An improved nasal cannula and cannula support structure. In a preferred embodiment, an integrated nasal cannula and cannula support device comprise a semi-rigid mono-lumen cannula design comprising a generally L-shaped mono-lumen strut terminating at its distal end with an oxygen supply barrel. In an alternate embodiment of the present invention designed for use with conventional delivery tube pair cannula designs, a nasal cannula support device includes a ridge pole retainer comprising a generally L-shaped strut having a long leg and a short leg. The cannula support is anchored to the wearer's nose and/or forehead such that the cannula delivery tubes and supply barrel are maintained in fixed alignment regardless of the wearer's head motion.
|
1. A nasal oxygen supply cannula and support apparatus comprising:
a tube formed as a generally L-shaped strut for conforming to the contour of the nose of a wearer, said L-shaped strut having a proximal end connected to an oxygen supply and a distal end connected to a nosepiece having a one or more intra-nasal oxygen delivery output ports;
wherein said L-shaped strut includes a long leg member shaped to rest in substantially flush contact with the ridge pole of the wearer's nose;
and further comprising a nasal shield stabilizer including:
a central strip portion coupled to said long leg member; and
lateral wings extending from each side of said central strip portion for gripping the sides of the wearer's nose.
2. The nasal oxygen supply cannula and support apparatus of
3. The nasal oxygen supply cannula and support apparatus of
4. The nasal oxygen supply cannula and support apparatus of
5. The nasal oxygen supply cannula and support apparatus of
6. The nasal oxygen supply cannula and support apparatus of
7. The nasal oxygen supply cannula and support apparatus of
8. The nasal oxygen supply cannula and support apparatus of
9. The nasal oxygen supply cannula and support apparatus of
10. The nasal oxygen supply cannula and support apparatus of
11. The nasal oxygen supply cannula and support apparatus of
12. The nasal oxygen supply cannula and support apparatus of
13. The nasal oxygen supply cannula and support apparatus of
14. The nasal oxygen supply cannula and support apparatus of
15. The nasal oxygen supply cannula and support apparatus of
16. The nasal oxygen supply cannula and support apparatus of
17. The nasal oxygen supply cannula and support apparatus of
18. The nasal oxygen supply cannula and support apparatus of
19. The nasal oxygen supply cannula and support apparatus of
20. The nasal oxygen supply cannula and support apparatus of
21. The nasal oxygen supply cannula and support apparatus of
22. The nasal oxygen supply cannula and support apparatus of
23. The nasal oxygen supply cannula and support apparatus of
24. The nasal oxygen supply cannula and support apparatus of
a tube support means disposed behind the wearer's head, wherein said tube support means provides a balance point for said oxygen supply tube; and
biasing means for applying backward tension on said oxygen supply tube.
25. The nasal oxygen supply cannula and support apparatus of
26. The nasal oxygen supply cannula and support apparatus of
|
This application claims the benefit of U.S. Provisional Application Ser. No. 60/409,771 entitled “IMPROVED NASAL OXYGEN CANNULA,” and filed on Sep. 10, 2002, and is a continuation-in-part of and claims the benefit of U.S. patent application Ser. No. 09/994,571, filed on Nov. 27, 2001 now U.S. Pat. No. 6,669,712 entitled “NASAL OXYGEN CANNULA WITH SUPPLY TUBE MANAGEMENT,” the contents of which are incorporated herein by reference.
1. Technical Field
The present invention relates generally to nasal oxygen cannula technology, and in particular, to an apparatus and method for stabilizing and anchoring nasal oxygen cannulas in a secure and comfortable manner.
2. Description of the Related Art
Nasal oxygen cannulas are utilized to deliver oxygen directly to nasal airways in order to infuse oxygen into the inspirational airflow of patients in need of such therapy. Typically, these systems include a relatively large bore plastic supply tube as a conduit for providing gas flow from a pressurized oxygen source to proximal ends of a pair of plastic oxygen delivery tubes having relatively smaller bores. In a typical nasal cannula configuration, the distal ends of the delivery tubes enter into opposite ends of a short, expanded piece of plastic tubing, referred to herein as an oxygen delivery barrel. In the foregoing manner, the oxygen delivery barrel joins the two oxygen delivery tubes in a loop configuration. The barrel is typically cylindrical in shape, formed of a short length of enlarged plastic tubing provided with smaller diameter, stub-like extensions referred to herein as cannula delivery ports. The ports are open at their distal ends and are positioned in circumferential alignment upon the barrel and transverse to the longitudinal axis of the barrel. The cannula delivery ports are positioned so that the distance therebetween approximates an average distance between the nares in which they will be positioned. The terms “cannula,” “nasal cannula,” and “nasal oxygen cannula” are utilized throughout this specification and within the claims interchangeably, and refer, collectively and individually to an apparatus or device comprised of various tubing and associated retention/anchoring structure for delivery oxygen or other respiratory gases or mixtures of respiratory gases to a patient through the patient's external nasal passages.
An example prior art nasal oxygen cannula design is depicted in
To ensure adequate and uninterrupted oxygen delivery, nasal cannulas must be securely positioned such that the delivery ports on the oxygen supply barrel are maintained in secure alignment with a patient's nostrils. Conventional catheter/cannulas have largely depended upon the use of the pair of oxygen delivery tubes, such as those depicted in
The delivery tube ear loop design of the apparatus shown in
The above-described cannula positioning/retention problems are, to some extent, addressed by U.S. Pat. No. 6,093,169 (the '169 patent). To improve retention of the cannula delivery ports within the nostrils, the '169 patent discloses. a detachable retainer that is positioned along the ridge pole of the nose. The ridge pole retainer is generally configured as an L-shaped strut having a long “leg” and a short “leg.” The long leg of the strut is configured and adapted to conform to and lie upon the ridge pole of the nose from the root of the nose to an area proximate to the tip of the nose. The strut is comprised of a flexible material such as a plastic or fabric covered/padded metal framework that may be secured to the ridge pole of the nose with a suitable adhesive means. The short leg of the strut lies in an angular relationship with the long leg such that it may be positioned under the nose, generally in line with the nasal septum.
The short leg also includes, in certain preferred embodiments, a curved portion that is especially adapted and configured to pass around and securely retain an oxygen delivery barrel. The barrel is thus held and secured in a position and orientation that assures that cannula delivery ports protruding transversely therefrom remain secured within a patient's nostrils.
As described above, the device disclosed by the '169 patent is advantageously comprised of a springy plastic or springy metal backbone demonstrating high elastic memory within operational limits. The contour and elasticity of the device provide a traction force to the nose when the device is secured along the ridge pole of a patient's nose. The traction force of the device, so applied and secured, tends to pull the tip of the wearer's nose both upward and inward. More specifically, as the long arm of the retainer is urged upward towards the root of the nose, the short leg flange portion pulls the tip of the nose upward and inward towards the forehead. The pulling upward and inward of the tip of the nose tends to shorten and increase the diameter of the external nasal airway. As a result, the external nasal bore, widened and shortened, provides decreased airway resistance, allowing greater inspiration and more efficient oxygen delivery to the patient, while simultaneously providing improved stabilization and retention of the oxygen delivery barrel under the patient's nose.
Although the device described by the '169 patent provides increased cannula stabilization, it is still utilized with the above-described ear loops in order to further stabilize the device. Thus, although greater stability is provided by the cannula support device described therein, a patient remains susceptible to irritation, abrasion and resultant “throw off” associated with such loops.
What is needed is a nasal cannula device and method of utilizing same, which provides the increased stabilization and increased airway efficiency demonstrated by the '169 patent, while, at the same time, eliminating the use of ear loops and the irritations and abrasions associated with the use thereof. The present invention addresses such a need.
An improved nasal cannula and cannula support structure are disclosed herein. In a preferred embodiment, an integrated nasal cannula and cannula support device comprise a semi-rigid mono-lumen cannula design comprising a generally L-shaped mono-lumen strut terminating at its distal end with an oxygen supply barrel. In an alternate embodiment of the present invention designed for use with conventional delivery tube pair cannula designs, a nasal cannula support device includes a ridge pole retainer comprising a generally L-shaped strut having a long leg and a short leg. The cannula support is anchored to the wearer's nose and/or forehead such that the cannula delivery tubes and supply barrel are maintained in fixed alignment regardless of the wearer's head motion.
All objects, features, and advantages of the present invention will become apparent in the following detailed written description.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
The present invention is described in a preferred embodiment in the following description with reference to the figures. While this invention is described in terms of the best mode for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention.
The present invention is directed to a nasal cannula support device that provides improved stabilization of the cannula apparatus and associated tubing while eliminating the need for ear loop retention and stabilization. Each of the embodiments of the present invention provide stabilization of the oxygen barrel within a patient's nostrils while managing or eliminating the need for a pair of side-mounted oxygen delivery tubes feeding the supply barrel. Conventional methods for securing the oxygen delivery tubes result in the tubes rubbing and chafing the sulcus area of skin behind a patient's ears, causing significant patient discomfort and increased potential for intentional or unintentional removal of the apparatus by the patient. The present invention reduces the frequency of cannula loss/displacement, decreases the need for replacement of same by nursing staff, and increases patient comfort.
In a preferred embodiment, an integrated nasal cannula and cannula support device comprise a semi-rigid mono-lumen cannula design comprising a generally L-shaped mono-lumen strut terminating at its distal end with an oxygen supply barrel. In an alternate embodiment of the present invention designed for use with conventional. delivery tube pair cannula designs, a nasal cannula support device includes a ridge pole retainer comprising a generally L-shaped strut having a long leg and a short leg. The cannula support is anchored to the wearer's nose and/or forehead such that the cannula delivery tubes and supply barrel are maintained in fixed alignment regardless of the wearer's head motion.
With reference now to the figures, wherein like reference numerals refer to like and corresponding parts throughout, and in particular with reference to
Short leg 6 is contoured to extend over the tip of a patient's nose and terminates at its distal end under the nasal septum with a nosepiece 8. As shown in
The cannula design depicted in
Referring to
In a preferred embodiment, forehead band 12 consists of a double layer of fabric material. A relatively narrow channel or pocket (not depicted), just wide enough to enable passage of the proximal end of the tubular strut member of nasal cannula 10 traverses this band at a right angle. The single-lumen tubular strut passes up the length of the nose onto the forehead and then through the pocket. The pocket may be internally coated with adhesive or an attachment tab or other device may be fitted to the tubing to secure it to the headband at a particular level. Once the entire cannula device has been fitted distally with cannula ports 5 inserted into the nares, forehead band 12 is slid slightly toward the top of the patient's head until the desired traction is provided.
Further stabilization of nasal cannula 10 to the patient's nose is provided by the pre-manufactured inclusion or post-manufacture application of a nasal shield stabilizer 14 having a central portion 11 secured by adhesion or manufacturing processing, such as plastic injection molding, to the long leg member 2 and furthermore having lateral wings 16 that are secured to each side of the patient's nose. As shown in
In the preferred embodiment shown in
The lateral wings 16 are preferably constructed either of plastic (if fabricated as an integral unit with cannula 10) or of a thin springy brass shim stock or other deformable material having elastic memory such that although the entire nasal shield stabilizer is manufactured as an originally flat member, the shield may be rolled or otherwise pressed about an internally situated molding object, such as a tubular mold, resulting in lateral wings 16 drooping with sufficient springiness to lightly grasp the body of the nose between the wings. The disposition of lateral wings 16 on both side of the nose provides lateral stability for nasal cannula 10.
Referring to
At the distal end of short leg 33, a curved clip portion 34 securely retains an oxygen barrel 44 under the nose and cannula delivery ports 46 within the nostrils. Cannula delivery ports 46 are in fluid communication with the oxygen delivery barrel 44 and a pair of oxygen delivery tubes 43. An oxygen supply source (not depicted) provides pressurized oxygen to an oxygen supply tube (not depicted) which, in turn, communicates at a distal end thereof with proximal ends of the delivery tubes 43.
In the depicted embodiment, longitudinal support brace 32 is secured to the nose by means of a cross member 38 having eyeglass-like nasal pads 39 adjustable to rest on each side of the root of the nose. In an alternative embodiment, adhesive tape, adhesive backings, or precision contouring of support brace to conform to the contour of the nose may be used in place of nasal cross member 38 and pads 39 to secure support brace 32 to the nose. As shown in
In accordance with the depicted embodiment, cannula support apparatus 30 further includes a forehead cross brace 35 for laterally securing longitudinal support brace 32 at a point approximately halfway up the patient's forehead. Forehead cross brace 35 is preferably constructed as a plastic injection molded piece, or in the alternative, may be made of springy brass shim stock, a strip of adhesive tape or an elastic band. If an elastic headband is used in place of the depicted forehead cross brace 35, the object attachment preferably has sufficient elastic pull to yield a slight upward traction on the clip 34, thus maintaining delivery ports 46 securely anchored within the nares. In a preferred embodiment, the lever action imparted by the headband or cross brace 35 on longitudinal support brace 32 is sufficient to achieve a slight shortening and flaring of the nares, resulting in an increased airway and descreased airflow resistance through the nares.
As further depicted in
In addition to addressing the problems relating to securing a cannula to a patient's nares and patient discomfort resulting from the traditional behind-the-ears anchoring of nasal cannulae, the present invention further addresses problems relating to the tendency of the oxygen delivery tubes to become snagged in bedclothes or sheets. With reference to
While this invention has been described in terms of several embodiments, it is contemplated that alterations, permutations, and equivalents thereof will become apparent to one of ordinary skill in the art upon reading this specification in view of the drawings supplied herewith. It is therefore intended that the invention and any claims related thereto include all such alterations, permutations, and equivalents that are encompassed by the spirit and scope of this invention.
Patent | Priority | Assignee | Title |
10046133, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive open ventilation for providing ventilation support |
10058668, | May 18 2007 | BREATHE TECHNOLOGIES, INC | Methods and devices for sensing respiration and providing ventilation therapy |
10099028, | Aug 16 2010 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices using LOX to provide ventilatory support |
10105099, | Jul 02 2007 | PHILIPS RS NORTH AMERICA LLC | Nasal and oral patient interfaces |
10232136, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
10245404, | Jun 04 2008 | ResMed Pty Ltd | Patient interface systems |
10252020, | Oct 01 2008 | BREATHE TECHNOLOGIES, INC | Ventilator with biofeedback monitoring and control for improving patient activity and health |
10265486, | Sep 03 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
10441737, | Dec 17 2008 | ACANTHUS MEDICAL CREATIONS LLC | Strapless nasal interface device |
10512745, | Jun 04 2008 | ResMed Pty Ltd | Patient interface systems |
10518058, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
10556084, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
10561813, | Feb 21 2003 | ResMed Pty Ltd. | Mask assembly |
10695519, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within nasal pillows |
10709864, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
10792449, | Oct 03 2017 | BREATHE TECHNOLOGIES, INC | Patient interface with integrated jet pump |
10869982, | Jun 04 2008 | ResMed Pty Ltd | Patient interface systems |
11000664, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
11077276, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
11090455, | Feb 21 2003 | RESMED LTD PTY; ResMed Pty Ltd | Nasal assembly |
11103666, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
11103667, | Apr 02 2009 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
11154672, | Sep 03 2009 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
11369766, | Jun 04 2008 | ResMed Pty Ltd. | Patient interface systems |
11420004, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
11433207, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
11497876, | Feb 21 2003 | RESMED LTD PTY; ResMed Pty Ltd | Mask assembly |
11565067, | Aug 09 2013 | Fisher & Paykel Healthcare Limited | Asymmetrical nasal delivery elements and fittings for nasal interfaces |
11583652, | Feb 21 2003 | ResMed Pty Ltd | Mask assembly |
11707591, | Apr 02 2009 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
11752293, | Jun 04 2008 | ResMed Pty Ltd | Patient interface systems |
11872347, | Mar 15 2013 | Fisher & Paykel Healthcare Limited | Nasal cannula assemblies and related parts |
11896766, | Apr 02 2009 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
7422014, | Nov 04 2005 | Airflow monitor and breathing device and method | |
7461656, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
7735490, | Feb 12 2005 | Adjustable nasal cannula apparatus and method of use | |
7874293, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
7900635, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8042546, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8136527, | Aug 18 2003 | BREATHE TECHNOLOGIES, INC | Method and device for non-invasive ventilation with nasal interface |
8161971, | Aug 04 2006 | PHILIPS RS NORTH AMERICA LLC | Nasal and oral patient interface |
8186352, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8286636, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8312881, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8312883, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8336551, | Jan 31 2011 | Cannula support device | |
8381729, | Jun 18 2003 | BREATHE TECHNOLOGIES, INC | Methods and devices for minimally invasive respiratory support |
8418694, | Aug 11 2003 | BREATHE TECHNOLOGIES, INC | Systems, methods and apparatus for respiratory support of a patient |
8424530, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8474461, | Jun 17 2006 | Apparatus for holding nasal tubes | |
8567399, | Sep 26 2007 | BREATHE TECHNOLOGIES, INC | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
8573219, | Aug 18 2003 | BREATHE TECHNOLOGIES, INC | Method and device for non-invasive ventilation with nasal interface |
8616203, | Aug 04 2006 | PHILIPS RS NORTH AMERICA LLC | Nasal and oral patient interfaces |
8677999, | Aug 22 2008 | BREATHE TECHNOLOGIES, INC | Methods and devices for providing mechanical ventilation with an open airway interface |
8746251, | May 10 2010 | Protective storage for a nasal cannula assembly | |
8770193, | Apr 18 2008 | BREATHE TECHNOLOGIES, INC | Methods and devices for sensing respiration and controlling ventilator functions |
8776793, | Apr 18 2008 | BREATHE TECHNOLOGIES, INC | Methods and devices for sensing respiration and controlling ventilator functions |
8925545, | Sep 26 2007 | BREATHE TECHNOLOGIES, INC | Methods and devices for treating sleep apnea |
8939152, | Sep 30 2010 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for humidifying a respiratory tract |
8955518, | Jun 18 2003 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for improving ventilation in a lung area |
8985099, | May 18 2006 | BREATHE TECHNOLOGIES, INC | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
8985117, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
9004072, | Jan 30 2013 | Cannula support assembly | |
9132250, | Sep 03 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
9180270, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube |
9227034, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
9358358, | Sep 30 2010 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for humidifying a respiratory tract |
9675774, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space |
9962512, | Apr 02 2009 | BREATHE TECHNOLOGIES, INC | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
D590058, | Aug 14 2007 | BRAEBON Medical Corporation | Airflow sensor for use with a cannula |
D607993, | Aug 14 2007 | BRAEBON Medical Corporation | Airflow sensor for use with a cannula |
D870269, | Sep 14 2016 | Fisher & Paykel Healthcare Limited | Nasal cannula assembly |
Patent | Priority | Assignee | Title |
2168705, | |||
2245969, | |||
2259817, | |||
2590006, | |||
2831487, | |||
3046989, | |||
3338538, | |||
3682171, | |||
3871373, | |||
4454880, | May 12 1982 | Nasal hood with open-bottom mixing chamber | |
4660555, | Sep 21 1984 | Oxygen delivery and administration system | |
4782832, | Jul 30 1987 | Puritan-Bennett Corporation | Nasal puff with adjustable sealing means |
4808160, | Apr 14 1986 | ENGINEERED SPECIALTY PRODUCTS INC | Nasal cannula apparatus |
4932943, | May 23 1988 | Hollister Incorporated | Nasogastric tube holding device |
5113857, | Aug 27 1990 | Breathing gas delivery system and holding clip member therefor | |
5172688, | Aug 09 1991 | Innovative Medical Design Corp. | Nasal-gastric tube holder |
5335656, | Apr 15 1988 | Salter Labs | Method and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis |
5477852, | Oct 29 1991 | Airways Associates | Nasal positive airway pressure apparatus and method |
5513634, | May 06 1994 | GI SUPPLY, INC | Combination integral bite block airway and nasal cannula |
5513635, | Feb 02 1995 | Nasal cannula anchoring apparatus | |
5535739, | May 20 1994 | New York University; Nellcor Puritan Bennett | Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea |
5669377, | Jul 05 1996 | Nasal band and method for improved breathing | |
5685292, | Jul 05 1996 | Nasal tip-lift adhesive band for improved breathing | |
5735272, | Jan 22 1997 | SOUTHWEST MEDICAL PRODUCTS INC | Nasal tube holder having a nasal dilator attached thereto |
5752511, | Nov 22 1996 | Universal medical tube retainer and nasal wall tissue dilator | |
5803066, | May 07 1992 | New York University | Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea |
5817039, | Jan 24 1996 | Nasal splint system | |
5931854, | Jan 26 1998 | SOUTHWEST MEDICAL PRODUCTS INC | Nasal dilator |
5961537, | Mar 05 1997 | Nose foreshortener and external nasal dilator | |
5976173, | Aug 21 1996 | NULLI SECUNDUS, INC | Noseform, cover and reset-structure and method |
6093169, | May 08 1997 | Nasal oxygen catheter | |
6328038, | Jul 14 1998 | Nasal cannula retainer | |
6669712, | Jun 30 2000 | Nasal oxygen cannula with supply tube management | |
20030034030, | |||
20030172936, | |||
D479327, | Feb 04 2002 | Head band for supporting a nasal cannula | |
DE229378, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Aug 09 2010 | REM: Maintenance Fee Reminder Mailed. |
Jan 02 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 02 2010 | 4 years fee payment window open |
Jul 02 2010 | 6 months grace period start (w surcharge) |
Jan 02 2011 | patent expiry (for year 4) |
Jan 02 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 02 2014 | 8 years fee payment window open |
Jul 02 2014 | 6 months grace period start (w surcharge) |
Jan 02 2015 | patent expiry (for year 8) |
Jan 02 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 02 2018 | 12 years fee payment window open |
Jul 02 2018 | 6 months grace period start (w surcharge) |
Jan 02 2019 | patent expiry (for year 12) |
Jan 02 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |