A device for data stream analyzing that is able to recognize different data streams and then start processors or functionalities to store or check data in a data stream. The device includes a processor means and a program memory, making it possible to parse a data stream in a way that is controlled by an interchangeable program. There will be no need for changing the hardware. This could save time and money for companies responsible for providing, maintaining and updating network switches. The device also includes a multiplexable data stream delayline for receiving the data streams, and multiplexing means for connecting different parts of the data stream to the processor.
|
17. A method for data stream analyzing comprising the steps of:
receiving a data stream and maintaining a predetermined number of the latest incoming bytes of the data stream in a delayline;
keeping track of the location of a specific byte in the delayline;
generating a tag corresponding to the specific byte;
parsing the data stream by a processor that requests the specific byte by its tag: and
retrieving the specific byte from the delayline for provision to the processor in accordance with information corresponding to the tracked location and in response to the request by the processor.
1. A device for analyzing a data stream comprising:
a delayline that receives the data stream and maintains a predetermined number of the latest incoming bytes of the data stream;
a control unit that keeps track of the location of a specific byte in the delayline and generates a tag corresponding to the specific byte;
a processor that parses the data stream by requesting the specific byte using the tag; and
a multiplexer coupled to the delayline that receives information corresponding to the location from the control unit and thereby retrieves the specific byte from the delayline for provision to the processor.
2. The device of
3. The device of
4. The device of
5. The device of
6. The device of
7. The device of
8. The device of
a base address register for the processor to enable code to be reused by recognizing a given pattern even if it starts at different positions in the data stream.
9. The device of
10. The device of
11. The device of
12. The device of
14. The device of
15. The device of
16. The device of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
|
This application is a continuation of U.S. application Ser. No. 09/738,720 filed on Dec. 15, 2000 now U.S. Pat. No. 7,002,983 which claims priority to Swedish application serial no. SE 9904685-6 filed on Dec. 17, 1999.
The present invention relates to packet switching, more specifically to data stream decoding and data stream analyzing.
In the field of data and computer communications there is an increasing need for high speed/high bandwidth products. Prior art references relating to packet switching and more specifically to data stream decoding and pertinent to the present invention include: U.S. Pat. No. 5,509,006, JP 6/276198, EP 767565, EP 953897, and U.S. Pat. No. 5,594,869.
The problem of extracting address information in a switch from a packet in a data stream is in the prior art solved by applying masks on the content of one or more delay lines to filter out the required information. One disadvantage with this approach is the difficulty to adjust the switch to new communication protocols, because the masks are hardware implemented. Another disadvantage with the prior art is that the data in the delay line is only accessible at a certain position or certain positions, instead of being available all the time they reside in the delay line.
Accordingly, it is an object of the present invention to provide a device for improved programmable datastream analysis in the context of packet switching. In the context of this document a datastream can be any type of data stream, e.g. a bytewise Ethernet datastream in a computer network, including an Ethernet packet with different combinations of contents.
The invention relates to a device for data stream analyzing. Said device is able to recognize different data streams and then start other processors or functionalities to store or check data in a data stream. Special features are: a compare processor, a compare instruction memory, a data stream pipeline, a multiplexer and a multiplexer control unit, making it possible to test packet data under program control using several instructions and under several clock cycles even though the data is moving forward in the pipeline and even though other bytes of data are entering the device.
The invention will be described in detail below with reference to the accompanying drawings in which
The invention is preferably implemented as an integrated circuit (IC) having an electrical interface to the outside. The invention comprises a number of physical or logical units as illustrated in
When a data stream enters the device of the invention, it is passed through a delayline 1, preferably a 23 shifts deep and 1 byte wide shift register. As long as a byte resides in the first 16 positions it can be accessed by the compare processor 5, which basically will act as a packet parser. The compare processor 5 is responsible for decoding the packets. It is also connected to a compare instruction memory 4 which inherits the parsing code.
One characteristic property of the invention is that every incoming byte in the data stream is numbered with a tag. When the compare processor 5 asks for a specific tag the multiplexer control unit 3 delivers the byte located at the right position.
When the compare processor 5 has come to some kind of conclusion it might want to report something to a result field or an option field, see below. This is done by starting up a save sequence. A start address for a save sequence will be sent from the compare processor 5 to the save engine 6. Said save engine 6 examine the incoming address and decides if it is a save regarding the result field or the option field. According to this decision the address is placed in either a bit save fifo register 61 or a stream save fifo register 62 respectively.
The bit save unit 7 has three functions: it can set bits in the result field, perform checksum control and length control.
The stream save unit 9 executes the instruction that saves the option field. Said stream save unit 9 also inserts the result field into the stream and regulates a number of control signals.
The delayline 1 preferably comprises a 23 shifts deep, 1 byte wide shift register. The 16 first positions of the shift register is reachable from the compare processor 5 through a multiplexer 2. The two last positions are connected to the two save units 7, 9 (bit save and stream save). The stream save unit 9 is actually only using the very last position, and only the bit save unit 7 needs the last two positions because the checksum control works with 16 bits at a time. There are five positions that are prevented from being accessed by the parsing function of the compare procesor 5 and by the save units 7, 9 (bit save and stream save). The reason for a delay before the byte stream arrives to the save units 7, 9 is that all start addresses sent from the compare processor 5 to the save units 7, 9 are queued in a fifo register. Depending on how many save sequences in the queue and how long they are, this might in some extreme situations generate an error. This is because vital data already have passed through the delayline before a save sequence is started. The actual delay needed to secure that no such error occurs is 4*64=192 clock cycles. 64 is the maximum length of a save sequence and 4 is the maximum of start addresses waiting to be executed. However, simulations have shown that five delay cycles are enough, since all save sequences normally written are very short.
A characteristic function of the invention is that it automatically keeps track of where a specific byte has its location in the delayline. The programmer only needs to specify which tag, i.e. which number the byte has, where the first byte in a packet is number zero, the second is number 1 and so on. This is why every byte arriving to the delayline 1 should be tagged (numbered). The tagging operating could easily be done by just adding an extra field in every shift in the delayline 1 inheriting the byte's tag. But this is disadvantageous in two aspects. First, much silicon would be used to implement the extra field in the delayline 1. Second, when the parser wants to look at a specific tag it would take a lot of time if every shift had to be searched to find the wanted tag.
Instead, the present invention has solved the above problem by making a part of the delayline multiplexable; said multiplexable part of the delayline preferably includes the 16 latest incoming bytes. Worst case for the length of a packet is 1 byte (erroneous), but since the first 12 bytes always contain the OSI Media Access Control address (MAC-address), no useful information can be extracted if the packet is shorter than 13 bytes. These packets will force the compare processor 5 to begin with the next packet at once and their DV (data valid) signal will be unset so the rest of the device or a switch will never see it. With a limit of at least two clock cycles (bytes) between different packets it is possible to guarantee that never more than two packets exist at the same time in the delayline 1.
According to the ethernet standard the 1FG (Inter Frame Gap), which means the distance between packets, is at least 20 cycles, but a smaller distance is always desirable. E.g. a minimum distance of 6 cycles makes it possible to easily extend the device to be able to take care of SONET frames (An alternative ISO-OSI Layer 2 frame instead of ethernet).
The position of a requested byte is located according to the expression
p=tagfield+lastfield−wanted_tag
In the above expression “p” is the position of the wanted byte in the delayline; “tagfield” is the value of the tagfield register (321 or 331); “lastfield” is the value of the lastfield register (322 or 332) and “wanted_tag” is the position of the wanted byte relative to the beginning of the packet.
A TU 32, 33 also generates a ‘tag_error’ signal if the requested tag never will be available or ‘tag_soon’ if the requested tag has not arrived to the delayline yet.
The controlling statemachinc (CS) 31 is responsible for selecting a free TU (32 or 33) for an arriving packet and to pause the compare processor 5 when no new packets are available. The CS 31 will unselect a TU (32, 33) when the TU generates an ‘end_of_packet’ signal. An unselected TU (32, 33) will be reset to prepare it to receive the next incoming packet. The CS 31 is also controlling the TU multiplexer 34 to change its state every time the compare processor is asking for a new packet.
Referring again to
All instructions are executed in one clockcycle, except in two cases. This is possible because the compare processor unit receives two instructions every clockcycle from the compare instruction memory 4 which is of the double ported memory type. This features decreases the total amount of clock cycles needed for the compare processor 5 to parse a packet, thereby decreasing the needed size of the delayline. Some instructions are able to start save sequences. Said instructions have a field that tells what address in the save instruction memory 8 shall start the execution. Save address 0×00 will not generate a start of a save sequence.
The compare processor 5 must know when a new parsing is started so the registers 51, 52, 54, 55 can be reset. Therefore, when parsing of a packet is done, there shall be a ‘jump_and_save’ instruction with jump adress 0×7f (=last compare instruction memory 4 address). When this is detected it resets and starts looking for a new packet. If the compare processor 5 gets the signal ‘too_short’ it is reset. Further, a ‘tag_soon’ signal pauses the processor 5 and a ‘tag_error’ signal forces it to begin with the next packet.
The save engine 6 takes the address sent from the compare processor 5 and determines if it is the start address of a bit save sequence or a byte stream sequence. Thereafter, the address together with the current value of the base register 54 is put in the specific fifo 61, 62, The value of the base register 54 is needed for all save instructions that are using tag numbers. When the device according to the invention is programmed, a constant is written to the save engine 6 to tell where bit save sequences end in the save instruction memory 8. This feature exists because it is hard to tell how many instructions are needed to the different parts and it is more expensive to map two memories than one twice as big.
The bit save unit 7 writes to the result field 76. The result field 76 preferably consists of 24 bits or 3 bytes. It is controlled by the save instruction memory 8 and orders other units to execute the instructions. The executing units are:
Checksum
The checksum unit 73 executes a checksum control instruction which performs a 16-bit one complement addition. The unit needs to know what tag to start the execution from (Tag) and how many bytes the checksum should cover (Length). If there are checksum errors (i.e. the sum differs from 0×FFFF) the unit writes to the result field 76. Further, this block need the value of the base register 54 as it was when the compare processor 5 sent the start address of the current save sequence.
Bit
The bit unit 74 executes a bit save command which bitwise “xor”-ise one selected byte in the result field 76 with the data field. In other words, all bits which are set in the data field will invert the corresponding bit in the result field 76. It is only possible to invert one specific bit one time per packet, this is because e.g. an OSI Layer 3 error could be found in many ways, but if the bit which indicate a Layer 3 error is set an even number of times, this would look like a correct Layer 3 packet in the result field 76. The address field indicates which byte of the three possible bytes in the result field 76, should be written to.
Length Error
The length error unit 75 is the most complex unit and investigates lengths in a packet and is used with one or more length control instructions. In a network there might occur packets that have been cut off. This causes many kinds of errors, e.g. if layer 4 is shorter than two bytes the result field 76 should indicate Layer 3 error but not Layer 2 error. The length error unit 75 consists of two identical checkboxes and one controller. A checkbox needs to know at which tag to start the measurement from, what kind of comparison it is supposed to perform (more, less, equal or not equal) and what length to match this comparison to. If a checkbox detects a length error, a field which is part of the instruction indicates which bit, of four possible bits in the results field 76, should be written to. As with the checksum unit 73, this unit 75 also needs the value from the base register 54 as it was when the compare processor 5 sent the start address of the current save sequence.
The stream save executing unit 9 has only one save instruction to handle, a byte stream save instruction. Said instruction is used to save to the option field and includes a start tag number, a length and an six bit wide address to tell were in the option field the selected bytes are to be written. Besides of this it also inserts the result field 76 as soon as all bit save instructions are executed.
Interface
The electrical interface of a preferred embodiment of the invention to the outside world is described in conjunction with
The output interface includes output terminals for a serial byte stream together with some control signals. The control signals include a data valid (1 bit), an option field address (6 bits), a store and a halt signal (1 bit each). The store signal tells if the current byte is to be stored in an option field, the halt signal together with the store signal tells if the stream out is the inserted result field. The address bus allows addressing in the option field.
A typical application for the present invention is for packet switching in a computer network together with a packet switch by extracting information, especially addresses, from the packet headers, because it is possible to test data using several instructions and under several clock cycles even though said data is moving forward in the delayline (1) and even though other bytes of data are entering the device. One of the features of the invention is that the decoding of the protocol is programmable. This is a major advantage because new or different types of protocols can be handled by just reprogramming the device. There will be no need for changing the hardware. This could save time and money for companies responsible for providing, maintaining and updating network switches.
Halvarsson, Stig, Hammarström, Ingemar
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4128879, | Jul 29 1976 | Motorola, Inc. | Recirculating memory with plural input-output taps |
4314361, | Dec 12 1977 | U.S. Philips Corporation | Data buffer memory of the first-in, first-out type comprising a fixed input and a variable output |
4488255, | |||
4748595, | Sep 04 1985 | Siemens Aktiengesellschaft | Circuit arrangement comprising a matrix-shaped memory arrangement for variably adjustable delay of digital signals |
5142494, | Feb 26 1990 | Eastman Kodak Company | Memory based line-delay architecture |
5241429, | Mar 03 1989 | Seagate Technology LLC | Adaptive prewrite compensation apparatus and method |
5371864, | Apr 09 1992 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION A CORPORATION OF NEW YORK | Apparatus for concurrent multiple instruction decode in variable length instruction set computer |
5509006, | Apr 18 1994 | Cisco Technology, Inc | Apparatus and method for switching packets using tree memory |
5594869, | Jun 29 1990 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for end-to-end encryption of a data packet in a computer network |
5649179, | May 19 1995 | Motorola, Inc. | Dynamic instruction allocation for a SIMD processor |
5757416, | Dec 03 1993 | Cisco Technology, Inc | System and method for transmitting a plurality of digital services including imaging services |
5793954, | Dec 20 1995 | NB Networks | System and method for general purpose network analysis |
5872783, | Jul 24 1996 | Cisco Technology, Inc | Arrangement for rendering forwarding decisions for packets transferred among network switches |
5917821, | Dec 24 1993 | Alcatel-Lucent Canada Inc | Look-up engine for packet-based network |
5966544, | Nov 13 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Data speculatable processor having reply architecture |
6119154, | Jul 14 1995 | Alcatel Lucent | Method and apparatus for non-sequential access to an in-progress video feed |
6215722, | Dec 30 1998 | Hyundai Electronics Industries Co., Ltd. | Command latency circuit for programmable SLDRAM and latency control method therefor |
6240458, | Dec 22 1998 | Unisys Corporation; JOHNSON, CHARLES A , | System and method for programmably controlling data transfer request rates between data sources and destinations in a data processing system |
6510069, | Jan 19 2001 | Content addressable memory apparatus and method of operating the same | |
6598034, | Sep 21 1999 | Infineon Technologies AG | Rule based IP data processing |
6707752, | Jun 22 2001 | BEIJING XIAOMI MOBILE SOFTWARE CO , LTD | Tag design for cache access with redundant-form address |
6714552, | Aug 28 1996 | British Telecommunications public limited company | Communications network |
6804162, | Apr 05 2001 | T-RAM ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC | Read-modify-write memory using read-or-write banks |
7002983, | Dec 17 1999 | INPHI CORPORATION | Device for datastream decoding |
EP767565, | |||
EP953897, | |||
JP5058895, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 08 2001 | HALVARSSON, STIG | Switchcore, AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022629 | 0026 | |
May 08 2001 | HAMMARSTROM, INGEMAR | Switchcore, AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022629 | 0026 | |
Oct 21 2005 | Switchcore, AB | (assignment on the face of the patent) | ||||
Nov 17 2007 | SWITCHCORE INTELLECTUAL PROPERTY AB | eSilicon Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020468 | 0015 | |
Nov 17 2007 | SwitchCore AB | eSilicon Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020468 | 0015 | |
Aug 10 2012 | eSilicon Corporation | GOLD HILL CAPITAL 2008, LP | SECURITY AGREEMENT | 028782 | 0322 | |
Aug 10 2012 | eSilicon Corporation | Silicon Valley Bank | SECURITY AGREEMENT | 028782 | 0322 | |
Jul 31 2017 | eSilicon Corporation | RUNWAY GROWTH CREDIT FUND INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043334 | 0521 | |
Aug 25 2017 | GOLD HILL CAPITAL 2008, LP | eSilicon Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 044335 | 0115 | |
Sep 05 2017 | eSilicon Corporation | Silicon Valley Bank | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043669 | 0832 | |
Jun 20 2019 | Silicon Valley Bank | eSilicon Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049558 | 0449 | |
Jan 17 2020 | eSilicon Corporation | INPHI CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051558 | 0423 |
Date | Maintenance Fee Events |
May 08 2009 | ASPN: Payor Number Assigned. |
Jun 29 2010 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 04 2014 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 23 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 21 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 02 2010 | 4 years fee payment window open |
Jul 02 2010 | 6 months grace period start (w surcharge) |
Jan 02 2011 | patent expiry (for year 4) |
Jan 02 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 02 2014 | 8 years fee payment window open |
Jul 02 2014 | 6 months grace period start (w surcharge) |
Jan 02 2015 | patent expiry (for year 8) |
Jan 02 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 02 2018 | 12 years fee payment window open |
Jul 02 2018 | 6 months grace period start (w surcharge) |
Jan 02 2019 | patent expiry (for year 12) |
Jan 02 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |