An apparatus for detecting dislodgement of a needle inserted into a patient includes a sensor for detecting wetness due to blood and a sensor holder to secure the sensor to the patient such that the sensor detects wetness due to blood loss from the patient upon dislodgement of the needle. Methods and apparatuses for detecting, monitoring and/or controlling blood loss from a patient due to needle dislodgement are also provided.

Patent
   7147615
Priority
Jun 22 2001
Filed
Jun 22 2001
Issued
Dec 12 2006
Expiry
Apr 06 2022
Extension
288 days
Assg.orig
Entity
Large
39
176
all paid
21. A method of detecting needle dislodgement comprising the steps of:
providing a barrier pad to absorb blood lost from the patient due to the dislodgment of the needle; and
providing a capacitive sensor configured to detect wetness due to blood wherein the sensor detects blood absorbed within the barrier pad;
inserting a needle into a patient; and
securing the sensor and the barrier pad to the patient such that the sensor detects blood absorbed within the barrier pad on the patient upon dislodgement of the needle.
8. An apparatus for detecting needle dislodgement during hemodialysis comprising:
a sensor holder having a cavity;
a barrier pad configured to absorb blood lost from the patient due to the dislodgment of the needle; and
a capacitive sensor comprising an electrode enclosed within the cavity of the sensor holder such that the capacitive sensor is positioned to detect wetness absorbed within the barrier pad from blood due to needle dislodgement during hemodialysis such that the capacitive sensor detects blood absorbed within the barrier pad.
1. An apparatus for detecting dislodgement of a needle inserted into a patient comprising:
a sensor having a capacitive sensor, the capacitive sensor configured to detect wetness due to blood; and
a barrier pad capable of absorbing blood lost from the patient due to the dislodgment of the needle; and
a sensor holder configured to secure the sensor and the barrier pad adjacent to the needle, wherein the sensor holder secures the barrier pad between the sensor and the needle such that the sensor detects blood absorbed within the barrier pad.
28. A method of providing dialysis to a patient comprising the steps of:
providing a barrier pad;
providing a capacitive sensor to detect wetness due to blood wherein the sensor does not contact blood upon detection thereof;
inserting a venous needle into the patient;
securing the sensor and the barrier pad in juxtaposition to the venous needle;
passing blood through the venous needle via a hemodialysis machine; and
detecting wetness within the barrier pad indicative of blood loss from the patient upon dislodgement of the venous needle such that the sensor detects blood absorbed within the barrier pad.
23. A method of controlling blood loss from a patient due to needle dislodgement comprising the steps of:
providing a capacitive sensor configured to detect wetness due to blood;
providing a barrier pad to absorb blood lost from the patient due to the dislodgment of the needle; and
inserting a needle into the patient;
securing the sensor and the barrier pad adjacent to the patient such that the sensor produces a signal indicative of wetness within the barrier pad due to blood loss from the patient upon dislodgement of the needle and detects blood absorbed within the barrier pad; and
processing the signal to prevent blood flow through the venous needle such that blood loss from the patient due to needle dislodgement is minimized.
12. An apparatus for controlling blood loss from a patient during hemodialysis comprising:
a barrier pad configured to absorb blood lost from the patient due to the dislodgment of the needle;
a capacitive sensor configured to detect wetness due to blood;
a sensor holder configured to secure the sensor and the barrier pad adjacent to the patient such that the sensor produces a signal indicative of wetness detected within the barrier due to blood loss from the patient upon dislodgement of a venous needle inserted into the patient wherein the capacitive sensor detects blood absorbed within the barrier pad; and
a controller capable of processing the signal to prevent blood flow through the venous needle such that blood loss from the patient due to dislodgement of the venous needle is minimized.
2. The apparatus of claim 1 wherein the capacitive sensor includes one or more electrodes.
3. The apparatus of claim 1 wherein the capacitive sensor is located within the sensor holder such that the sensor detects wetness due to blood loss in the barrier pad.
4. The apparatus of claim 1 wherein the sensor produces a signal upon detection of blood loss.
5. The apparatus of claim 4 further comprising a control device adapted to receive the signal for monitoring and controlling blood loss due to the dislodgement of the needle during hemodialysis.
6. The apparatus of claim 5 wherein the control device is attached to the patient.
7. The apparatus of claim 1 wherein the needle comprises a venous needle.
9. The apparatus of claim 8 wherein the electrode comprises a single plate electrode.
10. The apparatus of claim 8 wherein the barrier pad overlies a vascular access region of a venous needle.
11. The apparatus of claim 10 wherein the sensor holder comprises a flexible material that adaptably conforms to the vascular access region such that the capacitive sensor is capable of detecting blood loss due to needle dislodgement.
13. The apparatus of claim 12 wherein the sensor holder comprises a pad configuration overlying an access region of the venous needle.
14. The apparatus of claim 12 wherein the barrier pad overlies an access region of the venous needle.
15. The apparatus of claim 14 wherein the sensor detects a change in a dielectric constant of the barrier pad.
16. The apparatus of claim 14 wherein the sensor is located inside of the sensor holder such that the sensor does not contact the sterile pad upon detecting wetness therein.
17. The apparatus of claim 12 wherein the controller is in communication with a hemodialysis machine via an electrical communication cable or a cordless interface to minimize blood loss due to venous needle dislodgement.
18. The apparatus of claim 17 wherein the controller is adapted to monitor one or more hemodialysis treatment parameters including wetness due to blood loss, change in blood flow and detection of arterial air bubbles during hemodialysis.
19. The apparatus of claim 18 wherein the controller is attached to the patient for electrical connection to the sensor.
20. The apparatus of claim 18 wherein the controller comprises a display for monitoring each of the parameters.
22. The method of claim 21 wherein the needle comprises a venous needle inserted into the patient for hemodialysis.
24. The method of claim 23 wherein the needle comprises a venous needle inserted into the patient for hemodialysis.
25. The method of claim 24 wherein the signal is processed for communicating with a hemodialysis machine to minimize blood loss to the patient due to needle dislodgement.
26. The method of claim 25 wherein the signal is processed to shut-off a blood pump of the hemodialysis machine.
27. The method of claim 25 wherein the signal is processed to activate a venous line clamp for preventing blood flow via the venous needle.
29. The method of claim 28 wherein blood flow through the venous needle is stopped upon detecting dislodgement of the venous needle such that blood loss from the patient is minimized.

The present invention relates generally to medical treatments. More specifically, the present invention relates to the detection of needle dislodgement during medical treatments or therapies, such as hemodialysis.

A variety of different medical treatments relate to removing blood from a patient. For example, hemodialysis treatment utilizes the patient's blood to remove waste, toxins and excess water from the patient. The patient is connected to a hemodialysis machine, and the patient's blood is pumped through the machine. Waste, toxins and excess water are removed from the patient's blood, and the blood is infused back into the patient. Needles are inserted into the patient's vascular access, such as arteries and veins, to transfer the patient's blood to and from the hemodialysis machine. Hemodialysis treatments can last several hours and are generally performed in a treatment center about three to four times per week.

During hemodialysis treatment, dislodgement of the needle inserted into the patient's vascular access, such as veins, can occur. If not detected immediately, this can produce a significant amount of blood loss to the hemodialysis patient. Two important criteria for detecting needle dislodgement are high sensitivity and specificity of the detection method with respect to needle dropout. This can ensure and facilitate a fast response time in order to minimize blood loss due to dislodgement.

Typically, patients undergoing hemodialysis are visually monitored in order to detect needle dislodgement. However, the needle may not be in plain view of the patient or medical staff such that it could delay responsive actions to dislodgement, such as stopping the blood pump of the hemodialysis machine.

Although devices which employ sensors are available and known for detecting a variety of different bodily fluids, these devices may not be suitably adapted to detect needle dislodgement. For example, known devices employing such sensors have been utilized to detect bedwetting and diaper wetness. However, these types of wetness detection devices may not provide an adequate level of sensitivity if applied to detecting blood loss from the patient due to needle dislodgement.

In this regard, the known wetness detection devices may not be able to detect needle drop out with sufficient enough sensitivity and specificity to ensure and facilitate a proper and fast response. Further, as applied to hemodialysis, known wetness detection devices may not be configured to be controllably interfaced, or at least not properly interfaced, with, for example, a hemodialysis machine such that responsive measure can be taken to minimize blood flow due to needle dislodgement once detected. In addition, a number of known wetness detectors are not reusable, or at least must be cleaned after each use, due to the fact that the sensor component contacts fluid when detecting same. This can require extensive cleaning of the sensor, particularly if it has contacted blood, in order to minimize the risk of infection prior to reuse.

Accordingly, efforts have been directed at designing devices for detecting needle dislodgement wherein detection is sensitive and specific to needle drop out or dislodgement such that responsive measures can be suitably taken to minimize blood loss from the patient due to needle dislodgement.

The present invention provides improved apparatuses and methods for detecting needle dislodgement. In this regard, the present invention provides improved apparatuses that employ a sensor capable of detecting wetness due to blood loss from a patient resulting from needle dislodgement.

To this end, in an embodiment of the present invention, an apparatus for detecting dislodgement of a needle inserted into a patient is provided comprising a sensor capable of detecting wetness due to blood and a sensor holder adapted to secure the sensor in juxtaposition to the needle such that the sensor detects wetness due to blood loss from the patient upon dislodgement of the needle.

In an embodiment, the sensor comprises a resistive sensor, a capacitive sensor or combination thereof.

In an embodiment, the resistive sensor comprises a loop configuration of conductive electrodes.

In an embodiment, the loop configuration includes at least two loops of conductive electrodes.

In an embodiment, the capacitive sensor includes one or more electrodes.

In an embodiment, the capacitive sensor is located within the sensor holder such that the sensor does not contact blood upon detection thereof.

In an embodiment, the sensor produces a signal upon detection of blood loss.

In an embodiment, the apparatus further includes a control device adapted to receive the signal for monitoring and controlling blood loss due to dislodgement of the needle during hemodialysis.

In an embodiment, the control device is attached to the patient.

In an embodiment, the needle includes a venous needle.

In another embodiment of the present invention, an apparatus for detecting needle dislodgement during hemodialysis is provided comprising a sensor holder having a cavity; and a capacitive sensor including an electrode enclosed within the cavity of the sensor holder such that the capacitive sensor is capable of detecting wetness from blood due to needle dislodgement during hemodialysis wherein the capacitive sensor does not contact blood upon detection thereof.

In an embodiment, the electrode includes a single plate electrode.

In an embodiment, the capacitive sensor detects wetness due to blood loss into a sterile pad overlying a vascular access region of a venous needle.

In an embodiment, the sensor holder includes a flexible material that adaptedly conforms to the vascular access region such that the capacitive sensor is capable of detecting blood loss due to needle dislodgement.

In another embodiment of the present invention, an apparatus for detecting dislodgement of a needle inserted into a patient during hemodialysis comprising a resistive sensor capable of detecting wetness due to blood wherein the resistive sensor includes at least two electrodes; and a sensor holder defining an interior for receiving at least a portion of the needle and coupling the resistive sensor to the patient such that the resistive sensor is capable of detecting blood loss due to dislodgement of the needle.

In an embodiment, the pair of electrodes each comprise a loop configuration.

In another embodiment of the present invention, an apparatus for controlling blood loss from a patient during hemodialysis is provided comprising a sensor capable of detecting wetness due to blood and a sensor holder adapted to secure the sensor to the patient such that the sensor produces a signal indicative of wetness due to blood loss from the patient upon dislodgement of a venous needle inserted into the patient. The apparatus further comprises a controller capable of processing the signal to prevent blood flow through the venous needle such that blood loss from the patient due to dislodgement of the venous needle is minimized.

In an embodiment, the sensor holder comprises a pad configuration overlying a vascular access region of the venous needle.

In an embodiment, the apparatus further includes a sterile pad overlying a vascular access region of the venous needle such that the sensor detects wetness in the sterile pad due to blood loss from the patient upon venous needle dislodgement.

In an embodiment, the sensor contacts the sterile pad to detect wetness therein.

In an embodiment, the sensor is located within the sterile pad.

In an embodiment, the controller is in communication with a hemodialysis machine via an electrical communication cable or a cordless interface to minimize blood loss due to venous needle dislodgement.

In an embodiment, the controller is adapted to monitor one or more hemodialysis treatment parameters including wetness due to blood loss, change in blood flow, detection of the arterial air bubbles or combinations thereof.

In an embodiment, the controller comprises a display for monitoring each of the hemodialysis treatment parameters.

In an embodiment, the controller is attached to the patient.

In yet another embodiment of the present invention, a method of detecting needle dislodgement is provided. The method comprises the steps of providing a sensor capable of detecting wetness due to blood; inserting a needle into a patient; and securing the sensor to the patient such that the sensor detects blood on the patient due to dislodgement of the needle.

In a further embodiment of the present invention, a method of controlling blood loss from a patient due to needle dislodgement is provided. The method comprises the steps of providing a sensor capable of detecting wetness due to blood; inserting a needle into the patient; securing the sensor to the patient such that the sensor produces a signal indicative of wetness due to blood loss from the patient upon dislodgement of the needle; and processing the signal to prevent blood flow through the venous needle such that blood loss to the patient due to needle dislodgement is minimized.

In an embodiment, the signal is processed for communicating with a hemodialysis machine to minimize blood loss to the patient due to needle dislodgement.

In an embodiment, the signal is processed to shut-off a blood pump of the hemodialysis machine.

In an embodiment, the signal is processed to activate a venous line clamp for preventing blood flow via the venous needle.

In another embodiment, a method of providing dialysis to a patient is provided. The method includes the steps of providing a sensor capable of detecting wetness due to blood; inserting a venous needle into the patient; securing the sensor in juxtaposition to the venous needle; passing blood through the venous needle via a hemodialysis machine; and detecting blood loss from the patient upon dislodgement of the venous needle.

In an embodiment, blood flow through the venous needle is stopped upon detecting dislodgement of the venous needle such that blood loss from the patient is minimized.

An advantage of the present invention is to provide an improved apparatus for detecting needle dislodgement.

A further advantage of the present invention is to provide an improved method for detecting needle dislodgement.

Still further, an advantage of the present invention is to provide an improved apparatus for detecting needle dislodgement that employs a sensor which is capable of detecting blood loss from the patient upon needle dislodgement.

Yet still further, an advantage of the present invention is to provide an apparatus that employs a sensor which does not contact blood upon detection thereof.

Furthermore, an advantage of the present invention is to provide an improved apparatus and method for monitoring and/or controlling blood loss from a patient due to needle dislodgement.

Another advantage of the present invention is an improved method for hemodialysis that employs a sensor to detect dislodgement of a venous needle such that blood loss due to needle dislodgement is minimized.

Additionally, an advantage of the present invention is to provide an improved apparatus and method for detecting and/or controlling blood loss from a patient due to venous needle dislodgement during hemodialysis.

Another advantage of the present invention is to provide an improved apparatus and method for monitoring and/or controlling one or more hemodialysis treatment parameters to minimize blood loss from a patient due to needle dislodgement.

Additional features and advantages of the present invention will be described in and apparent from the detailed description of the presently preferred embodiments and the figures.

FIG. 1 illustrates a perspective view of an embodiment of an apparatus for detecting needle dislodgement of the present invention.

FIGS. 2A and 2B illustrate an embodiment of a sensor of the present invention. FIG. 2A illustrates an embodiment of a resistive sensor. FIG. 2B illustrates an embodiment of a capacitive sensor.

FIGS. 3A to 3C illustrate an embodiment of an apparatus for detecting needle dislodgement of the present invention showing a sensor holder and a sensor located inside of the sensor holder. FIG. 3A illustrates a top perspective view. FIG. 3B illustrates an exploded view. FIG. 3C illustrates a side sectional view.

FIG. 4 illustrates an embodiment of an apparatus for detecting needle dislodgement of the present invention.

The present invention provides apparatuses and methods for detecting needle dislodgement. More specifically, the present invention provides apparatuses and methods that employ a sensor to detect needle dislodgement such that blood loss due to dislodgement can be controllably minimized.

Although in the embodiment set forth below the apparatus is designed for use in hemodialysis, it should be noted that the apparatus can be used in a number of different therapies. In this regard, the apparatus can be used in non-traditional hemodialysis methods. Such methods included, for example, regeneration and continuous flow therapies which may or may not include hemodialysis, for example, continuous flow peritoneal dialysis. Further, although the present invention, in an embodiment, can be utilized in methods providing dialysis for patients having chronic kidney failure or disease, the present invention can be used for acute dialysis needs, for example, in an emergency room setting.

In general, the apparatus for detecting needle dislodgement of the present invention includes a sensor that is capable of detecting wetness due to blood and a sensor holder that can be adapted to secure the sensor to a patient such that the apparatus can effectively detect dislodgement of the needle during treatment or therapy. For example, during hemodialysis, dislodgement of a venous needle can occur. If dislodged, a significant amount of blood loss can occur within a relatively short period of time. In this regard, the sensor of the apparatus of the present invention can detect wetness due to blood loss from the patient resulting from the dislodged needle. The detection of blood loss is an indication that the needle has become dislodged. Thus, needle dislodgement can be detected.

Applicants have surprisingly found that the apparatus of the present invention can detect needle dislodgement, particularly venous needle dislodgement, with high sensitivity and specificity. In this regard, the apparatus of the present invention can be utilized to controllably minimize blood loss from the patient due to the dislodged needle.

It should be appreciated that the apparatus of the present invention can include a variety of different configurations and other components in addition to the sensor and sensor holder depending on the application of the detection apparatus. It should further be appreciated that the various components of the apparatus can include a variety of different and suitably known materials such that needle dislodgement can be effectively and immediately detected to minimize blood loss from the patient due to dislodgement of the needle.

Referring now to FIG. 1, an embodiment of the present invention includes a sensor 10 and sensor holder 12 that overlies the sensor 10 such that sensor holder 12 secures the sensor 10 to the patient 14 for detecting wetness due to blood loss from the patient 14 upon dislodgement of the needle 16. In an embodiment, the sensor holder 12 includes pad configuration such that it is sized to cover the needle 16 and access region 18 therein.

In an embodiment, the sensor holder 12 includes a rigid material, such as a rigid plastic material, that has a preferable dome shape. In this regard, the sensor holder 12 can act to shield and protect the sensor 10, needle 16 and other components that it covers in addition to properly positioning and securing the sensor 10 over the access or insertion region 18 of the needle 16.

In an embodiment, the apparatus can include a sterile barrier 20 overlying the access region 18 between the sensor 10 and needle 16 as shown in FIG. 1. The sterile barrier 20 or pad can include a variety of different medically sterile materials, such as gauze pads, BAND-AIDS or the like. If a gauze pad or typical absorbent pad is used, the sensor 10 can be positioned to contact the absorbent pad. In this position, the sensor 10 can contact blood that is absorbed by the absorbent pad due to a blood loss from the patient 14. The sensor 10 can then detect the presence of blood in the absorbent pad.

The present invention can include a variety of different types and numbers of sensors to detect the presence of blood. In this regard, it should be appreciated that the sensor or sensors can be utilized to detect one or more parameters that are characteristic of blood or blood loss due to needle dislodgement, such as, temperature, color, conductivity, resistance, capacitance, moisture, wetness, the like or combinations thereof.

In an embodiment, a resistive sensor 22 can be effectively utilized to detect the presence wetness in the absorbent pad due to blood. The resistive sensor 22 is capable of measuring the change in conductivity of the gauze which results from blood loss or leakage. The resistive sensor 22 can be configured in a variety of different and suitably known ways. Preferably, the resistive sensor 22 includes a looped configuration of electrodes. More preferably, the conductive electrodes 24,26 are configured in the form of two loops as shown in FIG. 2A.

Having this two loop configuration, the electrical continuity of the sensor 22 can be readily and easily tested to monitor and ensure that the sensor 22 is properly functioning. In this regard, each conductive loop 24,26 can be individually tested for short circuiting by attaching a typical electronic testing device to the contact ends 28,30 of each of the conductive loops 24,26. The loop configuration may also provide a higher level of sensitivity with respect to detecting blood as compared to conventional electrode configurations, such as typical electrode pairs that are essentially straight in length extending parallel to each other.

The conductive electrodes 24,26 of the resistive sensor 22 are generally attached to a substrate 32. Typically, the substrate 32 is a dielectric material, such as a plastic film or other like material. The conductive electrode material can be any suitably known conductive material. It should be appreciated that the conductive sensor can be excited by an AC or DC current source wherein the voltage drop between the two conductive electrode loops is used to measure the change in conductivity as a result of the pad or absorbent pad being wetted by blood.

In an embodiment, a capacitive sensor 34 can be used in place of or in addition to the resistive sensor 22. In an embodiment, the sensor 34 can include one or more electrodes for detection purposes. As illustrated in FIG. 2B, the capacitive sensor 34 includes two electrodes 36,38 each made from a known copper material. The electrodes 36,38 can be arranged in any suitable fashion, preferably in an interwoven configuration as shown in FIG. 2B. In this regard, a change in the capacitance between the electrodes 36,38 can be effectively measured and/or monitored for detecting the presence of blood in the absorbent pad. The electrodes are typically attached to a substrate 40 of a suitably known material.

It should be appreciated that in both of the resistive and capacitive sensors the output voltage of the sensor will be compared against a preset voltage to determine whether the absorbent pad is wet or dry. The rate of change of the output voltage may also be used to discriminate a blood loss event from noise, such as drift in the sensor output or wetness due to patient's sweat.

It should be appreciated that the sensor holder 12 can be secured to the patient 14 in a variety of suitable and known ways to ensure that the sensor 10 is properly secured and positioned over the insertion region 18 of the needle. In an embodiment, the sensor holder 12 can be secured to the patient 14 by a fastener, for example, having one or more straps as shown in FIG. 1. For example, a strap 42,44 can be used to fasten a separate end 45,46 of the pad of the sensor holder 12. The straps 42,44 can include any variety of different materials, such as elastic, rigid or the like depending on the application. The straps 42,44 can be fastened to the sensor holder 12 by any known fastening mechanisms, such as a hoop and loop fastener, a buckle fastener, a Velcro fastener or other like fasteners.

In an embodiment, the apparatus can also include a force transducer 47, such as a pressure or motion sensitive transducer, to measure and monitor the force upon which the sensor holder is secured to the patient 14. The force transducer 47 can be utilized to ensure that the applied force is suitable for the particular application. In addition, the force transducer 47 may be adapted to enable one to monitor, control and adjust the applied force as deemed appropriate.

As previously discussed, the apparatus can be configured in a variety of different and suitable known ways to properly secure the sensor to the patient and to securely hold the needle in place to prevent dislodgement. In an embodiment, the apparatus can include a sensor holder 48 and a sensor 50 that is contained or located within the sensor holder 48 as shown in FIGS. 3A to 3C. In general, the sensor holder 48 is made of a suitable type of material, preferably a material that is impermeable to fluids, such as a plastic-based material. In this way, blood due to blood loss from the patient upon dislodgement of the needle does not contact the sensor. Even so, the sensor 50 is still capable of detecting the presence of blood. In this regard, the sensor 50 can be used repeatedly without having to clean it after each use, or at least minimizing the amount of cleaning that is required.

In an embodiment, the sensor holder 48 includes a base 52 with a cavity 54 for holding the sensor 50 inside of the sensor holder 48 as shown in FIGS. 3A to 3C. The sensor holder 48 further includes a lid or top 56 to cover the sensor 50 once inside of the cavity 54. Preferably, the sensor is inserted into the cavity and the cavity is over-molded in a known and suitable way. Alternatively, the lid 56 can be removably attached.

The sensor holder 48 is preferably made from a molded flexible plastic or polymeric material for protecting and securing the sensor, needle and other components of the apparatus of the present invention as previously discussed. It also has a preferable angular shape such that the sensor holder 48 effectively covers the vascular access region of the needle which can be located on any suitable part of the patient's body, such as the upper arm, lower arm, upper thigh area or the like. This also facilitates securing the sensor holder to the patient and can further enhance the comfort level of the patient during use.

It should be appreciated that the sensor holder can be made from a variety of different and suitable materials and configured in a variety of different ways. For example, the thickness of the sensor holder is such that it does not compromise the integrity of the sensor holder to protect the needle and properly hold the sensor while at the same time it does not compromise the extent to which the sensor is capable of detecting blood loss due to needle dislodgement with high sensitivity and selectivity. Further, the sensor holder can be made of a plastic or other like suitable polymeric material that is both flexible and essentially impermeable to liquid of fluid, such as blood. This allows the apparatus to be reused without having to clean the sensor. In this regard, the risk of infection due to reuse can be effectively eliminated or at the very least greatly minimized.

As shown in FIGS. 3A to 3C, the sensor holder 48 has a channeled area 60 under which the needle, respective blood lines and the like are positioned. In addition, the sensor holder 48 can include a pair of spacers 62 that extend along at least a portion of the bottom surface of the sensor holder 48. The channeled area 60 and spacer 62 can act as a guide to further position the needle, blood lines, absorbent pad and the like, such that the sensor 50 is properly aligned with respect to the needle and access region. This can facilitate the detection of blood due to blood loss upon dislodgement of the needle. In this regard, the sensor 50 can be securely positioned in close proximity to the needle without disrupting the way in which the needle is inserted into the patient.

In an embodiment, the sensor 50 preferably includes a capacitive sensor that includes a single electrode formed in a sheet or plate configuration. The electrode is preferably made of copper. As the capacitance of the absorbent pad increases due to the presence of blood, the single electrode capacitive sensor can detect the increased capacitance of blood as compared to air (i.e., no blood present) due to the coupling of field lines between the electrode and the ground of the sensor. The non-contact nature of this type of sensor is desirable because cleaning of the sensor after use can be effectively minimized or avoided as previously discussed.

Applicants have surprisingly found that the capacitive sensor can detect wetness due to the presence of blood, for example, in an absorbent pad overlying the needle, with a high degree of sensitivity and specificity to needle dislodgement without contacting the absorbent pad and for that matter blood. In this regard, the sensor is capable of detecting an increased capacitance of the blood-wetted absorbent pad which results from its large dielectric constant as compared to a dry absorbent pad. This can be done by measuring the charging and discharging times of the electrode or by measuring the change in the dielectric constant due to the presence of blood in other known and suitable ways.

It should be appreciated that an embodiment of the apparatus as shown in FIGS. 3A to 3C can be secured to the patient in a number of different and suitably known ways. In an embodiment, the sensor holder 48 includes a pair of fastener members 64 onto which straps or other like fasteners can be attached to fasten the apparatus to the patient. The straps and/or fasteners can include any suitably known straps and/or fasteners as discussed above.

As previously discussed, the apparatus of the present invention can be effectively utilized to detect needle dislodgement by detecting the presence of wetness due to blood loss upon dislodgement of the needle from the patient. The apparatus can be applied in a number of different applications, such as medical therapies or treatments, particularly hemodialysis. In hemodialysis, needles are inserted into a patient's arteries and veins to connect blood flow to and from the hemodialysis machine.

Under these circumstances, if the needle becomes dislodged, particularly the venous needle (i.e., a needle inserted into a vein), the amount of blood loss from the patient can be significant and immediate. In this regard, the needle dislodgement detection apparatus of the present invention can be utilized to controllably and effectively minimize blood loss from a patient due to dislodgement of the needle, such as during hemodialysis.

In an embodiment, the present invention provides an apparatus 70 for controlling the blood loss from a patient due to venous needle dislodgement shown in FIG. 4. The apparatus can include a needle dislodgement device as previously discussed and shown in FIGS. 1 and 4.

In an embodiment, the apparatus 70 includes a controller 72 that is in electrical contact with the sensor 10. The controller 72 can be attached to the patient via an attachment 73 in any suitable way. The controller 72 can be configured in a variety of different ways depending on the application thereof. Upon detection of the presence of blood due to needle dislodgement, the sensor 10 produces a signal indicative of the degree of wetness due to blood. This signal can then be transmitted to the controller 72 which is electrically connected to the sensor 10 via a connection 74 in any suitable way.

The controller 72 can process the signal in a variety of different ways such that the blood loss from the patient is minimized. In an embodiment, the controller 72 is in communication with a hemodialysis machine 76 via a communication connection 78. This communication connection 78 can be either hard wired (i.e., electrical communication cable), a wireless communication (i.e., wireless RF interface), a pneumatic interface or the like. In this regard, the controller 72 can process the signal to communicate with the hemodialysis machine to shut off or stop the blood pump as indicated in box 80—associated with the hemodialysis machine 76 and thus effectively minimize the amount of blood loss from the patient due to needle dislodgement during hemodialysis.

The controller 72 can communicate with the hemodialysis machine in a variety of other ways. For example, the controller 72 and hemodialysis machine can communicate to activate a venous line clamp as shown in box 82 for preventing further blood flow via the venous needle thus minimizing blood loss to the patient. In an embodiment, the venous line clamp is activated by the controller and attached to or positioned in proximity to the sensor and sensor holder such that it can clamp off the venous line in close proximity to the needle. Once clamped, the hemodialysis machine is capable of sensing an increase in pressure and can be programmed to shut-off the blood pump upon sensing pressure within the blood flow line which is above a predetermined level. In this regard, the sensor, sensor holder and venous line clamp can act together as a stand-alone control unit. Alternatively, the venous line clamp can be controllably attached to the hemodialysis machine.

It should be appreciated that the sensor output signal can be combined with other less sensitive blood loss detection methods, such as venous pressure measurements, systemic blood pressure, the like or combinations thereof, to improve specificity to needle dislodgement.

Applicants have found that the apparatus of the present invention can detect blood loss due to needle dislodgement with high sensitivity and selectivity such that responsive measures can be taken to minimize blood loss due to needle dislodgement. The ability to act responsively and quickly to minimize blood loss upon detection thereof is particularly important with respect to needle dislodgement during hemodialysis. If not detected and responded to immediately, the amount of blood loss can be significant. In an embodiment, the present invention is capable of taking active or responsive measures, to minimize blood loss (i.e., shut-off blood pump, activate venous line clamp or the like) within about three seconds or less, preferably within about two to about three second upon detection of needle dislodgement.

In addition, the controller can be utilized to monitor and/or control one or more treatment parameters during hemodialysis. These parameters can include, for example, the detection of blood due to blood loss upon needle dislodgement, the change in blood flow, the detection of air bubbles in the arterial line, detection of movement of the sensor during treatment, detection and/or monitoring of electrical continuity of the sensor or other like treatment parameters. In an embodiment, the controller includes a display 84 for monitoring one or more of the parameters as shown in FIG. 4.

It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the impending claims.

Wariar, Ramesh, Hartranft, Thomas P., Lasso, Angel, Cameron, Norm, Caro, Hector

Patent Priority Assignee Title
10155082, Apr 10 2002 Baxter International Inc; BAXTER HEALTHCARE S A Enhanced signal detection for access disconnection systems
10195367, Oct 19 2015 FRESENIUS MEDICAL CARE HOLDINGS, INC Medical wetness sensing devices and related systems and methods
10328199, May 05 2009 Carefusion 303, Inc. Model-based infusion site monitor
10398857, Jul 18 2015 Toltec Ventures, LLC Patient line dislodgement detection device and method
10441705, Apr 05 2017 FRESENIUS MEDICAL CARE HOLDINGS, INC Medical wetness sensing devices and related systems and methods
10569006, Jun 25 2014 Fresenius Medical Care Deutschland GmbH Device for monitoring a vessel opening for an extracorporeal blood treatment device and method for monitoring a vessel opening
10905413, Oct 28 2015 DR STAN M VALNICEK INC Surgical suture adapted for enhanced visibility
11278679, Oct 19 2015 Fresenius Medical Care Holdings, Inc. Medical wetness sensing devices and related systems and methods
11281878, Feb 20 2018 FRESENIUS MEDICAL CARE HOLDINGS, INC Wetness detection with biometric sensor device for use in blood treatment
11305040, Apr 29 2014 OUTSET MEDICAL, INC. Dialysis system and methods
11311666, Feb 18 2021 BRESSLERGROUP, INC Modular wearable medicament delivery device and method of use thereof
11435254, Oct 25 2017 GLOBAL LEAK TECHNOLOGIES LTD Leak detector
11464902, Feb 18 2021 BRESSLERGROUP, INC Wearable medicament delivery device with compressible reservoir and method of use thereof
11511037, Jun 08 2018 Analog Devices, Inc Systems and methods for measuring needle depth
11534537, Aug 19 2016 OUTSET MEDICAL, INC Peritoneal dialysis system and methods
11565031, Apr 05 2017 Fresenius Medical Care Holdings, Inc. Medical wetness sensing devices and related systems and methods
11636937, May 05 2009 Carefusion 303, Inc. Model-based infusion site monitor
11724013, Jun 07 2010 OUTSET MEDICAL, INC Fluid purification system
11872369, Feb 18 2021 BRESSLERGROUP, INC Wearable medicament delivery device with leakage and skin contact sensing and method of use thereof
7605710, Aug 18 2006 FRESENIUS MEDICAL CARE HOLDINGS, INC Wetness sensor
7973667, Aug 18 2006 Fresenius Medical Care Holdings, Inc. Wetness sensor
8360977, Sep 27 2007 Baxter International Inc; BAXTER HEALTHCARE S A Continuity circuits for detecting access disconnection
8439879, May 10 2007 Medx-Set Infusion set of self-occlusion mechanism
8444585, Jan 29 2010 Baxter International Inc.; Baxter Healthcare S.A.; Baxter International Inc; BAXTER HEALTHCARE S A Catheter needle retention and placement monitoring system and method
8454550, Feb 14 2009 Fresenius Medical Care Deutschland GmbH Apparatus for detecting moisture for an apparatus for monitoring the access to a patient, in particular for monitoring the vascular access during extracorporeal blood treatment
8529490, Apr 10 2002 Baxter International Inc.; Baxter Healthcare S.A. Systems and methods for dialysis access disconnection
8573228, Sep 09 2008 Medtronic, Inc.; Medtronic, Inc Needle to port trajectory indicator
8696571, Sep 27 2007 Baxter International Inc.; Baxter Healthcare S.A. Continuity circuits for detecting access disconnection
8708946, Apr 10 2002 Baxter International Inc.; Baxter Healthcare S.A. Access disconnection systems using conductive contacts
8801646, Apr 10 2002 Baxter International Inc.; Baxter Healthcare S.A. Access disconnection systems with arterial and venous line conductive pathway
8808218, Jan 29 2010 Baxter International Inc.; Baxter Healthcare S.A.; Baxter International Inc; BAXTER HEALTHCARE S A Needle placement detection and security device and method
8920356, Apr 10 2002 Baxter International Inc.; Baxter Healthcare S.A. Conductive polymer materials and applications thereof including monitoring and providing effective therapy
9047708, Sep 20 2007 Medtronic, Inc. Needle to port trajectory indicator
9328969, Oct 07 2011 OUTSET MEDICAL, INC Heat exchange fluid purification for dialysis system
9402945, Apr 29 2014 OUTSET MEDICAL, INC. Dialysis system and methods
9504777, Apr 29 2014 OUTSET MEDICAL, INC. Dialysis system and methods
9514279, May 05 2009 CAREFUSION 303, INC Model-based infusion site monitor
9545469, Dec 05 2009 OUTSET MEDICAL, INC. Dialysis system with ultrafiltration control
9579440, Apr 29 2014 OUTSET MEDICAL, INC. Dialysis system and methods
Patent Priority Assignee Title
2127538,
3682162,
3731685,
3759261,
3778570,
3809078,
3810140,
3814249,
3832067,
3832993,
3882861,
3900396,
3946731, Jan 20 1971 Apparatus for extracorporeal treatment of blood
4017190, Jul 18 1975 Blood leak detector comparing intensities of high absorption band and low absorption band of a single beam of light passing through a sample
4022211, Aug 14 1974 Kimberly-Clark Corporation Wetness indicator for absorbent pads
4026800, Apr 19 1974 National Medical Care, Inc. Dialysis apparatus
4055496, Apr 19 1974 National Medical Care, Inc. Dialysis apparatus
4085047, Sep 16 1976 Blood leak detector
4087185, Jun 19 1975 Baxter Travenol Laboratories, Inc. Blood leak detector
4162490, Jan 26 1978 Toilet training device
4166961, Mar 22 1978 Hoechst Aktiengesellschaft Method and apparatus for detecting a blood leak in a hemodialysis system
4181610, Jul 14 1975 Takeda Chemical Industries, Ltd. Blood leak detector suitable for use with artificial kidneys
4191950, Feb 09 1978 Anti-bed-wetting device
4192311, Dec 05 1977 Disposable diaper with wetness indicator
4193068, Mar 16 1976 Hemorrhage alarms
4231366, Aug 12 1976 Dr. Eduard Fresenius Chemisch-pharmazeutische Industrie KG Apparatebau KG Blood flow monitoring and control apparatus
4231370, Jun 18 1979 The Procter & Gamble Company Disposable diaper type garment having wetness indicator
4327731, Jul 07 1980 Moisture indicator
4353368, Dec 23 1977 Ceske vysoke uceni technicke Device for hemodialysis
4366051, Nov 19 1976 Hemodialysis system
4484573, Jul 22 1982 NAEWAE ELECTRIC CO , LTD Alarm device for use in a baby's diaper
4501583, Jun 15 1983 MCNEILAB, INC Hemodialysis access monitors
4534756, Apr 11 1983 ALARIS MEDICAL SYSTEMS, INC Fault detection apparatus and method for parenteral infusion system
4539559, Mar 29 1982 KEY EDUCATION, INC Portable, disposable warning device for detecting urine-wet undergarments
4583546, Nov 18 1983 Blood loss monitor
4648869, Dec 04 1985 Baxter International Inc Automatic infiltration detection system and method
4655742, Jul 13 1983 RHONE-POULENC S A , 25, QUAI PAUL DOUMER - 92408 COURBEVOIE, FRANCE Process/apparatus for the withdrawal/return of body fluids
4710163, Jun 06 1986 ALARIS MEDICAL SYSTEMS, INC ; ALARIS MEDICAL, INC Detection of fluid flow faults in the parenteral administration of fluids
4739492, Feb 21 1985 Dialysis machine which verifies operating parameters
4796014, Mar 24 1987 Device for detecting urine in diapers
4846792, Mar 08 1988 BAXTER TRAVENOL LABORATORIES, INC Automatic infiltration detection system and method
4862146, Mar 27 1987 Tyco Electronics Corporation Detection apparatus
4898587, Nov 15 1988 Intravenous line stabilizing device
4931051, Feb 06 1987 Edge Enterprises, Inc. Wetness indicator
4941882, Mar 14 1987 Smith and Nephew Associated Companies, p.l.c. Adhesive dressing for retaining a cannula on the skin
4959060, Nov 17 1986 Nippon Shokubai Kagaku Kogyo Co., Ltd. Body fluid-adsorbing article
4965554, Jul 21 1987 Moisture presence alarm system
4976698, Oct 23 1987 Intravenous catheter and tubing stabilization device
4977906, Mar 07 1989 DRI TECH, INC , A CORP OF NY Diurnal rehabilitation for incontinence trainer
4979940, Mar 08 1988 Baxter International Inc.; Baxter International Inc Infusion system, methodology, and algorithm for identifying patient-induced pressure artifacts
4981467, Feb 27 1990 Baxter International Inc. Apparatus and method for the detection of air in fluid delivery systems
5036859, Jul 26 1988 TRAVIS INTERNATIONAL, INC Moisture detector and indicator
5078682, Nov 30 1988 Sharp Kabushiki Kaisha; Baxter International Inc Liquid transfusion apparatus
5084026, Jul 14 1989 Intravenous apparatus holder
5088990, Aug 30 1989 I.V. alert system
5121630, Dec 21 1990 Material monitoring device
5137033, Jul 15 1991 Patient monitoring device
5139482, Jan 18 1990 Fluid infusion line monitor
5197958, Apr 01 1992 Wetness indicating diaper
5247434, Apr 19 1991 Baxter International Inc Method and apparatus for kidney dialysis
5264830, Sep 18 1992 LITTLE ACORN VENTURES, INC Apparatus for sensing wet diaper
5266928, May 29 1992 Wet diaper detector
5291181, Mar 30 1992 Wet bed alarm and temperature monitoring system
5314410, Feb 10 1992 Entry indicator device for arterial or intravenous needle
5341127, Mar 23 1992 Self-contained bed wetting alarm
5354289, Jul 23 1993 MITCHELL IRREVOCABLE TRUST; STOCKING, CAROL M ; MITCHELL, JAMES G Absorbent product including super absorbent material and a fluid absorption capacity monitor
5389093, Apr 01 1992 Wetness indicating diaper
5392032, Nov 23 1993 Little Acorn Ventures; LITTLE ACORN VENTURES INC Apparatus for sensing wet diaper including circuit breaker
5395358, Jan 21 1994 Wetting indicator for a diaper
5435010, Oct 18 1993 Moisture sensitive article of clothing and method of manufacturing the same
5439442, Sep 18 1992 Device for monitoring and controlling an intravenous infusion system
5468236, Jun 09 1993 Kimberly-Clark Worldwide, Inc Disposable absorbent product incorporating chemically reactive substance
5469145, May 29 1992 Wet diaper detector
5486286, Apr 19 1991 Baxter International Inc Apparatus for performing a self-test of kidney dialysis membrane
5487827, Sep 14 1993 Baxter International Inc Method and apparatus for kidney dialysis
5522809, Feb 18 1992 PAPER-PAK PRODUCTS, INC Absorbent adult fitted briefs and pads
5542932, Jul 20 1995 Becton, Dickinson and Company Bloodless flashback vent
5557263, Jul 22 1992 ACCELERATED CARE PLUS CORP System for detection of electrically conductive fluids
5568128, Nov 14 1994 Self learning diaper wetness detector and toilet trainer
5570082, Oct 13 1995 Remote wetness sensor for diapers
5579765, May 30 1995 Monitor to detect bleeding
5603902, Jan 13 1995 GAMBRO RENAL PRODUCTS, INC Method and apparatus for cleaning a dialysate circuit downstream of a dialyzer
5649914, Dec 22 1994 Kimberly-Clark Worldwide, Inc Toilet training aid
5670050, Feb 13 1995 Baxter International Inc; BAXTER HEALTHCARE SA Method for detection of leakage of blood
5674390, Feb 13 1995 Baxter International Inc; BAXTER HEALTHCARE SA Dialysis machine with leakage detection
5681298, Dec 22 1994 Kimberly-Clark Worldwide, Inc Toilet training aid creating a temperature change
5690610, Mar 04 1991 NICHIBAN CO , LTD Adhesive material for hemostasis and a method for hemostasis
5690624, Nov 29 1995 Uni-Charm Corporation Disposable diaper
5702376, Dec 22 1994 Kimberly-Clark Worldwide, Inc. Toilet training aid providing a temperature and dimensional change sensation
5702377, Sep 01 1994 Kimberly-Clark Worldwide, Inc Wet liner for child toilet training aid
5744027, Apr 19 1991 Baxter International Inc Apparatus for kidney dialysis
5760694, May 07 1996 Knox Security Engineering Corporation Moisture detecting devices such as for diapers and diapers having such devices
5762805, Feb 12 1993 GAMBRO RENAL PRODUCTS, INC Technique for extracorporeal treatment of blood
5766212, May 16 1996 Uni-Charm Corporation Disposable diaper
5790035, Aug 02 1995 Reusable temperature and wetness alarm device for the diaper
5790036, Jul 22 1992 ACCELERATED CARE PLUS CORP Sensor material for use in detection of electrically conductive fluids
5796345, Jan 13 1997 Apparatus for detecting moisture in garments
5797892, Dec 22 1994 Kimberly-Clark Worldwide, Inc Toilet training aid providing a dimensional change
5800386, Nov 25 1994 Device for monitoring and controlling an intravenous infusion system
5802814, Aug 20 1993 Nissho Corporation Method of wrapping a bundle of fiber
5817076, Feb 25 1997 Toilet training diapers
5838240, May 29 1992 Johnson Research & Development Company, Inc. Wet diaper detector
5845644, Aug 26 1997 Bladder and bowel training system
5862804, Jul 08 1997 ANDCO TEK INC Leak point wetness sensor for urological investigation
5868723, Jul 15 1997 Moisture sensing and audio indicating apparatus for garments and associated methods
5885264, Jul 02 1996 Uni-Charm Corporation Disposable training pants
5900817, Feb 17 1998 Child monitoring system
5903222, Apr 03 1997 Zaggie, Inc. Wet garment detector
5904671, Oct 03 1997 Tampon wetness detection system
5908411, Nov 20 1997 Nippon Koudoshi Kougyou Co., Ltd. Moisture annunciator
5941248, Aug 20 1997 Monitoring of patient bedding zones
5947910, Jan 14 1994 ACIST MEDICAL SYSTEMS, INC Extravasation detection technique
5947943, Feb 02 1998 Diaper visual indicator
5959535, Dec 20 1995 MIAMI, UNIVERSITY OF Electrogalvanic-powered diaper wetness sensor
6038914, Feb 27 1997 VIVOLUTION A S Leak detection system for liquid processing device
6063042, Oct 30 1998 Method for diagnosis of menorrhagia menstrual cycle disorders and their causes
6075178, Sep 29 1997 Kimberly-Clark Worldwide, Inc. Absorbent article with wetness indicator
6077443, Aug 06 1997 Fresenius AG; Fresenius Medical Care Deutschland GmbH Method and device for monitoring a vascular access during a dialysis treatment
6090048, Sep 12 1995 Gambro Lundia AB Method and arrangement for detecting the condition of a blood vessel access
6093869, Jun 29 1998 Procter & Gamble Company, The Disposable article having a responsive system including a feedback control loop
6097297, May 28 1998 Wetness awareness training device
6113577, Apr 23 1999 Canox International, Ltd. Intravascular access device positioning system
6149636, Jun 29 1998 Procter & Gamble Company, The Disposable article having proactive sensors
6160198, Jun 29 1998 Procter & Gamble Company, The Disposable article having a discontinuous responsive system
6166639, Mar 12 1999 GUARDIAN MEDICAL MONITORING, INC Personal emergency response system
6169225, Sep 29 1997 Uni-Charm Corporation Disposable training pants having a suspended crotch covering sheet
6171289, Nov 06 1998 Plasto SA Safety device for colostomy having a wetness detector and alarm
6200250, May 07 1996 Knox Security Engineering Corporation Diapers with moisture detection and process and apparatus for making them
6332874, Aug 28 1998 C R BARD, INC Coupling and stabilization system for proximal end of catheter
6425878, Feb 28 2001 L.G.MED Ltd. Method and device for detecting extravasation
6445304, Aug 11 2000 Medical alarm system
6751500, Jul 28 1999 Bayer HealthCare LLC Apparatuses and methods for extravasation detection
20030128125,
DE19901078,
DE19953068,
DE2838414,
DE2948768,
DE3045514,
DE3223086,
DE3440584,
DE3823859,
DE3836712,
DE3911812,
DE4000961,
DE4014572,
DE4018953,
DE4239937,
EP270048,
EP328162,
EP328163,
EP332330,
EP611228,
EP895787,
FR2680678,
GB2145859,
GB2177247,
GB2250121,
JP10211278,
JP11104233,
JP11299889,
JP4008361,
JP6178789,
WO106975,
WO108729,
WO124854,
WO168163,
WO8604710,
WO9402918,
WO9407224,
WO9625904,
WO9710013,
WO9912588,
WO9924145,
WO9926686,
WO9929356,
WO9942151,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 22 2001Baxter International Inc.(assignment on the face of the patent)
Oct 01 2001WARIAR, RAMESHBAXTER INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0122490218 pdf
Oct 01 2001HARTRANFT, THOMAS P BAXTER INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0122490218 pdf
Oct 01 2001CAMERON, NORMBAXTER INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0122490218 pdf
Oct 01 2001LASSO, ANGELBAXTER INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0122490218 pdf
Oct 01 2001CARO, HECTORBAXTER INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0122490218 pdf
Date Maintenance Fee Events
Jun 14 2010M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 12 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 24 2018M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 12 20094 years fee payment window open
Jun 12 20106 months grace period start (w surcharge)
Dec 12 2010patent expiry (for year 4)
Dec 12 20122 years to revive unintentionally abandoned end. (for year 4)
Dec 12 20138 years fee payment window open
Jun 12 20146 months grace period start (w surcharge)
Dec 12 2014patent expiry (for year 8)
Dec 12 20162 years to revive unintentionally abandoned end. (for year 8)
Dec 12 201712 years fee payment window open
Jun 12 20186 months grace period start (w surcharge)
Dec 12 2018patent expiry (for year 12)
Dec 12 20202 years to revive unintentionally abandoned end. (for year 12)