A four point measurement technique for testing programmable impedance drivers such as the BZIO buffers contained in RapidChip® and ASIC devices. Specifically, two test pads are added for taking voltage measurements at additional points. By taking the additional voltage measurements and performing some calculation using Ohm's law, the error components of the testing process are effectively eliminated. The technique is suitable for use at wafer sort where additional device pads can be made available for contact with the automated test equipment (ATE) used in the manufacturing test environment.
|
1. An active circuit comprising a programmable impedance driver and configured for connection to automatic test equipment for testing the programmable impedance driver, said active circuit comprising a point configured for connecting to the automatic test equipment, a point configured for connecting to ground, said programmable impedance driver of said active circuit disposed between said point configured for connecting to the automatic test equipment and said point configured for connecting to ground, further comprising a test pad disposed between said programmable impedance driver of said active circuit and said point configured for connecting to the automatic test equipment, and said circuit further comprising a test pad disposed between said programmable impedance driver and said point configured for connecting to ground, said active circuit configured such that the programmable impedance driver is testable while the active circuit is active.
6. A method for using automatic test equipment to test a programmable impedance driver of an active circuit while the active circuit is active, said method comprising: providing an active circuit comprising a programmable impedance driver, said active circuit comprising a point configured for connecting to the automatic test equipment, a point configured for connecting to ground, said programmable impedance driver of said active circuit disposed between said point configured for connecting to the automatic test equipment and said point configured for connecting to ground, further comprising a test pad disposed between said programmable impedance driver of said active circuit and said point configured for connecting to the automatic test equipment, and said circuit further comprising a test pad disposed between said programmable impedance driver and said point configured for connecting to ground, said method further comprising determining the voltages at the test pads while the active circuit is active and mathematically calculating the resistance of the device.
2. A circuit as recited in
3. A circuit as recited in
4. A circuit as recited in
5. A circuit as recited in
7. A method as recited in
|
The present invention generally relates to the production test requirements for testing programmable impedance drivers such as the BZIO buffers contained in RapidChip® and ASIC devices, and more specifically relates to a four point measurement technique.
The problem faced in the manufacturing test environment is that it is a non-ideal situation with respect to the contact resistance that occurs at multiple points between the tester's pin electronics and the actual device-under-test (DUT). These contact resistances are difficult to control at best, and cannot be completely eliminated. As such they contribute an error component to any resistance measurements that are to be made on the actual DUT. These errors in the measurements result in failing tests during the manufacturing test flow causing product yield issues.
The only existing solutions to the aforementioned problems involve the relaxation of test limits for the DUT, or the elimination of the test altogether. While this can address the manufacturing test problem, it provides the risk of shipping product out which is out of specification. Alternatively, the testing can be performed within the specified test limits, and the manufacturer is forced to accept any associated yield losses during the manufacturing test process.
An object of an embodiment of the present invention is to provide a measurement technique which allows the error components of the testing process to be effectively eliminated.
An object of an embodiment of the present invention is to provide a measurement technique which provides the ability to do accurate ATE measurements of a DUT's programmable impedance driver(s) which represent only actual on-resistance values of those drivers.
Briefly, and in accordance with at least one of the foregoing objects, an embodiment of the present invention provides a four point measurement technique for testing programmable impedance drivers such as the BZIO buffers contained in RapidChip® and ASIC devices. Specifically, two test pads are added for taking voltage measurements at additional points. By taking the additional voltage measurements and performing some calculation using Ohm's law, the error components of the testing process are effectively eliminated. The technique is suitable for use at wafer sort where additional device pads can be made available for contact with the automated test equipment (ATE) used in the manufacturing test environment.
The organization and manner of the structure and operation of the invention, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in connection with the accompanying drawings, wherein:
While the invention may be susceptible to embodiment in different forms, there is shown in the drawings, and herein will be described in detail, a specific embodiment of the invention. The present disclosure is to be considered an example of the principles of the invention, and is not intended to limit the invention to that which is illustrated and described herein.
The present invention provides a measurement technique which allows the error components of the testing process to be effectively eliminated by performing a four-point measurement of the programmable impedance drivers contained within the design. The technique is suitable for use at wafer sort where additional device pads can be made available for contact with the automated test equipment (ATE) used in the manufacturing test environment. Using a four-point measurement technique requires the addition of two test pads per programmable driver (p- or n-channel) to be tested.
The primary feature of the present invention is the ability to perform accurate ATE measurements of a DUT's programmable impedance driver(s) which represent only actual on-resistance values of those drivers. The inclusion of two test pads allows for an accurate measurement with no unknown components.
The primary advantage of the present invention is that the technique can be performed for any device which requires the testing of on-chip programmable impedance drivers. Due to the fact that additional device pads are required for the measurement, it is likely that such testing would only be done on a sample basis of the representative device drivers on the design, to keep the number of test pads at a minimum. Also, this test technique would most likely be used only in the wafer sort environment, as it is unlikely that additional device package pins would be available for use at package test.
While an embodiment of the present invention is shown and described, it is envisioned that those skilled in the art may devise various modifications of the present invention without departing from the spirit and scope of the appended claims.
Patent | Priority | Assignee | Title |
9612276, | Aug 21 2013 | Samsung Electronics Co., Ltd. | Test device and test system including the same |
Patent | Priority | Assignee | Title |
4707620, | Jul 22 1986 | Credence Systems Corporation | Adjustable impedance driver network |
4970454, | Dec 09 1986 | Texas Instruments Incorporated | Packaged semiconductor device with test circuits for determining fabrication parameters |
5642364, | Jun 28 1996 | Texas Instruments Incorporated | Contactless testing of inputs and outputs of integrated circuits |
5652722, | Aug 26 1994 | SGS-THOMSON MICROELECTRONICS, LTD | System and method for controlling voltage and current characteristics of bit lines in a memory array |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 28 2004 | LSI Logic Corporation | (assignment on the face of the patent) | / | |||
Sep 28 2004 | GEARHARDT, KEVIN | LSI Logic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015852 | /0282 | |
Apr 06 2007 | LSI Logic Corporation | LSI Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 033102 | /0270 | |
Aug 14 2014 | LSI Corporation | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035390 | /0388 | |
Feb 01 2016 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | BANK OF AMERICA, N A , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 037808 | /0001 | |
Jan 19 2017 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 041710 | /0001 | |
Dec 08 2017 | Broadcom Corporation | Bell Semiconductor, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044887 | /0109 | |
Dec 08 2017 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Bell Semiconductor, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044887 | /0109 | |
Jan 24 2018 | HILCO PATENT ACQUISITION 56, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Jan 24 2018 | Bell Semiconductor, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Jan 24 2018 | Bell Northern Research, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | HILCO PATENT ACQUISITION 56, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0223 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | Bell Semiconductor, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0223 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | Bell Northern Research, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0223 |
Date | Maintenance Fee Events |
Apr 02 2008 | ASPN: Payor Number Assigned. |
Jun 11 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 21 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 30 2018 | REM: Maintenance Fee Reminder Mailed. |
Jan 21 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 19 2009 | 4 years fee payment window open |
Jun 19 2010 | 6 months grace period start (w surcharge) |
Dec 19 2010 | patent expiry (for year 4) |
Dec 19 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 19 2013 | 8 years fee payment window open |
Jun 19 2014 | 6 months grace period start (w surcharge) |
Dec 19 2014 | patent expiry (for year 8) |
Dec 19 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 19 2017 | 12 years fee payment window open |
Jun 19 2018 | 6 months grace period start (w surcharge) |
Dec 19 2018 | patent expiry (for year 12) |
Dec 19 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |