A computer mouse 10 has magnetic orientation features. It comprises a body 11 in which is located a mechanism 13 for sensing the x and y movement of the body and a compassing device 16 for determining the magnetic orientation of the body. The mouse has a processor 40 for receiving and processing x and y movement data and magnetic orientation data. The processor sends the processed data to a transmitter 15 located in the body. The transmitter is wireless and sends signals based on the x and y data and the magnetic orientation data in real time.
|
1. A computer mouse with magnetic orientation, comprising:
a body in which is located a mechanism for sensing the x and y movement of the body and converting this movement to x and y body movement data;
the body containing a compassing device for determining the magnetic orientation of the body and converting the magnetic orientation to magnetic orientation data;
a processor for receiving and processing the x and y body movement data and the magnetic orientation data, the processing comprising the compensating, in real time, the x and y body movement data according to the magnetic oriented data, the processor sending the processed data to a transmitter located in the body;
the transmitter being a wireless transmitter for sending signals based on the x and y data and the magnetic orientation data in real time.
3. The mouse of
the sensor comprises two linear magnetic sensors mounted at 90 degrees to each other.
4. The mouse of
the mouse includes a user command input switch which is orientation free.
5. The mouse of
the mouse includes a second user command input switch which is orientation free.
6. The mouse of
the mouse further comprises a flexible exterior cover under which is located a shell, and a first user command input switch which is activated when the cover is squeezed.
7. The mouse of
the mouse further comprises a flexible exterior cover under which is located a first user command input switch which is activated when the cover is squeezed and a second user command input switch which is activated when the cover is depressed.
8. The mouse of
the first user command input switch comprises two or more radial command input switches.
9. The mouse of
the first user command input switch is assuredly activated when a lower rim of the cover is squeezed at any diametrically opposite positions.
11. The mouse of
the body is round and has mounted on it a base orientation switch which communicates with the processor.
12. The mouse of
a ball bearings assembly interposed between the body and a retaining ring, the assembly providing the mouse with a lower friction coefficient in a rotational mode than in a linear mode.
14. The mouse of
a first circuit board on which is mounted an optical sensor for generating x and y data.
15. The mouse of
a circuit board carrying a vertically oriented user command input switch.
16. The mouse of
a second circuit board, located above the first circuit board, the second circuit board carrying batteries for operating the mouse.
17. The mouse of
a semi-rigid shell interposed between a flexible outer cover and the circuit board;
the shell transmitting a downward force from the cover to the vertically oriented switch.
18. The mouse of
the first user command input switch comprises three switches located at generally one hundred and twenty degrees to one another.
|
The invention pertains to a computer mouse and more particularly to a mouse which recognizes its own geomagnetic orientation and uses that orientation to transmit a related signal to a computer. In this way the mouse can obtain human inputs corresponding with three distinct degrees of freedom.
A mouse for a computer is a form of interface in which the movement and position of the mouse, together with mouse button or switched inputs may be used as inputs to a computer. A conventional mouse may transmit signals to a computer in any of a number of ways. These signals may be interpreted by the computer's software drivers to accomplish a range of functions such as alter the position of a cursor, open menus, select objects or issue commands. In general, the position of the mouse on a physical desktop is translated into a position of a cursor on a screen. In the prior art, the computer mouse has been insensitive to geomagnetic orientation and has not used geomagnetic orientation for any purpose. However because software is becoming ever more sophisticated and greater means of interfacing with software are ever in demand, the need exists for additional forms of user interface and user input apart from those which are already in use. In the following disclosure the example of a wireless mouse is employed. It will be appreciated that both conventional or wireless data transmission from the mouse are useful, with wireless data transmission providing the more elegant and user friendly solution.
It is an object of the invention to provide a mouse which is adapted to recognize geomagnetic orientation and provide an output signal to a computer based on geomagnetic orientation.
It is also an object of the invention to provide a mouse which is insensitive to geomagnetic orientation when in pure translation.
It is another object of the invention to provide a wireless mouse which may be used in any rotational orientation.
Accordingly there is provided a mouse in which is located a geomagnetic sensor. The sensor produces a signal based on the rotation of the mouse, which signal which may be combined with signals produced by the mouse's optical sensor to create an output to a computer which is representative of three degrees of freedom. In preferred embodiments, signals related to the translation of the mouse are insensitive to the compass orientation of the mouse. In other embodiments, there is a threshold of rotational movement below which the device is insensitive. In preferred embodiments, the mouse is wireless.
Provided is a computer mouse with three degrees of freedom. The mouse works in a similar manner to a normal computer mouse, with the additional feature of providing a third degree of freedom. The third degree of freedom is user generated by rotating the mouse on the desktop. This provides an input on the ‘z’ axis in addition to the normal ‘x’ and ‘y’ axes. The ‘z’ axis or component is input by rotation of the mouse but may be used to represent a number of graphic user interface features such as zoom through an axis, movement through layers of an on-screen graphic presentation, scrolling, rotation of 3-D graphic representations on screen, or panning.
As shown in
A semi-rigid shell 25 is interposed between a flexible outer cover 26 and the second circuit board 20. The shell 25 transmits downward force from the cover to the secondary switch 22. The cover extends over the outer peripheries 27, 28 of the first and second circuit boards 12, 20. In this way a squeezing of the lower rim 29 of the cover 26 is transmitted to at least one of the primary switches 14 which are displaced from one another by, for example, by 90 or 120 degrees. The buttons forming the primary user input command switch may be wired in parallel with each other so that actuating any combination of the switches will result in the button press being registered as a user command input. In preferred forms, at least one of the primary switches 14 is assuredly activated by squeezing the lower rim 29 at diametrically opposite positions.
In some optional embodiments, a ball race 30 and ball bearings 31 are interposed between the chassis 11 and a retaining ring 32. This allows the base, being a low friction pad 36 to remain free from rotation while the components above the ball bearings 31 are free to rotate. This also allows the mouse to be rotated without ‘wandering’ in the ‘x’ or ‘y’ direction, by providing a lower friction coefficient in the rotational mode than in the linear mode.
The mechanism for sensing the ‘x’ and ‘y’ movement of the mouse is the conventional optical mouse sensor device 13, 17 etc. By combining the ‘x’ and ‘y’ movement from the optical sensor with the change in rotation angle (z) from the linear magnetic sensors 16, three degrees of freedom of control are able to be simultaneously achieved. These three movements are converted into RF data packets which are transmitted to the computer's optional RF receiver. In one embodiment the “z” information replaces the information normally attributed to the scroll wheel in a wireless or conventional scrolling mouse.
Since the angle of orientation of the mouse with respect to its environment is always known from the linear magnetic sensors 16, any movement in the ‘x’ and ‘y’ directions can be compensated so that the spatial mapping from the desktop to the computer screen is maintained regardless of the fact that the mouse is being rotated.
Since the angle of orientation of the desktop relative to the Earth's magnetic field is unknown, it is necessary to provide a means of setting the base orientation. This is achieved by providing an orientation switch 23. The orientation switch is accessed by the user by providing a mechanical button 33 which fits within an opening 34 in the cover 26, through an opening 35 in the shell and impinges on the orientation switch 23. At the time that the orientation switch is activated, the angle of rotation is stored in computer memory as the base orientation angle.
During operation, the offset angle is determined by the following formula:
offset angle=compass reading−base orientation angle
As shown in
When the mouse is used for two dimensional operations with the ‘z’ axis used for window scrolling, it is necessary to suppress the scrolling function while the mouse is being moved in the ‘x’ or ‘y’ directions. Otherwise, inadvertent scrolling may occur as the mouse is rotated by small amounts during movement. If the mouse is being rotated without significant ‘x’ or ‘y’ movement, the scrolling function will be resumed. This may be done in software by incorporating a fixed or user set threshold for “z” axis movement. This may be done in hardware by providing a compass disabling switch on the mouse. This may also be accomplished by using software to detect a condition of an existing button, for example disabling the compass if the orientation switch is depressed for 5 seconds.
If the target application requires simultaneous input from all three degrees of freedom, it will inform the context sensitive driver. Under these conditions no suppression of the rotational (z) axis will occur.
Since the mouse needs to be operated at any angle of rotation, the operation of the user command buttons also need to be orientation free. The solution is to use, as previously mentioned, a central or secondary, ‘push’ button 22 activated from the center or top of the mouse, and one or more ‘squeeze’ or primary buttons 14 radially oriented on the outside perimeter of the mouse to provide for two-button operation. When the flexible, deformable exterior 26 is squeezed, at least one radial user command input button 14 is activated. Thus, the one or more primary buttons 14 act as a single switch that allows the exterior of the mouse to be essentially symmetrical and thus provide a user input, from any radial direction, for the user command which is associated with the primary button.
As shown in
Applications for the mouse include, but are not limited to: rotation of three dimensional objects on screen using the three degrees of freedom simultaneously; panning and zooming; operation of rotary interface controls; scrolling of window contents; and any other operation requiring up to three degrees of freedom of input control.
Patent | Priority | Assignee | Title |
10010790, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
10022624, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
10137365, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
10155170, | Jun 05 2006 | Nintendo Co., Ltd. | Game operating device with holding portion detachably holding an electronic device |
10179283, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
10188953, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
10238978, | Aug 22 2005 | Nintendo Co., Ltd. | Game operating device |
10300374, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
10307671, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
10307683, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tag |
10369463, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
10478719, | Apr 05 2002 | MQ Gaming, LLC | Methods and systems for providing personalized interactive entertainment |
10507387, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
10583357, | Mar 25 2003 | MQ Gaming, LLC | Interactive gaming toy |
10661183, | Aug 22 2005 | Nintendo Co., Ltd. | Game operating device |
10758818, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
11027190, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
11052309, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
11144137, | Feb 26 2019 | The United States Government as Represented by the Departnent of Veterans Affairs; THE UNIVERSITY OF PITTSBURGH—OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION | Computer pointing device |
11278796, | Apr 05 2002 | MQ Gaming, LLC | Methods and systems for providing personalized interactive entertainment |
7305224, | May 27 2005 | Power saving wireless mouse having receiver receptacle | |
7596466, | Mar 28 2006 | Nintendo Co., Ltd. | Inclination calculation apparatus and inclination calculation program, and game apparatus and game program |
7716008, | Jan 19 2007 | Nintendo Co., Ltd. | Acceleration data processing program, and storage medium, and acceleration data processing apparatus for use with the same |
7774155, | Mar 10 2006 | NINTENDO CO , LTD | Accelerometer-based controller |
7786976, | Mar 09 2006 | Nintendo Co., Ltd. | Coordinate calculating apparatus and coordinate calculating program |
7808484, | Jan 21 2007 | Squeezable computer mouse | |
7877224, | Mar 28 2006 | Nintendo Co, Ltd. | Inclination calculation apparatus and inclination calculation program, and game apparatus and game program |
7927216, | Sep 15 2005 | NINTENDO CO , LTD | Video game system with wireless modular handheld controller |
7931535, | Aug 22 2005 | NINTENDO CO , LTD | Game operating device |
7942745, | Aug 22 2005 | Nintendo Co., Ltd. | Game operating device |
8041536, | Mar 28 2006 | Nintendo Co., Ltd. | Inclination calculation apparatus and inclination calculation program, and game apparatus and game program |
8089458, | Feb 22 2000 | MQ Gaming, LLC | Toy devices and methods for providing an interactive play experience |
8157651, | Sep 12 2005 | Nintendo Co., Ltd. | Information processing program |
8164567, | Feb 22 2000 | MQ Gaming, LLC | Motion-sensitive game controller with optional display screen |
8169406, | Feb 22 2000 | MQ Gaming, LLC | Motion-sensitive wand controller for a game |
8184097, | Feb 22 2000 | MQ Gaming, LLC | Interactive gaming system and method using motion-sensitive input device |
8207939, | Jan 21 2007 | Squeezable computer mouse | |
8226493, | Aug 01 2002 | MQ Gaming, LLC | Interactive play devices for water play attractions |
8248367, | Feb 22 2001 | MQ Gaming, LLC | Wireless gaming system combining both physical and virtual play elements |
8267786, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
8308563, | Aug 30 2005 | Nintendo Co., Ltd. | Game system and storage medium having game program stored thereon |
8313379, | Aug 25 2005 | NINTENDO CO , LTD | Video game system with wireless modular handheld controller |
8368648, | Feb 22 2000 | MQ Gaming, LLC | Portable interactive toy with radio frequency tracking device |
8373659, | Mar 25 2003 | MQ Gaming, LLC | Wirelessly-powered toy for gaming |
8384668, | Feb 22 2001 | MQ Gaming, LLC | Portable gaming device and gaming system combining both physical and virtual play elements |
8409003, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
8430753, | Sep 15 2005 | Nintendo Co., Ltd. | Video game system with wireless modular handheld controller |
8473245, | Mar 28 2006 | Nintendo Co., Ltd. | Inclination calculation apparatus and inclination calculation program, and game apparatus and game program |
8475275, | Feb 22 2000 | MQ Gaming, LLC | Interactive toys and games connecting physical and virtual play environments |
8491389, | Feb 22 2000 | MQ Gaming, LLC | Motion-sensitive input device and interactive gaming system |
8531050, | Feb 22 2000 | MQ Gaming, LLC | Wirelessly powered gaming device |
8608535, | Apr 05 2002 | MQ Gaming, LLC | Systems and methods for providing an interactive game |
8686579, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless controller |
8702515, | Apr 05 2002 | MQ Gaming, LLC | Multi-platform gaming system using RFID-tagged toys |
8708821, | Feb 22 2000 | MQ Gaming, LLC | Systems and methods for providing interactive game play |
8708824, | Sep 12 2005 | Nintendo Co., Ltd. | Information processing program |
8711094, | Feb 22 2001 | MQ Gaming, LLC | Portable gaming device and gaming system combining both physical and virtual play elements |
8753165, | Oct 20 2000 | MQ Gaming, LLC | Wireless toy systems and methods for interactive entertainment |
8758136, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
8790180, | Feb 22 2000 | MQ Gaming, LLC | Interactive game and associated wireless toy |
8814688, | Mar 25 2003 | MQ Gaming, LLC | Customizable toy for playing a wireless interactive game having both physical and virtual elements |
8827810, | Apr 05 2002 | MQ Gaming, LLC | Methods for providing interactive entertainment |
8834271, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
8870655, | Aug 24 2005 | Nintendo Co., Ltd. | Wireless game controllers |
8888576, | Feb 26 1999 | MQ Gaming, LLC | Multi-media interactive play system |
8913011, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
8915785, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
8961260, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tracking device |
8961312, | Mar 25 2003 | MQ Gaming, LLC | Motion-sensitive controller and associated gaming applications |
9011248, | Aug 22 2005 | Nintendo Co., Ltd. | Game operating device |
9013264, | Mar 12 2011 | Perceptive Devices, LLC | Multipurpose controller for electronic devices, facial expressions management and drowsiness detection |
9039533, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
9044671, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
9149717, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
9162148, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
9186585, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9227138, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
9272206, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
9320976, | Oct 20 2000 | MQ Gaming, LLC | Wireless toy systems and methods for interactive entertainment |
9393491, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
9393500, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
9446319, | Mar 25 2003 | MQ Gaming, LLC | Interactive gaming toy |
9463380, | Apr 05 2002 | MQ Gaming, LLC | System and method for playing an interactive game |
9468854, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9474962, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
9480929, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tag |
9498709, | Aug 24 2005 | Nintendo Co., Ltd. | Game controller and game system |
9498728, | Aug 22 2005 | Nintendo Co., Ltd. | Game operating device |
9579568, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
9616334, | Apr 05 2002 | MQ Gaming, LLC | Multi-platform gaming system using RFID-tagged toys |
9675878, | Sep 29 2004 | MQ Gaming, LLC | System and method for playing a virtual game by sensing physical movements |
9700806, | Aug 22 2005 | Nintendo Co., Ltd. | Game operating device |
9707478, | Mar 25 2003 | MQ Gaming, LLC | Motion-sensitive controller and associated gaming applications |
9713766, | Feb 22 2000 | MQ Gaming, LLC | Dual-range wireless interactive entertainment device |
9731194, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9737797, | Feb 22 2001 | MQ Gaming, LLC | Wireless entertainment device, system, and method |
9770652, | Mar 25 2003 | MQ Gaming, LLC | Wireless interactive game having both physical and virtual elements |
9814973, | Feb 22 2000 | MQ Gaming, LLC | Interactive entertainment system |
9861887, | Feb 26 1999 | MQ Gaming, LLC | Multi-platform gaming systems and methods |
9931578, | Oct 20 2000 | MQ Gaming, LLC | Toy incorporating RFID tag |
9993724, | Mar 25 2003 | MQ Gaming, LLC | Interactive gaming toy |
RE45905, | Sep 15 2005 | Nintendo Co., Ltd. | Video game system with wireless modular handheld controller |
Patent | Priority | Assignee | Title |
4887230, | Feb 18 1987 | Hitachi, Ltd.; Hitachi Process Computer Engineering, Inc. | Cursor display apparatus |
5162781, | Oct 02 1987 | Automated Decisions, Inc. | Orientational mouse computer input system |
5703623, | Jan 24 1996 | PINN COMMUNICATIONS CORPORATION | Smart orientation sensing circuit for remote control |
5831553, | Oct 23 1995 | U S PHILIPS CORPORATION | Input apparatus for a data processing system |
5912660, | Jan 09 1997 | AMERICAN TACK & HARDWARE COMPANY; TACTILE WORLD, LTD | Mouse-like input/output device with display screen and method for its use |
5936612, | May 30 1997 | Computer input device and method for 3-D direct manipulation of graphic objects | |
6040539, | Jan 08 1998 | Protective cover for a computer mouse | |
6130664, | Feb 25 1997 | ALPS ELECTRIC CO , LTD | Input device |
6323843, | Jul 09 1998 | Susan L., Giles | Computer mouse |
6342878, | Sep 18 1997 | AEROSPATIATLE SOCIETE NATIONALE INDUSTRIELLE | Input peripheral for computer with automatic switching between 3D and 2D operation modes, and its interaction process with a display screen |
6788290, | Sep 12 2001 | Intellectual Ventures I LLC | Pointing device by sensing geomagnetic field |
20010050673, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 21 2003 | CREW, LAURENCE JAMES | HI-FI PTY LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014738 | /0273 | |
Nov 24 2003 | Cylo Technology Pty Ltd | (assignment on the face of the patent) | / | |||
Apr 26 2005 | CREW, LAURENCE JAMES | HI-FI DESIGN PTY LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017117 | /0010 | |
May 01 2006 | HI FI DESIGN PTY LTD | Cylo Technology Pty Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017866 | /0431 | |
Jan 18 2011 | Cylo Technology Pty Ltd | CREW, LAURENCE J, MR | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025650 | /0141 |
Date | Maintenance Fee Events |
Jun 25 2010 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 08 2014 | REM: Maintenance Fee Reminder Mailed. |
Dec 26 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 26 2009 | 4 years fee payment window open |
Jun 26 2010 | 6 months grace period start (w surcharge) |
Dec 26 2010 | patent expiry (for year 4) |
Dec 26 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 26 2013 | 8 years fee payment window open |
Jun 26 2014 | 6 months grace period start (w surcharge) |
Dec 26 2014 | patent expiry (for year 8) |
Dec 26 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 26 2017 | 12 years fee payment window open |
Jun 26 2018 | 6 months grace period start (w surcharge) |
Dec 26 2018 | patent expiry (for year 12) |
Dec 26 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |