A method and device for sensing the temperature profile of a hollow body organ includes a catheter and a hollow guidewire carrying a thermal sensor. The guidewire is configured to displace the thermal sensor radially relative to the catheter when unconstrained and can be rotated about the longitudinal axis of the catheter. When constrained within the catheter, the guidewire can be advanced to a region of interest in hollow body organ. The catheter can be withdrawn, leaving the guidewire in place in an expanded configuration wherein the thermal sensor contacts the inner wall of the hollow body organ. The guidewire is moveable to sense the temperature at multiple locations. The thermal sensor can be replaced with an electrode for sensing the impedance profile of the hollow body organ.

Patent
   7160255
Priority
Jul 12 2001
Filed
May 30 2003
Issued
Jan 09 2007
Expiry
Jul 12 2021
Assg.orig
Entity
Small
201
58
EXPIRED
1. A device for sensing a temperature profile of a hollow body organ, comprising:
a guidewire having a tubular helix structure continuous along an entire length of the guidewire, and sized for intravascular insertion and adapted to be disposed in a relaxed configuration externally of a catheter where a distal tip of the guidewire is laterally displaced relative to a longitudinal axis of the guidewire, and in a contracted configuration internally of the catheter; and
a temperature sensor connected to the distal tip of the guidewire and moveable therewith, the temperature sensor being adapted to be displaced laterally with the guidewire when in the relaxed configuration, wherein the temperature sensor is further adapted to be rotated about the longitudinal axis via the guidewire.
19. A device for sensing an impedance profile of a body organ, comprising:
a catheter having a longitudinal axis;
a guidewire having a tubular helix structure continuous along an entire length of the guidewire, and sized for intravascular insertion and being adapted to be disposed in a relaxed configuration externally of the catheter where a distal tip of the guidewire is laterally displaced relative to a longitudinal axis of the guidewire, and in a contracted configuration internally of the catheter; and
an electrode connected to the distal tip of the guidewire and moveable therewith, the electrode being adapted to be displaced laterally with the guidewire when in the relaxed configuration, wherein the electrode is further adapted to be rotated about the longitudinal axis via the guidewire.
20. A method for sensing a temperature profile of a hollow body organ, comprising the steps of:
providing a guidewire having a tubular helix structure which is adapted to be disposed in a relaxed configuration externally of a catheter where a distal tip of the guidewire is laterally displaced relative to a longitudinal axis of the guidewire, and in a contracted configuration internally of the catheter;
providing at least one thermal sensor connected to the distal tip of the guidewire and moveable therewith, the at least one thermal sensor being adapted to be displaced laterally with the guidewire when in the relaxed configuration;
advancing the guidewire to a region of interest in a hollow body organ;
relaxing the guidewire within the hollow body organ such that the at least one thermal sensor is displaced laterally in contact with the hollow body organ; and
rotating the at least one thermal sensor about the longitudinal axis.
2. The device of claim 1, wherein the guidewire comprises a material having martensitic transformation properties.
3. The device of claim 2, wherein the guidewire comprises Nitinol.
4. The device of claim 1, wherein the guidewire comprises an elastic material.
5. The device of claim 4, wherein the guidewire comprises spring steel.
6. The device of claim 1, wherein the temperature sensor is a thermocouple.
7. The device of claim 6, wherein the temperature sensor comprises one leg of the thermocouple and the guidewire comprises another leg of the thermocouple.
8. The device of claim 1, wherein the temperature sensor is a thermistor.
9. The device of claim 1, wherein the temperature sensor comprises a thermochromic material.
10. The device of claim 9, wherein the thermochromic material is in thermal contact with a lumen of the guidewire.
11. The device of claim 10, wherein the temperature sensor further includes an optical probe for sensing a color of the thermochromic material.
12. The device of claim 11, wherein the optical probe includes an illumination device for illuminating a region of interest of the guidewire.
13. The device of claim 12, wherein the optical probe includes a sensing device for sensing reflected radiation from the thermochromic material.
14. The device of claim 13, wherein the reflected radiation is in the visible spectrum.
15. The device of claim 13, wherein the reflected radiation is in the infrared spectrum.
16. The device of claim 13, wherein the reflected radiation is in the ultraviolet spectrum.
17. The device of claim 1, wherein the temperature sensor is adapted for rotational displacement about the longitudinal axis of the catheter while in contact with the body organ.
18. The device of claim 1, further comprising a catheter having a longitudinal axis within which the guidewire is disposed.
21. The method of claim 20, wherein the guidewire comprises a material having martensitic transformation properties.
22. The method of claim 21, wherein the guidewire comprises Nitinol.
23. The method of claim 20, wherein the guidewire comprises an elastic material.
24. The method of claim 23, wherein the guidewire comprises spring steel.
25. The method of claim 20, wherein the at least one thermal sensor comprises a thermocouple.
26. The method of claim 25, wherein the at least one thermal sensor comprises one leg of the thermocouple and the guidewire comprises another leg of the thermocouple.
27. The method of claim 20, wherein the at least one thermal sensor comprises a thermistor.
28. The method of claim 20, wherein the at least one thermal sensor comprises a thermochromic material.
29. The method of claim 28, wherein the thermochromic material is in thermal contact with a lumen of the guidewire.
30. The method of claim 29, wherein the at least one thermal sensor further includes an optical probe for sensing a color of the thermochromic material.
31. The method of claim 30, wherein the optical probe includes an illumination device for illuminating a region of interest of the guidewire.
32. The method of claim 31, wherein the optical probe includes a sensing device for sensing reflected radiation from the thermochromic material.
33. The method of claim 32, wherein the reflected radiation is in the visible spectrum.
34. The method of claim 32, wherein the reflected radiation is in the infrared spectrum.
35. The method of claim 32, wherein the reflected radiation is in the ultraviolet spectrum.
36. The method of claim 20, further comprising sensing the temperature of the hollow body organ while rotating the at least one thermal sensor.
37. The method of claim 20, wherein the rotation is continuous.
38. The method of claim 20, wherein the rotation is continual.
39. The method of claim 20, further comprising providing a catheter within which the guidewire is disposed prior to advancing the guidewire to the region of interest.
40. The method of claim 39, further comprising contracting the guidewire elastically and constraining the guidewire within the lumen of the catheter prior to advancing the guidewire to the region of interest.
41. The method of claim 40, further comprising withdrawing the catheter while securing the guidewire against substantial longitudinal movement relative to the hollow body organ, whereby the guidewire relaxes prior to sensing the temperature of the hollow body organ.

This is a continuation-in-part of U.S. patent application Ser. No. 09/904,212 filed Jul. 12, 2001 (now abandoned) and is a continuation-in-part of U.S. patent application Ser. No. 09/904,024 also filed Jul. 12, 2001 (now abandoned), each of which is incorporated herein by reference in its entirety.

This invention relates generally to invasive medical devices and more particularly to methods and devices for sensing and mapping the temperature of the interior wall of a hollow body organ such as a blood vessel.

Acute ischemic syndromes involving arterial blood vessels, such as myocardial infarction, or heart attack, and stroke, frequently occur when atherosclerotic plaque ruptures, triggering the formation of blood clots, or thrombosis. Plaque that is inflamed is particularly unstable and vulnerable to disruption, with potentially devastating consequences. Therefore, there is a strong need to detect and locate this type of plaque so that treatment can be initiated before the plaque undergoes disruption and induces subsequent life-threatening clotting.

Various procedures are known for detecting and locating plaque in a blood vessel. Angiography is one such procedure in which X-ray images of blood vessels are generated after a radiopaque dye is injected into the blood stream. This procedure is capable of locating plaque in an artery, but is not capable of revealing whether the plaque is the inflamed, unstable type.

Researchers, acting on the theory that inflammation is a factor in the development of atherosclerosis, have discovered that local variations of temperature along arterial walls can indicate the presence of inflamed plaque. The temperature at the site of inflamation, i.e., the unstable plaque, is elevated relative to adjacent plaque-free arterial walls.

Using a tiny thermal sensor at the end of a catheter, the temperature at multiple locations along an arterial wall were measured in people with and without atherosclerotic arteries. In people free of heart disease, the temperature was substantially homogeneous wherever measured: an average of 0.65 degrees F. above the oral temperature. In people with stable angina, the temperature of their plaques averaged 0.19 degrees F. above the temperature of their unaffected artery walls. The average temperature increase in people with unstable angina was 1.23 degrees F. The increase was 2.65 degrees F. in people who had just suffered a heart attack. Furthermore, temperature variation at different points at the plaque site itself was found to be greatest in people who had just had a heart attack. There was progressively less variation in people with unstable angina and stable angina.

The temperature heterogeneity discussed above can be exploited to detect and locate inflamed, unstable plaque through the use of cavity wall profiling apparatus. Typically, cavity wall profiling apparatus are comprised of temperature indicating probes such as thermocouples, thermistors, fluorescence lifetime measurement systems, resistance thermal devices and infrared measurement devices.

One problem with conventional cavity wall profiling apparatus is that they usually exert an undue amount of force on the region of interest. If the region of interest cannot withstand these forces, it may be damaged. The inside walls of a healthy human artery are vulnerable to such damage. Furthermore, if inflamed, unstable plaque is present it may be ruptured by such forces.

Another problem with conventional cavity wall profiling apparatus is that they can only measure the temperature at one specific location. In order to generate a map of the cavity temperature variation, one would need to move the temperature indicating probe from location to location. This can be very tedious, can increase the risk of damaging the vessel wall or rupturing vulnerable plaque, and may not resolve temporal characteristics of the profile with sufficient resolution. An array of probes could be employed but that could be very big and heavy.

According to one aspect of the invention, a device is provided for sensing the temperature profile of a hollow body organ. The device includes a catheter, a hollow guidewire, and a temperature sensor disposed on or within the guidewire. The guidewire has a relaxed configuration externally of the catheter that is formed to provide contact with the wall of the hollow body organ. The guidewire also has a contracted configuration internally of the catheter and is of a lesser diameter than the catheter.

According to another aspect of the invention, a method for sensing and mapping the temperature profile of a hollow body organ utilizes a catheter, a guidewire, and a thermal sensor disposed on or within the guidewire. The guidewire has a relaxed configuration externally of the catheter that is formed to provide contact with the wall of the hollow body organ. The guidewire also has a contracted configuration internally of the catheter and is of a lesser diameter than the catheter.

The device is used by contracting the guidewire elastically and constraining the guidewire within the catheter. The catheter and guidewire are advanced to a region of interest in a hollow body organ. The catheter is withdrawn to expose the distal portion of the guidewire in a relaxed configuration in contact with the hollow body organ. The guidewire is moved longitudinally and rotated, continuously or continually, to sense the temperature of the hollow body organ at multiple locations.

Further aspects and advantages of the present invention are apparent from the following description of a preferred embodiment referring to the drawings.

In the drawings,

FIG. 1 is a perspective view of a preferred embodiment of the present invention;

FIG. 2 is a longitudinal sectional view of an arterial hollow body organ in which the embodiment of FIG. 1, also shown in longitudinal section, is deployed;

FIG. 3 is a longitudinal sectional view of an arterial hollow body organ in which another preferred embodiment of the present invention, also shown in longitudinal section, is deployed;

FIG. 4 is a perspective view of yet another preferred embodiment of the present invention;

FIG. 5 is a perspective view, partially in section, of a further preferred embodiment of the present invention;

FIG. 6 is a perspective view of yet another preferred embodiment of the present invention;

FIG. 7 is a longitudinal sectional view of an arterial hollow body organ in which another preferred embodiment of the present invention, shown in perspective, is deployed;

FIG. 8 is a perspective view of a further preferred embodiment of the present invention;

FIG. 9 is a perspective view of another preferred embodiment of the present invention; and

FIG. 10 is a longitudinal sectional view of an arterial hollow body organ in which yet another preferred embodiment of the present invention, shown in perspective, is deployed.

FIG. 1 shows a device 10 for profiling the wall of a hollow body organ device 10 includes a lumened catheter 12 having a central lumen 14, a hollow guidewire 16 that defines a conduit comprising a tubular helix formed of metal wire 18 or the like in the shape of a coil defining a central lumen (not shown), and a thermal sensor 20 disposed at the terminal end of the distal portion of guidewire 16. Conventional conductors or other signal carrying structures (not shown) are provided to convey signals from the thermal sensor 20 along guidewire 16 and out of the proximal portion of guidewire 16 for connection to appropriate signal processing apparatus that converts the signals to a temperature indication. Thermal sensor 20 can be a thermocouple, a thermistor, or an infrared radiation sensor, for example, and is secured by appropriate mechanical or adhesive means to the terminal end of guidewire 16.

Hollow guidewire 16 is made of thin wire 18 wound, for example around a mandrel, into small helical coils of desired diameter that lie tightly adjacent one another to form a hollow tube having a central passageway or lumen therethrough. Guidewire 16 has an outer diameter somewhat less than the inner diameter of catheter 12 to permit guidewire 16 to slide freely within the lumen 14 of catheter 12. In addition, guidewire 16, in its relaxed configuration, is shaped in the form of a bend 22 at the distal portion thereof, the bend 22 being spaced from the terminal end of guidewire 16 at which thermal sensor 20 is disposed. Consequently, thermal sensor 20 is displaced radially from the longitudinal axis 24 of guidewire 16 and catheter 12 when guidewire 16 is in the relaxed, bent configuration. Through external manipulation, guidewire 16 in the relaxed, bent configuration can be made to rotate about axis 24, continuously or continually, depending on the response time for the sensor, thereby causing thermal sensor 20 to traverse a circumferential or helical path about axis 24 while providing temperature information. Guidewire 16 can be deformed elastically into a substantially straight configuration, i.e., without bend 22, under force. When the force is removed, guidewire 16 returns to the relaxed, bent configuration.

Guidewire 16 can be constructed of spring steel that can be deformed into a relatively straight configuration when withdrawn into catheter 12, but which springs back to its bent configuration when extruded from catheter 12 and released from constraint. Another way is to construct guidewire 16 of superelastic Nitinol and take advantage of the martensitic transformation properties of Nitinol. Guidewire 16 can be inserted into catheter 12 in its straight form and kept cool within the catheter by the injection of cold saline through catheter 12 and over guidewire 16. Upon release of guidewire 16 into the bloodstream, it will warm up and change to its austenite memory shape based on the well-known martensitic transformation by application of heat and putting the material through its transformation temperature.

Guidewire 16 can also be made out of a composite such as a Nitinol tube within the guidewire structure. In this fashion, the martensitic or superelastic properties of Nitinol can be combined with the spring steel characteristics of the spring and lead to a desirable composition. Other suitable materials for guidewire 16 include copper, constantin, chromel or alumel.

FIG. 2 shows device 10 deployed in a hollow body organ comprising an arterial blood vessel 26 having an endothelium 28 forming the inner wall thereof. Only the distal portion of guidewire 16 that extends beyond catheter 12 is shown. Electrical conductor 32 extends through lumen 30 of guidewire 16. Conductor 32 is electrically insulated from the coils 18 of guidewire 16 so that guidewire 16 comprises one conductor and conductor 32 comprises another conductor or lead of the thermal sensor 20 which can be thermocouple or thermistor. The conductors conveys signals from the thermal sensor 20 to the proximal end of guidewire 16 for connection to appropriate signal processing apparatus that converts the received signals to a temperature indication.

In use, the guidewire 16 and thermal sensor 20 of the preferred embodiment of device 10, as shown in FIGS. 1 and 2, are inserted into the lumen 14 of catheter 12 from the proximal end. thereby constraining guidewire 16 in a substantially straight configuration with the thermal sensor 20 near the distal end of catheter 12. Using conventional percutaneous insertion techniques, access to the blood vessel 26 is obtained surgically. Catheter 12, with guidewire 16 and thermal sensor 20 disposed within, is advanced through the blood vessel 26 to the region of interest.

Catheter 12 is slowly withdrawn while guidewire 16 is secured against movement relative to the patient such that guidewire 16 emerges from the distal end of catheter 12 and reverts to the relaxed, bent configuration within the blood vessel 26. Guidewire 16 remains substantially fixed in the axial direction relative to the blood vessel 26 as catheter 12 is withdrawn, with the re-formed bent distal portion of guidewire 16 springing gently radially outwardly into contact with the vessel wall 28.

With guidewire 16 exposed and thermal sensor 20 lying in contact with the wall 28 of blood vessel 26, the thermal sensor 20 senses the localized temperature of the vessel wall 28 at the region where the thermal sensor 20 is situated. By slowly withdrawing guidewire 16 into catheter 12 while simultaneously rotating guidewire 16 about its longitudinal axis, thermal sensor 20 can be made to traverse a helical path around the inner wall 28 of the blood vessel 26, permitting temperature measurements to be taken at intervals of different regions of the vessel wall 28. Depending upon the response time of thermal sensor 20, rotation can be intermittent or continuous, as needed. By withdrawing and rotating the guidewire 16 at constant rates, the location of the thermal sensor 20 relative to the distal end of the catheter 12 can be determined as a function of time, so that a temperature profile of the blood vessel 26 can be mapped, provided the response time of the thermal sensor is relatively short.

Once the mapping is completed, the guidewire 16 is withdrawn fully into catheter 12, re-sheathed and constrained in a substantially straight configuration. Catheter 12 can then either be withdrawn from the blood vessel 26 or repositioned to another region of interest within the hollow body organ for further mapping of the temperature profile at that region.

FIG. 3 shows a second preferred embodiment of a device 10′ for profiling the wall of a hollow body organ. Device 10′ can be deployed in a hollow body organ in a manner similar to the embodiment of device 10 shown in FIGS. 1 and 2 and described above with respect to structure and use. Components of device 10′ that are similar in structure and function to corresponding components of device 10 of FIGS. 1 and 2 are designated by like prime numerals. The description of device 10 above applies also to device 10′ unless described otherwise below.

Device 10′ includes a second thermal sensor 36 disposed at the outside of bend 22′ and exposed for contact with the inner wall 28′ of vessel 26′. A second electrical conductor 38 is electrically insulated from the conductor 32′ and from the wire 18′ of guidewire 16′ so that guidewire 16′ comprises one conductor and conductor 38 comprises another conductor of the thermocouple or thermistor of thermal sensor 36 for conveying signals from the thermal sensor 36 to the proximal end of guidewire 16 for connection to appropriate signal processing apparatus that converts the signals to a temperature indication. Wire 18′ of guidewire 16′ is a conductor common to thermal sensors 20′ and 36.

Device 10′ of FIG. 3 can be used in a manner substantially similar to the manner of use described above with respect to device 10 of FIGS. 1 and 2, except that thermistors 20′ and 36 simultaneously traverse intertwined helical paths in contact with the inner wall 28′ of hollow body organ 26′. Consequently, the temperature profile of the inner wall 28′ can be mapped more quickly because data can be gathered from different locations simultaneously.

FIG. 4 shows yet another preferred embodiment of a device 210 for profiling the wall temperature of a hollow body organ. Device 210 can be deployed in a hollow body organ in the manner described above with respect to the embodiments of devices 10 and 10′ shown in FIGS. 1, 2 and 3 and described above. Components of device 210 that are similar in structure and function to corresponding components of device 10 of FIGS. 1 and 2 are designated by like reference numerals in the 200 series but having the same last two digits. The description of device 10 above applies also to device 210 unless described otherwise below.

Device 210 of FIG. 4 includes one thermal sensor 40 disposed at the outside of a dogleg bend 42 that is spaced distally from bend 222 and proximally from the terminal end of guidewire 216. Thermal sensor 40 is exposed for contact with the inner wall 228 of vessel 226. An electrical conductor (not shown) is electrically insulated from the wire 218 of guidewire 216 so that guidewire 216 comprises one conductor and the electrical conductor comprises another conductor of the thermocouple or thermistor of thermal sensor 40 for conveying signals from the thermal sensor 40 to the proximal end of guidewire 216 for connection to appropriate signal processing apparatus that converts the signals to a temperature indication. Unlike the embodiments of devices 10 and 10′ of FIGS. 1, 2 and 3, device 210 includes only a thermistor at dog-leg bend 42 and no thermistor at the terminal end of guidewire 216 or at bend 222.

Device 210 of FIG. 4 can be used in a manner substantially similar to the manner of use described above with respect to device 10 of FIGS. 1 and 2.

FIG. 5 shows a further preferred embodiment of a device 310 for profiling the wall temperature of a hollow body organ. Device 310 can be deployed in a hollow body organ in the manner described above with respect to the embodiments of device 10 shown in FIGS. 1 and 2 and described above. Components of device 310 that are similar in structure and function to corresponding components of device 10 of FIGS. 1 and 2 are designated by like reference numerals in the 300 series but having the same last two digits. The description of device 10 above applies also to device 310 unless described otherwise below.

Device 310 of FIG. 5, rather than having externally exposed thermal sensors as in the embodiments of FIGS. 1 through 4 above, includes a thermal sensor 50 disposed within the lumen 330 of hollow guidewire 316 and in thermal contact with the coiled wire 318 that comprises guidewire 316. Thermal sensor 50 is located at a dogleg bend 52 that is spaced between bend 322 and the distal end of guidewire 316. Guidewire 316 also includes bend 54 between bend 52 and the distal end of guidewire 316. Bends 322, 52 and 54 together cause the distal portion of guidewire 316 to assume the shape of a question mark when in a relaxed configuration. In such a configuration, bend 52 and bend 54 contact opposite sides of the inner wall of the hollow body organ. The spring nature of guidewire 316 urges bend 52 in contact with the hollow body organ. Insulated electrical conductors 56 and 58 are operatively connected to the thermocouple or thermistor of thermal sensor 50 for conveying signals from the thermal sensor 50 to the proximal end of guidewire 316 for connection to appropriate signal processing apparatus that converts the signals to a temperature indication.

Device 310 of FIG. 5 can be used in a manner substantially similar to the manner of use described above with respect to device 10 of FIGS. 1 and 2.

FIG. 6 shows another embodiment of a device 410 for profiling the wall temperature of a hollow body organ. Device 410 is an alternative configuration of the device 310 of FIG. 5, in which bend 454 extends in a direction opposite to that of bend 54, such that the terminal end portion of guidewire 416 extends axially away from catheter 412. Bend 454 serves a purpose similar to that of bend 54 of device 310 of FIG. 5, i.e., to assure that bend 452, at which thermal sensor 450 is located, remains in contact with the inner wall of the hollow body organ when deployed therein.

FIG. 7 shows yet another embodiment of the present invention. Temperature sensing device 510 is carried by hollow guidewire 516 which extends outwardly from the distal end of catheter 512 and includes thermal sensor 550, e.g., a thermistor at a dogleg bend 552 spaced from bend 522 which is situated between the sensor-carrying bend 552 and the distal end portion of catheter 512. The distal end portion of guide wire 516 terminates in a generally crescent-shaped loop and is rotatable, continuously or continually, as desired, to sense the temperature of the endothelium 528 lining the wall of blood vessel 526 in the vicinity of plaque deposit 592.

FIG. 8 shows yet a further embodiment of a device 610 for profiling the wall temperature of a hollow body organ. Device 610 comprises another alternative configuration of the device 310 of FIG. 5, in which guidewire 616 is shaped as a plurality of loops 60 with a plurality of thermal sensors 62 located within guidewire 616 at each location along the loops 60 that would contact the wall of the hollow body organ when disposed therein.

FIG. 9 shows yet another embodiment of a device 710 for profiling the wall temperature of a hollow body organ. Device 710 includes a lumened catheter 712 and a hollow guidewire 716. The inner surface of lumen 730 of guidewire 716, at a bend 742 similar to bend 42 of device 210 of FIG. 4, is lined with a layer of black paint 70 which is in turn lined with a thermochromic material 72 that is sensitive to a change of temperature of the guidewire 716. The color of the thermochromic material 72 varies as a function of temperature.

Disposed within lumen 730 of guidewire 716, inwardly of thermochromic material 72, is an optical probe 74 including an illuminating optical fiber 76 having a radially emitting diffuser 78 at the distal end thereof, and a sensing optical fiber 80 having a conically beveled distal end 82 for collecting light. An illuminating electromagnetic radiation source connected to the proximal end of illuminating optical fiber 76 provides illuminating radiation that is guided by optical fiber 76 to the region of interest within the hollow body organ, and diffused radially by diffuser 78 to illuminate the interior of lumen 730, particularly thermochromic material 72. The illuminating radiation can be in the visible, infrared or ultraviolet portions of the spectrum. Radiation from diffuser 78 is differentially absorbed and reflected by thermochromic material 72, according to the color of material 72 which is indicative of the temperature of guidewire 716 in contact with the wall of the hollow body organ in the region of interest.

The light reflected from thermochromic material 72, having wavelengths indicative of the color thereof, is collected by distal end 82 and directed toward the proximal end of sensing optical fiber 80. An appropriate optical reflectance spectrometry device connected to the proximal end of sensing optical fiber 80 generates an electrical signal indicative of the color, and therefore temperature, of thermochromic material 72.

FIG. 10 shows yet another embodiment of a device 810 suitable for profiling the impedance of the wall of a hollow body organ. Device 810 includes a catheter 812 within which is disposed a guidewire 816 having a dog-leg bend in the distal portion thereof. Device 810 is similar in configuration to the embodiment of device 210 of FIG. 4, and like components are indicated by like reference numerals in the 800 series but having the same last two digits. Unlike device 210 of FIG. 4, device 810 does not employ thermal sensing, but rather employs impedance sensing for profiling the wall of a hollow body organ. An electrode 90 at the outside of the dog-leg bend of guidewire 816 is in electrical contact with guidewire 816 and in electrical contact with the inner wall 828 of the hollow body organ 826. Guidewire 816 comprises a conductor operatively connected to an external impedance measuring device that has a ground terminal electrically connected to the body in which the hollow body organ is located. A small electrical current is applied via guidewire 816 and electrode 90 to the inner wall 828 at the region of contact therebetween. The impedance of the electrical path through the body, including through the region of interest in the hollow body organ 826, can be measured and recorded. By moving guidewire 816 relative to the hollow body organ 826 as described above with respect to other embodiments, the impedance of the wall of the vessel 826 can be mapped. Any change of impedance along the wall 828 indicates the presence of an anomaly in the wall, such as a plaque 92.

Although the present invention has been described in detail in terms of preferred embodiments, no limitation on the scope of the invention is intended. The scope of the subject matter in which an exclusive right is claimed is defined in the appended claims.

Saadat, Vahid

Patent Priority Assignee Title
10034682, Apr 21 2004 ACCLARENT, INC Devices, systems and methods useable for treating frontal sinusitis
10052484, Oct 03 2011 CYBERONICS, INC. Devices and methods for sleep apnea treatment
10058411, Dec 30 2010 Boston Scientific Scimed, Inc Method of isolating the cerebral circulation during a cardiac procedure
10098652, Apr 21 2004 ACCLARENT, INC Systems and methods for transnasal dilation of passageways in the ear, nose or throat
10105538, Dec 31 2008 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
10124154, Jun 10 2005 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
10130458, Jul 27 2009 Boston Scientific Scimed, Inc Dual endovascular filter and methods of use
10188413, Apr 21 2004 ACCLARENT, INC Deflectable guide catheters and related methods
10206821, Dec 20 2007 ACCLARENT, INC Eustachian tube dilation balloon with ventilation path
10231645, Jan 28 2011 LivaNova USA, Inc Screening devices and methods for obstructive sleep apnea therapy
10271719, Jul 30 2008 Acclarent, Inc. Paranasal ostium finder devices and methods
10286206, Sep 01 2011 INSPIRE MEDICAL SYSTEMS, INC. Nerve cuff
10376416, Mar 31 2009 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
10441758, Apr 21 2004 Acclarent, Inc. Frontal sinus spacer
10449028, Apr 22 2015 Boston Scientific Scimed, Inc Vascular filters, deflectors, and methods
10492810, Apr 21 2004 ACCLARENT, INC Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
10500380, Apr 21 2004 ACCLARENT, INC Devices, systems and methods useable for treating sinusitis
10524814, Mar 20 2009 ACCLARENT, INC Guide system with suction
10524869, Mar 15 2013 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
10543366, Mar 31 2009 INSPIRE MEDICAL SYSTEMS, INC. Percutaneous access for systems and methods of treating sleep-related disordered breathing
10583297, Aug 11 2011 INSPIRE MEDICAL SYSTEMS, INC Method and system for applying stimulation in treating sleep disordered breathing
10631756, Apr 21 2004 ACCLARENT, INC Guidewires for performing image guided procedures
10632306, Dec 31 2008 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
10632308, Oct 13 2006 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
10639457, Sep 23 2005 Acclarent, Inc. Multi-conduit balloon catheter
10695080, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
10702295, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
10716629, Sep 15 2006 ACCLARENT, INC Methods and devices for facilitating visualization in a surgical environment
10737094, Dec 31 2008 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
10743977, Jan 16 2009 Boston Scientific Scimed, Inc Intravascular blood filter
10779752, Apr 21 2004 Acclarent, Inc. Guidewires for performing image guided procedures
10806477, Apr 21 2004 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
10842978, Jun 10 2005 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
10856727, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
10864375, Oct 03 2011 LivaNova USA, Inc. Devices and methods for sleep apnea treatment
10874838, Apr 21 2004 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
10888267, Nov 19 2008 INSPIRE MEDICAL SYSTEMS, INC Method of treating sleep disordered breathing
10898709, Mar 19 2015 INSPIRE MEDICAL SYSTEMS, INC Stimulation for treating sleep disordered breathing
10925728, Feb 22 2018 Medtronic Vascular, Inc. Prosthetic heart valve delivery systems and methods
10932682, May 15 2008 INSPIRE MEDICAL SYSTEMS, INC. Method and apparatus for sensing respiratory pressure in an implantable stimulation system
11000208, Jan 28 2011 LivaNova USA, Inc. Screening devices and methods for obstructive sleep apnea therapy
11019989, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
11020136, Apr 21 2004 Acclarent, Inc. Deflectable guide catheters and related methods
11065061, Apr 21 2004 ACCLARENT, INC Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
11083899, Oct 01 2008 INSPIRE MEDICAL SYSTEMS, INC Transvenous method of treating sleep apnea
11116392, Jul 30 2008 Acclarent, Inc. Paranasal ostium finder devices and methods
11141258, Dec 30 2010 Claret Medical, Inc. Method of isolating the cerebral circulation during a cardiac procedure
11154390, Dec 19 2017 Claret Medical, Inc. Systems for protection of the cerebral vasculature during a cardiac procedure
11191630, Oct 27 2017 Claret Medical, Inc. Systems and methods for protecting the cerebral vasculature
11191631, Jul 27 2009 Boston Scientific Scimed, Inc. Dual endovascular filter and methods of use
11202644, Apr 21 2004 ACCLARENT, INC Shapeable guide catheters and related methods
11207087, Mar 20 2009 Acclarent, Inc. Guide system with suction
11284986, Jan 16 2009 Claret Medical, Inc. Intravascular blood filters and methods of use
11285315, Sep 01 2011 INSPIRE MEDICAL SYSTEMS, INC. Nerve cuff
11298540, Aug 11 2017 INSPIRE MEDICAL SYSTEMS, INC Cuff electrode
11304648, Mar 12 2010 INSPIRE MEDICAL SYSTEMS, INC. Method and system for identifying a location for nerve stimulation
11311419, Dec 20 2007 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
11337790, Feb 22 2017 Boston Scientific Scimed, Inc Systems and methods for protecting the cerebral vasculature
11351023, Aug 21 2018 Boston Scientific Scimed, Inc Systems and methods for protecting the cerebral vasculature
11364106, Jan 16 2009 Boston Scientific Scimed, Inc. Intravascular blood filter
11383083, Feb 11 2014 LivaNova USA, Inc. Systems and methods of detecting and treating obstructive sleep apnea
11400287, Dec 31 2008 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
11439491, Apr 26 2018 CLARET MEDICAL, INC Systems and methods for protecting the cerebral vasculature
11471685, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
11511090, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
11511117, Aug 11 2011 INSPIRE MEDICAL SYSTEMS, INC. Method and system for applying stimulation in treating sleep disordered breathing
11517746, Oct 13 2006 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
11529502, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
11529514, Jan 28 2011 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
11589742, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
11607301, Jan 16 2009 Boston Scientific Scimed, Inc. Intravascular blood filters and methods of use
11806525, Sep 01 2011 INSPIRE MEDICAL SYSTEMS, INC. Nerve cuff
11806526, Mar 19 2015 INSPIRE MEDICAL SYSTEMS, INC. Stimulation for treating sleep disordered breathing
11806537, Oct 01 2008 INSPIRE MEDICAL SYSTEMS, INC. Transvenous method of treating sleep apnea
11850120, Dec 20 2007 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
11850424, Mar 19 2015 INSPIRE MEDICAL SYSTEMS, INC. Stimulation for treating sleep disordered breathing
11864725, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
7644714, May 27 2005 LivaNova USA, Inc Devices and methods for treating sleep disorders
7645233, Jun 07 2004 ST JUDE MEDICAL COORDINATION CENTER BVBA Powering a guide wire mounted sensor for intra-vascular measurements of physiological variables by means of inductive coupling
7809442, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8080000, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
8088101, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8090433, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
8100933, Sep 30 2002 ACCLARENT, INC Method for treating obstructed paranasal frontal sinuses
8114062, Apr 21 2004 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
8114113, Sep 23 2005 ACCLARENT, INC Multi-conduit balloon catheter
8118757, Apr 30 2007 ACCLARENT INC , A DELAWARE CORPORATION Methods and devices for ostium measurement
8123722, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8142422, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
8146400, Apr 21 2004 ACCLARENT INC , A DELAWARE CORPORATION Endoscopic methods and devices for transnasal procedures
8172828, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
8182432, Mar 10 2008 ACCLARENT, INC Corewire design and construction for medical devices
8190389, May 17 2006 ACCLARENT, INC Adapter for attaching electromagnetic image guidance components to a medical device
8311645, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8317816, Sep 30 2002 ACCLARENT, INC Balloon catheters and methods for treating paranasal sinuses
8372108, Jan 16 2009 Boston Scientific Scimed, Inc Intravascular blood filter
8386046, Jan 28 2011 Cyberonics, Inc Screening devices and methods for obstructive sleep apnea therapy
8388642, Jan 18 2005 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
8414473, Apr 21 2004 ACCLARENT, INC Methods and apparatus for treating disorders of the ear nose and throat
8417343, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
8425457, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorder of the ears, nose and/or throat
8428727, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
8435290, Mar 31 2009 ACCLARENT, INC System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
8439687, Dec 29 2006 ACCLARENT, INC Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
8485199, May 08 2007 ACCLARENT INC , A DELAWARE CORPORATION Methods and devices for protecting nasal turbinate during surgery
8498712, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8518073, Jan 29 2009 Boston Scientific Scimed, Inc Illuminated intravascular blood filter
8626304, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8639354, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8702626, Apr 21 2004 ACCLARENT, INC Guidewires for performing image guided procedures
8715169, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
8718783, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8721591, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
8740929, Feb 06 2001 ACCLARENT, INC Spacing device for releasing active substances in the paranasal sinus
8744589, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8747389, Apr 21 2004 ACCLARENT, INC Systems for treating disorders of the ear, nose and throat
8753370, Jul 27 2009 Boston Scientific Scimed, Inc Dual endovascular filter and methods of use
8764709, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8764726, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
8764729, Apr 21 2004 ACCLARENT, INC Frontal sinus spacer
8764786, Sep 30 2002 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
8777926, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
8828041, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
8852143, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8855771, Jan 28 2011 Cyberonics, Inc Screening devices and methods for obstructive sleep apnea therapy
8858586, Apr 21 2004 Acclarent, Inc. Methods for enlarging ostia of paranasal sinuses
8864787, Apr 21 2004 ACCLARENT, INC Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
8870893, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
8876796, Dec 30 2010 Boston Scientific Scimed, Inc Method of accessing the left common carotid artery
8894614, Apr 21 2004 ACCLARENT, INC Devices, systems and methods useable for treating frontal sinusitis
8905922, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
8932276, Apr 21 2004 ACCLARENT, INC Shapeable guide catheters and related methods
8934992, Sep 01 2011 INSPIRE MEDICAL SYSTEMS, INC Nerve cuff
8938299, Nov 19 2008 INSPIRE MEDICAL SYSTEMS, INC System for treating sleep disordered breathing
8945088, Apr 21 2004 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
8951225, Jun 10 2005 ACCLARENT, INC Catheters with non-removable guide members useable for treatment of sinusitis
8961398, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
8961495, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
8968269, Sep 23 2005 Acclarent, Inc. Multi-conduit balloon catheter
8974489, Jul 27 2009 Boston Scientific Scimed, Inc Dual endovascular filter and methods of use
8979888, Jul 30 2008 ACCLARENT, INC Paranasal ostium finder devices and methods
9017364, Dec 30 2010 Boston Scientific Scimed, Inc Deflectable intravascular filter
9039657, Aug 04 2004 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
9039680, Aug 04 2004 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
9050440, Sep 23 2005 ACCLARENT, INC Multi-conduit balloon catheter
9055965, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
9055997, Dec 30 2010 Boston Scientific Scimed, Inc Method of isolating the cerebral circulation during a cardiac procedure
9072626, Mar 31 2009 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
9084876, Aug 04 2004 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
9089258, Mar 15 2007 ACCLARENT INC , A DELAWARE CORPORATION Endoscopic methods and devices for transnasal procedures
9101384, Apr 21 2004 ACCLARENT, INC Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
9107574, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
9113838, Jan 28 2011 LivaNova USA, Inc Screening devices and methods for obstructive sleep apnea therapy
9155492, Sep 24 2010 ACCLARENT, INC Sinus illumination lightwire device
9167961, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
9179823, Sep 15 2006 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
9186511, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
9198736, May 17 2006 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
9205262, Oct 03 2011 LivaNova USA, Inc Devices and methods for sleep apnea treatment
9220879, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
9241834, Apr 21 2004 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
9259306, Dec 30 2010 Boston Scientific Scimed, Inc Aortic embolic protection device
9265407, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
9308361, Jan 18 2005 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
9326843, Jan 16 2009 Boston Scientific Scimed, Inc Intravascular blood filters and methods of use
9345565, Dec 30 2010 Boston Scientific Scimed, Inc Steerable dual filter cerebral protection system
9351750, Apr 21 2004 ACCLARENT INC Devices and methods for treating maxillary sinus disease
9370649, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
9399121, Apr 21 2004 ACCLARENT, INC Systems and methods for transnasal dilation of passageways in the ear, nose or throat
9433437, Mar 15 2013 ACCLARENT, INC Apparatus and method for treatment of ethmoid sinusitis
9457175, Sep 30 2002 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
9463068, May 08 2007 Acclarent, Inc. Methods and devices for protecting nasal turbinates
9468362, Apr 21 2004 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
9486628, Mar 31 2009 INSPIRE MEDICAL SYSTEMS, INC Percutaneous access for systems and methods of treating sleep apnea
9492264, Dec 30 2010 Boston Scientific Scimed, Inc Embolic protection device for protecting the cerebral vasculature
9554691, Apr 21 2004 ACCLARENT INC , A DELAWARE CORPORATION Endoscopic methods and devices for transnasal procedures
9555247, Jan 28 2011 LivaNova USA, Inc Screening devices and methods for obstructive sleep apnea therapy
9566144, Apr 22 2015 Boston Scientific Scimed, Inc Vascular filters, deflectors, and methods
9572480, Sep 15 2006 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
9603506, Sep 15 2006 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
9610428, Apr 21 2004 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
9615775, Apr 30 2007 Acclarent, Inc. Methods and devices for ostium measurements
9629656, May 17 2006 ACCLARENT, INC Adapter for attaching electromagnetic image guidance components to a medical device
9629684, Mar 15 2013 ACCLARENT, INC Apparatus and method for treatment of ethmoid sinusitis
9636205, Jan 16 2009 Boston Scientific Scimed, Inc Intravascular blood filters and methods of use
9636258, Mar 31 2009 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
9649477, Apr 21 2004 Acclarent, Inc. Frontal sinus spacer
9744354, Dec 31 2008 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
9750401, Jul 30 2008 Acclarent, Inc. Paranasal ostium finder devices and methods
9757564, Oct 03 2011 LivaNova USA, Inc Devices and methods for sleep apnea treatment
9820688, Sep 15 2006 Acclarent, Inc. Sinus illumination lightwire device
9826999, Apr 21 2004 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
9861793, Mar 10 2008 ACCLARENT, INC Corewire design and construction for medical devices
9888864, Mar 12 2010 INSPIRE MEDICAL SYSTEMS INC Method and system for identifying a location for nerve stimulation
9889299, Oct 01 2008 INSPIRE MEDICAL SYSTEMS, INC Transvenous method of treating sleep apnea
9913982, Jan 28 2011 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
9943395, Dec 30 2010 Boston Scientific Scimed, Inc Deflectable intravascular filter
9980805, Dec 30 2010 Boston Scientific Scimed, Inc Aortic embolic protection device
9999752, Sep 23 2005 Acclarent, Inc. Multi-conduit balloon catheter
RE48024, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
RE48025, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
Patent Priority Assignee Title
4215275, Dec 16 1976 LUXTRON CORPORATION, A CORP OF CA Optical temperature measurement technique utilizing phosphors
4301023, Jun 23 1980 AMERICAN CYANAMID COMPANY AMERICAN CYANAMID , A CORP OF ME Cholesteric compositions
4411266, Sep 24 1980 RADIONICS, INC Thermocouple radio frequency lesion electrode
4699147, Sep 25 1985 CORDIS WEBSTER, INC Intraventricular multielectrode cardial mapping probe and method for using same
4777955, Nov 02 1987 CORDIS WEBSTER, INC Left ventricle mapping probe
4862887, May 29 1987 GESELLSCHAFT FUER STRAHLEN- UND UMWELTFORSCHUNG MBH GSF Heart catheter
4883459, Jul 29 1983 ADAMS AND REESE LLP; ADAMS AND REESE, LLP Retrograde perfusion
4952033, Jul 13 1987 FERGASON, JAMES L Liquid crystal medical device
4958642, Nov 02 1988 Volcano Corporation Guide wire assembly with electrical functions and male and female connectors for use therewith
4995398, Apr 30 1990 WILSON, RUSSELL F , Coronary angiography imaging system
5054501, May 16 1990 BRIGHAM & WOMEN S HOSPITAL Steerable guide wire for cannulation of tubular or vascular organs
5069226, Apr 28 1989 NEC Tokin Corporation Catheter guidewire with pseudo elastic shape memory alloy
5124819, Jul 13 1987 James L., Fergason Liquid crystal medical device having distinguishing means
5178159, Nov 02 1988 Volcano Corporation Torqueable guide wire assembly with electrical functions, male and female connectors rotatable with respect to one another
5237996, Feb 11 1992 Cardiac Pathways Corporation Endocardial electrical mapping catheter
5279299, Feb 15 1991 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
5304194, Oct 02 1991 TARGET THERAPEUTICS, A DELAWARE CORPORATION Vasoocclusion coil with attached fibrous element(s)
5342300, Mar 13 1992 Steerable stent catheter
5623940, Aug 02 1994 S.L.T. Japan Co., Ltd. Catheter apparatus with a sensor
5657764, Aug 30 1995 UroMed Corporation Device and method for determining the length of a urethra
5701905, Nov 13 1995 LocalMed, Inc. Guide catheter with sensing element
5730741, Feb 07 1997 Eclipse Surgical Technologies, Inc. Guided spiral catheter
5733739, Jun 07 1995 INPHOCYTE, INC System and method for diagnosis of disease by infrared analysis of human tissues and cells
5741214, Dec 20 1993 Terumo Kabushiki Kaisha Accessory pathway detecting/cauterizing apparatus
5769846, Jun 24 1994 EDWARDS, STUART D Ablation apparatus for cardiac chambers
5771895, Feb 12 1996 Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
5782741, Nov 12 1996 Advanced Cardiovascular Systems, INC Two-stage treatment wire
5871449, Dec 27 1996 Volcano Corporation Device and method for locating inflamed plaque in an artery
5910101, Aug 29 1996 ADVANCED CARDIOVASCULAR SYSTEMS INC Device for loading and centering a vascular radiation therapy source
5924997, Jul 29 1996 Volcano Corporation Catheter and method for the thermal mapping of hot spots in vascular lesions of the human body
5935075, Sep 20 1995 BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM, THE Detecting thermal discrepancies in vessel walls
5938624, Sep 10 1997 ST JUDE MEDICAL COORDINATION CENTER BVBA Male connector with a continous surface for a guide wire and method therefor
5980563, Aug 31 1998 IRVINE BIOMEDICAL, INC Ablation apparatus and methods for treating atherosclerosis
5989242, Jun 26 1995 Trimedyne, Inc. Therapeutic appliance releasing device
6010476, Dec 02 1996 Advanced Cardiovascular Systems, INC Apparatus for performing transmyocardial revascularization
6071277, Mar 05 1996 Covidien LP Method and apparatus for reducing the size of a hollow anatomical structure
6090052, Mar 25 1997 ST JUDE MEDICAL COORDINATION CENTER BVBA Guide wire having a male connector
6106486, Dec 22 1997 ST JUDE MEDICAL COORDINATION CENTER BVBA Guide wire
6142958, Dec 23 1998 ST JUDE MEDICAL COORDINATION CENTER BVBA Sensor and guide wire assembly
6156046, Nov 07 1997 Prolifix Medical, Inc.; PROLIFIX MEDICAL INC Methods and systems for treating obstructions in a body lumen
6167763, Jun 22 1995 ST JUDE MEDICAL COORDINATION CENTER BVBA Pressure sensor and guide wire assembly for biological pressure measurements
6196980, Sep 10 1997 ST JUDE MEDICAL COORDINATION CENTER BVBA Male connector with a continuous surface for a guide wire, and method therefor
6197021, Aug 08 1994 EP Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
6245026, Jul 29 1996 VOLCANO THERAPEUTICS, INC Thermography catheter
6267746, Mar 22 1999 Biosense Webster, Inc Multi-directional steerable catheters and control handles
6267781, Aug 31 1998 IRVINE BIOMEDICAL, INC Medical device and methods for treating valvular annulus
6312425, May 05 1998 Cardiac Pacemakers, Inc RF ablation catheter tip electrode with multiple thermal sensors
6371928, Nov 07 1997 MCFANN, TIMOTHY B Guidewire for positioning a catheter against a lumen wall
6406442, Nov 07 1996 PROLIFIX MEDICAL, INC Guidewire for precision catheter positioning
6615071, Sep 20 1995 Board of Regents, The University of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
20010053882,
20020067754,
20030088187,
RE32204, Jun 01 1983 BOSTON SCIENTIFIC CORPORATION, A CORP OF DE Electrode assembly for temporary pacing and heart measurements
RE35648, Jul 11 1990 Radi Medical Systems AB Sensor guide construction and use thereof
WO27278,
WO174263,
WO9710748,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 30 2003Vahid, Saadat(assignment on the face of the patent)
Sep 19 2003IMETRX, INC VAHID SAADATASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0158980627 pdf
Date Maintenance Fee Events
Jul 09 2010M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Aug 22 2014REM: Maintenance Fee Reminder Mailed.
Jan 09 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 09 20104 years fee payment window open
Jul 09 20106 months grace period start (w surcharge)
Jan 09 2011patent expiry (for year 4)
Jan 09 20132 years to revive unintentionally abandoned end. (for year 4)
Jan 09 20148 years fee payment window open
Jul 09 20146 months grace period start (w surcharge)
Jan 09 2015patent expiry (for year 8)
Jan 09 20172 years to revive unintentionally abandoned end. (for year 8)
Jan 09 201812 years fee payment window open
Jul 09 20186 months grace period start (w surcharge)
Jan 09 2019patent expiry (for year 12)
Jan 09 20212 years to revive unintentionally abandoned end. (for year 12)