion of the phase plane heat pipe extending laterally outwardly from element 426, which may be a heat source or a third thermally conductive spacer block disposed beneath the first phase plane heat pipe 401 with a heat generating component 420 disposed underneath (as shown in
Referring now to
Referring now to
Referring now to
Referring still to
Again referring to the operation of the stacked, low-profile cooling system 400, the evaporator section 444 include that region of the phase plane heat pipes where the heat generating component 420 is positioned, as best illustrated in
Referring now to
Referring now to
Referring now to
Various embodiments of the stacked, low-profile cooling system may also include cross configurations where the phase plane heat pipes extend orthogonally one to the other and/or at angles acute to each other for purposes of positioning around components within an electrical system, such as a computer, and/or to improve air flow and to improve the thermal efficiency of the components of the electrical system.
Referring now to
In the embodiment illustrated in
With further reference to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
It is believed that the operation and construction of the present invention will be apparent from the foregoing description of a preferred embodiment. While the device shown is described as being preferred, it will be obvious to a person of ordinary skill in the art that various changes and modifications may be made to the device without departing from the spirit and scope of the invention as defined in the following claims. Therefore, the spirit and the scope of the appended claims should not be limited to the description of the preferred embodiments contained herein.
Quisenberry, Tony, Parish, Overton L., Hester, Darren C.
Patent | Priority | Assignee | Title |
7556088, | Mar 30 2007 | COOLIT SYSTEMS INC | Thermosiphon for laptop computer |
7794868, | Dec 02 2005 | LG ENERGY SOLUTION, LTD | Battery module of high cooling efficiency |
7879485, | Apr 20 2005 | LG ENERGY SOLUTION, LTD | Housing member for battery module |
7883793, | Jun 30 2008 | LG ENERGY SOLUTION, LTD | Battery module having battery cell assemblies with alignment-coupling features |
7955726, | Dec 02 2005 | LG ENERGY SOLUTION, LTD | Battery module of high cooling efficiency |
8288031, | Mar 28 2011 | LG ENERGY SOLUTION, LTD | Battery disconnect unit and method of assembling the battery disconnect unit |
8353315, | Aug 23 2010 | LG ENERGY SOLUTION, LTD | End cap |
8399118, | Jul 29 2009 | LG ENERGY SOLUTION, LTD | Battery module and method for cooling the battery module |
8399119, | Aug 28 2009 | LG ENERGY SOLUTION, LTD | Battery module and method for cooling the battery module |
8426050, | Jun 30 2008 | LG ENERGY SOLUTION, LTD | Battery module having cooling manifold and method for cooling battery module |
8469404, | Aug 23 2010 | LG ENERGY SOLUTION, LTD | Connecting assembly |
8486552, | Jun 30 2008 | LG ENERGY SOLUTION, LTD | Battery module having cooling manifold with ported screws and method for cooling the battery module |
8628872, | Jan 18 2008 | LG ENERGY SOLUTION, LTD | Battery cell assembly and method for assembling the battery cell assembly |
8662153, | Oct 04 2010 | LG ENERGY SOLUTION, LTD | Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger |
8663829, | Apr 30 2009 | LG ENERGY SOLUTION, LTD | Battery systems, battery modules, and method for cooling a battery module |
8703318, | Jul 29 2009 | LG ENERGY SOLUTION, LTD | Battery module and method for cooling the battery module |
8758922, | Aug 23 2010 | LG ENERGY SOLUTION, LTD | Battery system and manifold assembly with two manifold members removably coupled together |
8811014, | Dec 29 2011 | INTELLIGENT PLATFORMS, LLC | Heat exchange assembly and methods of assembling same |
8852778, | Apr 30 2009 | LG ENERGY SOLUTION, LTD | Battery systems, battery modules, and method for cooling a battery module |
8920956, | Aug 23 2010 | LG ENERGY SOLUTION, LTD | Battery system and manifold assembly having a manifold member and a connecting fitting |
9005799, | Aug 25 2010 | LG ENERGY SOLUTION, LTD | Battery module and methods for bonding cell terminals of battery cells together |
9147916, | Apr 17 2010 | LG ENERGY SOLUTION, LTD | Battery cell assemblies |
9178192, | May 13 2011 | LG ENERGY SOLUTION, LTD | Battery module and method for manufacturing the battery module |
9230881, | Jan 05 2006 | International Business Machines Corporation | Heat sink for dissipating a thermal load |
9337456, | Apr 20 2009 | LG ENERGY SOLUTION, LTD | Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same |
9496544, | Jul 28 2011 | LG ENERGY SOLUTION, LTD | Battery modules having interconnect members with vibration dampening portions |
9561563, | Oct 24 2012 | Audi AG | Method for producing a heat exchanger for a motor vehicle and a heat exchanger for a motor vehicle |
Patent | Priority | Assignee | Title |
3528494, | |||
4072188, | Jul 02 1975 | Honeywell Information Systems Inc. | Fluid cooling systems for electronic systems |
4196504, | Apr 06 1977 | Thermal Corp | Tunnel wick heat pipes |
4279294, | Dec 22 1978 | United Technologies Corporation | Heat pipe bag system |
4280519, | Apr 14 1980 | Environmental manicure system | |
4381032, | Apr 23 1981 | TECHNOLOGY ENTERPRISES COMPANY, TURKS AND CAICOS ISLANDS, BRITISH WEST INDIES, A CO OF BRITISH CROWN COLONY | Apparatus for cooling high-density integrated circuit packages |
4470450, | Oct 22 1981 | Lockheed Corporation; Lockheed Martin Corporation | Pump-assisted heat pipe |
4503906, | Nov 06 1981 | Daimler-Benz Aktiengesellschaft | Surface heater structure, especially for vehicles |
4550774, | Feb 02 1982 | Daimler-Benz Aktiengesellschaft | Surface heating body for vehicles |
4558395, | Apr 27 1983 | Hitachi, Ltd. | Cooling module for integrated circuit chips |
4640347, | Apr 16 1984 | ALSTOM POWER INC | Heat pipe |
4675783, | Sep 09 1983 | The Furukawa Electric Co., Ltd.; Fuji Electric Co., Ltd. | Heat pipe heat sink for semiconductor devices |
4729060, | Jan 26 1984 | Fujitsu Limited | Cooling system for electronic circuit device |
4830100, | Nov 25 1985 | The Nippon Aluminium Mfg. Co., Ltd. | Heat-pipe device and heat-sink device |
4854377, | Nov 19 1985 | NEC Corporation | Liquid cooling system for integrated circuit chips |
4880052, | Feb 27 1989 | Thermal Corp | Heat pipe cooling plate |
4880053, | Apr 24 1989 | The Board of Governors of Wayne State University; BOARD OF GOVERNORS OF WAYNE STATE UNIVERSITY, THE, A NON-PROFIT CONSTITUTIONAL CORP OF MI | Two-phase cooling apparatus for electronic equipment and the like |
4884630, | Jul 14 1988 | Stovokor Technology LLC | End fed liquid heat exchanger for an electronic component |
4896716, | Jan 27 1987 | The Furukawa Electric Co., Ltd. | Heat pipe type heat-exchanger for the ventilation |
4909315, | Sep 30 1988 | Stovokor Technology LLC | Fluid heat exchanger for an electronic component |
4921041, | Jun 23 1987 | Actronics Kabushiki Kaisha | Structure of a heat pipe |
4982274, | Dec 14 1988 | The Furukawa Electric Co., Ltd. | Heat pipe type cooling apparatus for semiconductor |
5002122, | Sep 25 1984 | Thermacore, Inc. | Tunnel artery wick for high power density surfaces |
5005640, | Jun 05 1989 | McDonnell Douglas Corporation | Isothermal multi-passage cooler |
5036384, | Dec 07 1987 | NEC Corporation | Cooling system for IC package |
5044429, | Dec 09 1987 | Fujikura Ltd. | Heat pipe and method of manufacturing the same |
5054296, | May 16 1989 | FURUKAWA ELECTRIC CO , LTD , THE; Taisei Corporation | Pipe for cooling unit, cooling unit and individual cooling system |
5069274, | Dec 22 1989 | Grumman Aerospace Corporation | Spacecraft radiator system |
5076351, | Jul 19 1989 | Showa Denko K K | Heat pipe |
5084966, | Feb 06 1989 | The Furukawa Electric Co., Ltd. | Method of manufacturing heat pipe semiconductor cooling apparatus |
5099311, | Jan 17 1991 | Lawrence Livermore National Security LLC | Microchannel heat sink assembly |
5139546, | Jun 04 1991 | Nail vapor and dust collection and treatment device | |
5159529, | May 15 1991 | International Business Machines Corporation | Composite liquid cooled plate for electronic equipment |
5168921, | Dec 23 1991 | Thermacore, Inc. | Cooling plate with internal expandable heat pipe |
5186252, | Jan 14 1991 | FURUKAWA ELECTRIC CO , LTD , THE | Heat transmission tube |
5199487, | May 31 1991 | Hughes Aircraft Company | Electroformed high efficiency heat exchanger and method for making |
5203399, | May 16 1990 | Kabushiki Kaisha Toshiba | Heat transfer apparatus |
5268812, | Aug 26 1991 | Sun Microsystems, Inc. | Cooling multi-chip modules using embedded heat pipes |
5283464, | Jun 08 1989 | The Furukawa Electric Co., Ltd. | Electrically insulated heat pipe type cooling apparatus for semiconductor |
5283715, | Sep 29 1992 | International Business Machines, Inc. | Integrated heat pipe and circuit board structure |
5285347, | Jul 02 1990 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Hybird cooling system for electronic components |
5314010, | Dec 09 1987 | Fujikura Ltd. | Heat pipe and method of manufacturing the same |
5316077, | Dec 09 1992 | CAMP | Heat sink for electrical circuit components |
5336128, | Aug 12 1993 | Nail technician's ventilator | |
5342189, | Oct 01 1992 | Mitsubishi Aluminum Co., Ltd.; Thermalex, Inc. | Extrusion dies |
5353639, | May 20 1993 | LASALLE BANK N A , AN ASSOCIATION | Method and apparatus for sizing multiple tubes |
5355942, | Aug 26 1991 | Sun Microsystems, Inc. | Cooling multi-chip modules using embedded heat pipes |
5388635, | Apr 27 1990 | International Business Machines Corporation | Compliant fluidic coolant hat |
5409055, | Mar 31 1992 | FURUKAWA ELECTRIC CO , LTD | Heat pipe type radiation for electronic apparatus |
5465780, | Nov 23 1993 | AlliedSignal Inc | Laser machining of ceramic cores |
5465782, | Jun 13 1994 | Industrial Technology Research Institute | High-efficiency isothermal heat pipe |
5535816, | Oct 15 1993 | Diamond Electroic Mfg. Co. Ltd. | Heat sink |
5555622, | Feb 13 1991 | The Furukawa Electric Co., Ltd. | Method of manufacturing a heat transfer small size tube |
5567493, | Nov 05 1992 | NIPPONDENSO, CO , LTD ; FURUKAWA ELECTRIC CO , LTD | Die for extrusion of multi-hole tube and multi-hole tube made with the die |
5598632, | Oct 06 1994 | TEXAS A&M UNIVERSITY SYSTEM, THE | Method for producing micro heat panels |
5615086, | May 17 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus for cooling a plurality of electrical components mounted on a printed circuit board |
5636684, | Dec 30 1994 | Atherm | Cooling element and connector for an electronic power component cooled by a fluid electrically isolated from the component |
5642775, | Feb 16 1995 | MIZUTANI ELECTRIC IND CO , LTD | Ribbon-like plate heat pipes |
5647430, | Mar 20 1995 | Calsonic Corporation | Electronic component cooling unit |
5651414, | Dec 28 1993 | Hitachi, Ltd.; Hitachi Cable, Ltd. | Heat-pipe type cooling apparatus |
5660229, | Apr 22 1992 | LEE, YUNG | Plate type heat transfer device |
5675473, | Feb 23 1996 | Google Technology Holdings LLC | Apparatus and method for shielding an electronic module from electromagnetic radiation |
5682748, | Jul 14 1995 | THERMOTEK, INC | Power control circuit for improved power application and temperature control of low voltage thermoelectric devices |
5689957, | Jul 12 1996 | THERMOTEK, INC | Temperature controller for low voltage thermoelectric cooling or warming boxes and method therefor |
5690849, | Feb 27 1996 | Thermotek, Inc. | Current control circuit for improved power application and control of thermoelectric devices |
5692558, | Jul 22 1996 | Northrop Grumman Systems Corporation | Microchannel cooling using aviation fuels for airborne electronics |
5697428, | Aug 24 1993 | MIZUTANI ELECTRIC IND CO , LTD | Tunnel-plate type heat pipe |
5711155, | Dec 19 1995 | Thermotek, Inc. | Temperature control system with thermal capacitor |
5727619, | Aug 10 1994 | Mitsubishi Denki Kabushiki Kaisha | Honeycomb sandwich panel with built in heat pipes |
5729995, | Mar 20 1995 | Calsonic Corporation | Electronic component cooling unit |
5731954, | Aug 22 1996 | Cooling system for computer | |
5737186, | Apr 20 1995 | Daimler-Benz AG | Arrangement of plural micro-cooling devices with electronic components |
5890371, | Jul 12 1996 | Thermotek, Inc.; THERMOTEK, INC | Hybrid air conditioning system and a method therefor |
5901037, | Jun 18 1997 | Northrop Grumman Systems Corporation | Closed loop liquid cooling for semiconductor RF amplifier modules |
5901040, | Jul 30 1997 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Heat sink and Faraday Cage assembly for a semiconductor module and a power converter |
5960866, | Nov 15 1996 | FURUKAWA ELECTRIC CO , LTD | Method for manufacturing cooling unit comprising heat pipes and cooling unit |
5989285, | Aug 15 1996 | Thermotek, Inc. | Temperature controlled blankets and bedding assemblies |
6026890, | Jun 29 1995 | MIZUTANI ELECTRIC IND CO , LTD | Heat transfer device having metal band formed with longitudinal holes |
6032726, | Jun 30 1997 | Solid State Cooling Systems | Low-cost liquid heat transfer plate and method of manufacturing therefor |
6041850, | Jul 26 1996 | General Electric Company | Temperature control of electronic components |
6058712, | Jul 12 1996 | Thermotek, Inc. | Hybrid air conditioning system and a method therefor |
6072697, | Jul 15 1998 | ESCO ELECTRONICS, INC | Modular heat sink stack |
6101715, | Apr 20 1995 | DaimlerChrysler AG | Microcooling device and method of making it |
6148906, | Apr 15 1998 | SCIENTECH CORPORATION | Flat plate heat pipe cooling system for electronic equipment enclosure |
6293333, | Sep 02 1999 | The United States of America as represented by the Secretary of the Air | Micro channel heat pipe having wire cloth wick and method of fabrication |
6302192, | May 12 1999 | Aavid Thermalloy, LLC | Integrated circuit heat pipe heat spreader with through mounting holes |
6315033, | May 22 2000 | Jaffe Limited | Heat dissipating conduit |
6397935, | Dec 21 1995 | The Furukawa Electric Co. Ltd. | Flat type heat pipe |
6439298, | Apr 17 2001 | Jaffe Limited | Cylindrical heat radiator |
6457515, | Aug 06 1999 | Ohio State Innovation Foundation | Two-layered micro channel heat sink, devices and systems incorporating same |
6462949, | Aug 07 2000 | Thermotek, Inc. | Electronic enclosure cooling system |
6523259, | Oct 29 1999 | P1 Diamond, Inc. | Method of manufacturing a heat pipe |
6647625, | Dec 13 2001 | Method for fabricating a heat pipe structure in a radiating plate | |
6679316, | Oct 02 2000 | The United States of America as represented by the Secretary of the Air Force | Passive thermal spreader and method |
6698502, | Jun 04 1999 | CELSIA TECHNOLOGIES INC | Micro cooling device |
6745825, | Mar 13 1997 | Fujitsu Limited | Plate type heat pipe |
6795310, | Dec 28 2000 | Intel Corporation | Enhanced space utilization for enclosures enclosing heat management components |
6810946, | Dec 21 2001 | TTH RESEARCH, INC | Loop heat pipe method and apparatus |
6820684, | Jun 26 2003 | International Business Machines Corporation | Cooling system and cooled electronics assembly employing partially liquid filled thermal spreader |
6828675, | Sep 26 2001 | Thermal Corp | Modular cooling system and thermal bus for high power electronics cabinets |
6834712, | Nov 27 2001 | THERMOTEK, INC | Stacked low profile cooling system and method for making same |
6935409, | Jun 08 1998 | THERMOTEK, INC | Cooling apparatus having low profile extrusion |
20020189793, | |||
20030089486, | |||
20030089487, | |||
20030127215, | |||
20040099407, | |||
20040112572, | |||
20040177947, | |||
20050039887, | |||
20050056403, | |||
DE1284506, | |||
DE19849919, | |||
DE3117758, | |||
DE8512617, | |||
GB1402509, | |||
GB2128319, | |||
GB2128320, | |||
GB334209, | |||
JP2001223308, | |||
JP2002206881, | |||
JP53136749, | |||
JP6291481, | |||
JP63115351, | |||
SU1476297, | |||
SU589531, | |||
WO70288, | |||
WO103484, | |||
WO9106958, | |||
WO9526125, | |||
WO98020260, | |||
WO9942781, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 19 2004 | Thermotek, Inc. | (assignment on the face of the patent) | / | |||
Jul 15 2004 | QUISENBERRY, TONY | THERMOTEK, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015088 | /0253 | |
Jul 15 2004 | HESTER, DARREN C | THERMOTEK, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015088 | /0253 | |
Jul 15 2004 | PARISH, OVERTON L | THERMOTEK, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015088 | /0253 |
Date | Maintenance Fee Events |
May 27 2010 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 26 2014 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jun 26 2014 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Jul 23 2018 | REM: Maintenance Fee Reminder Mailed. |
Jan 14 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 12 2009 | 4 years fee payment window open |
Jun 12 2010 | 6 months grace period start (w surcharge) |
Dec 12 2010 | patent expiry (for year 4) |
Dec 12 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 12 2013 | 8 years fee payment window open |
Jun 12 2014 | 6 months grace period start (w surcharge) |
Dec 12 2014 | patent expiry (for year 8) |
Dec 12 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 12 2017 | 12 years fee payment window open |
Jun 12 2018 | 6 months grace period start (w surcharge) |
Dec 12 2018 | patent expiry (for year 12) |
Dec 12 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |