A laser machining system is provided that includes a work-piece and at least one light source that produces a laser light along a first axis. The laser light defines a first portion of laser light and a second portion of laser light radially inward relative to the first portion. An optical element reflects the first portion of laser light at an angle relative to the first axis so that the second portion of laser light passes through the optical element along the first axis. A first optical assembly collimates the first portion of laser light into a first cross-sectional area on the work-piece at a sufficient power density to machine the work-piece.
|
9. A machining system comprising:
a work-piece;
a light source that produces substantially collimated light along a first axis, the light defining a first portion of light and a second portion of light, the second portion being radially inward relative to the first portion;
means for directing the first portion of the light at an angle relative to the first axis towards the light source and the second portion of light away from the light source along the first axis; and
means for collimating the first portion of light into a first light beam having a first cross-sectional area onto the work-piece at a sufficient first power density to machine the work-piece,
wherein the means for directing comprise an optical element having an opening and a reflector surface intersecting and oblique to the first axis such that the first portion of light is reflected at an angle relative to the first axis and the second portion of light passes through the opening.
8. A laser machining system comprising:
a work-piece including a first orifice having a first taper and a first ellipticity and at least a second orifice having a second taper and a second ellipticity in the work piece, the first taper and the second taper having a variability therebetween of about plus-or-minus 10% and the first ellipticity and the second ellipticity having a variability therebetween of about plus-or-minus 10 %;
at least one light source that produces a laser light along a first axis, the laser light defining a first portion of laser light and a second portion of laser light, the second portion being radially inward relative to the first portion;
an optical element that reflects the first portion of laser light at an angle relative to the first axis so that the second portion of laser light passes through the optical element along the first axis; and
a first optical assembly that collimates the first portion of laser light into a first light beam of a first cross-sectional area onto the work-piece at a sufficient power density to machine the work-piece.
4. A laser machining system comprising:
a work-piece;
at least one light source that produces a laser light along a first axis, the laser light defining a first portion of laser light and a second portion of laser light, the first portion includes collimated light, the second portion includes noncollimated light, the second portion being radially inward relative to the first portion;
an optical element that reflects the first portion of laser light at an angle relative to the first axis so that the second portion of laser light passes through the optical element along the first axis;
a first optical assembly that collimates the first portion of laser light into a first light beam of a first cross-sectional area onto the work-piece at a sufficient power density to machine the work-piece;
a second optical assembly that collimates the second portion of laser light into a second light beam having a second cross-sectional area onto the work-piece at a sufficient power density to machine the work-piece; and
a telescopic arrangement separate from the first and second optical assemblies to collimate the second portion of the laser light.
1. A laser machining system comprising:
a work-piece;
at least one light source that produces a laser light along a first axis, the laser light defining a first portion of laser light and a second portion of laser light, the first portion includes collimated light, the second portion includes noncollimated light, the second portion being radially inward relative to the first portion;
an optical element that reflects the first portion of laser light at an angle relative to the first axis so that the second portion of laser light passes through the optical element along the first axis;
a first optical assembly that collimates the first portion of laser light into a first light beam of a first cross-sectional area onto the work-piece at a sufficient power density to machine the work-piece; and
a second optical assembly that collimates the second portion of laser light into a second light beam having a second cross-sectional area onto the work-piece at a sufficient power density to machine the work-piece, the second optical assembly including a redirecting assembly and a telescopic arrangement to redirect and collimate the second portion of the laser light into the second light beam toward the work-piece so that the second light beam is spaced apart relative to the first light beam.
2. The laser machining system of
5. The laser machining system of
6. The laser machining system of
7. The laser machining system of
10. The machining system of
11. The machining system of
12. The machining system of
13. The machining system of
14. The machining system of
15. The machining system of
|
This is a continuation application under 35 U.S.C. § 120 of U.S. patent application Ser. No. 10/383,505, filed on Mar. 10, 2003 now U.S. Pat. No. 6,740,847, entitled “Method of Forming Multiple Machining Spots by a Single Laser,” now allowed, which application is incorporated herein by reference in its entirety into this continuation application.
Fuel flowing through a fuel injector typically exits at a nozzle end of the fuel injector. The nozzle end is believed to have a disk with at least one orifice to control, in part, the spray pattern and the direction of the fuel exiting the fuel injector.
The orifice used in fuel injectors is believed to be formed by drilling through a workpiece that can be of a suitable cross section. The work piece is believed to be further machined so that the work piece can be assembled with the nozzle end of a fuel injector.
At least two laser-machining techniques are believed to be used for machining orifices. One is percussion drilling, and the other is trepanning or helical drilling. Percussion drilling is believed to be less than desirable due to a variation in beam profile and targeting or the random nature of metal heating and expulsion that most likely result in a non-cylindrical or non-circular orifice. Trepanning, on the other hand, is believed to be more precise as a center hole is believed to be initially formed before the formation of the orifice and is believed to create less debris during machining. Helical drilling is similar to trepanning but without the initial formation of a center hole.
Regardless of the techniques, a single laser is typically used to machine a single work piece at a time in such laser system. In order to maximize the use of the laser system, it would be desirable to increase the ability to form more than one orifice at a time on a single work piece or to form orifices on more than one work piece at a time. It would also be desirable to increase the number of consistent quality orifices produced by a single laser machining system.
The present invention provides for a laser machining system that includes a work-piece, at least one light source, an optical element and a first optical assembly. The at least one light source produces a laser light along a first axis. The laser light defines a first portion of laser light and a second portion of laser light. The second portion is radially inward relative to the first portion. The optical element reflects the first portion of laser light at an angle relative to the first axis so that the second portion of laser light passes through the optical element along the first axis. The first optical assembly collimates the first portion of laser light into a first light beam of a first cross-sectional area onto the work-piece at a sufficient power density to machine the work-piece.
In an alternative embodiment the present invention provides for a machining system that includes a work-piece, a light source, means for directing first and second portions of the light source, and means for collimating at least one of the first and second portion of the light source. The light source produces substantially collimated light along a first axis. The substantially collimated light defines a first portion of light and a second portion of light. The second portion is radially inward relative to the first portion. The means for directing the first portion of the light at an angle relative to the first axis towards the light source and the second portion of light away from the light source along the first axis. The means for collimating collimate the first portion of light into a first light beam of a first cross-sectional area onto the work-piece at a sufficient power density to machine the work-piece.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate an embodiment of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
Referring to
The laser 10 can provide laser beam 20 of a different cross-sectional area, such as, for example, square, rectangular, circular or other suitable polygons. In a preferred embodiment, the laser beam 20 is generally circular in cross-sectional area 80, shown here in
The laser light source 10 can be any laser with sufficient power density (i.e., quantifiable as Watt per centimeter squared) “to machine” a work piece. As used herein, the term “to machine” or “machining” denotes that application of a laser light of a sufficient power density to remove materials on one or more of the surfaces of the work piece 80 in order to form, for example, surface geometries or to drill through the work piece between the first and second surfaces in order to form, for example, orifices of different cross-sections. Preferably, the laser light source 10 can be Model LM100, LM100X, or LM150 sold by Oxford Laser™ with a rated power density of at least one Megawatt per centimeter-squared (1 Megawatt/cm2). More preferably, the power density of the laser light source 10 should be less than or equal to 1×1012 Watts per centimeter-squared (1 Terawatt/cm2) and the laser light source 10 can be a solid state laser, a copper vapor laser, a Neodymium:Vanadate (Nd:VAN) laser, or a frequency doubled Neodymium:Yttrium-Aluminum-Gamet (Nd: YAG) laser having a wavelength between approximately 511 nanometers to approximately 578 nanometers.
It is believed that the outer regions 92 and 96 and the central region 94 of the laser beam 20 can provide at least two power densities with each power density formed by a combination of the outer regions 92 and 96 being approximately equal to the power density of the central region 94. And by virtue of the preferred embodiments disclosed herein, a single laser beam 20 can be used to provide at least two focus or machining spots of nearly the same power density from a single laser. That is, according to the preferred embodiments, a single laser of a rated power density can function as if it were two “separate” lasers, with each “separate” laser having the same rated power density of the single laser to thereby provide nearly twice the rated power density, or to double the machining capability of the single laser.
Referring to
Subsequently, the expanded second perimeter portion 106 can be collimated (depending on whether the second perimeter portion is non-collimated or not) by a telescopic arrangement or an aspherical surface of a reflector (e.g., scraper 50) that can be part of the second optical assembly or formed as a separate arrangement. Alternatively, the second optical assembly can include a beam expander, such as, for example, a diverging lens or second optical assembly with a pinhole. Regardless of the actual optical arrangements, the second optical assembly 70 operate to focus the expanded and collimated second perimeter portion 106 of light 105b to a second machining spot 202 that can be of the same size as the first machining spot 200. It should be noted that the optical assemblies 40, 50, 60, 70 can include a prism, turning mirror, focusing lenses and suitable optics in each of the optical assemblies that allow each of the beams 105a, 105b to be directed generally perpendicular to the workpiece in the preferred embodiments. Preferably, the opening 52 of the first scraper reflector 50 is sized so that substantially the entire collimated portion 100 of light 20 passes through the opening 52.
The work piece 80 can be of any suitable material and dimension or shapes for laser machining, including that of a thin metallic plate. Preferably, the work piece 80 is stainless steel and generally planar in shape with a first surface 82 generally parallel to a second surface 84 at a distance (i.e., a thickness “t”) of approximately 50 to 600 microns, and more particularly of about 300 microns. Also preferably, the laser machine 10 is configured to machine generally circular orifices 204 of consistent orifice quality extending through the work piece 80 of approximately 20 microns to 300 microns in diameter, and particularly one or more orifices of about 160 microns in diameter over a duration of one of a fraction of a millisecond, at least one millisecond, or in multiple pulses over a duration of about thirty seconds.
As used herein, the term “orifice qualities” can include parameters such as, for example, taper and ellipticity of the orifice in percentage form, where the taper is a difference between average entry diameter and average exit diameter and divided by thickness of the work piece multiplied by 100 and the ellipticity is a difference between the major diameter and minor diameter multiplied by two and the result divided by the sum of the major diameter and minor diameter multiplied by 100. Preferably, the variation between the taper of the at least one orifice is about ±10% and other orifices and variation between ellipticity of each orifice with other orifices is ±10%.
It should be noted that the light source of
Referring to
The second scraper reflector 54 is located on a plane C—C, which is oblique to the beam axis 30 so as to permit a first perimeter 104a of the collimated light 100 radially outward of the beam axis 30 to reflect from the reflective surface 50a of the second scraper reflector 54. This reflected collimated light 100 is directed to first optical assembly 40, shown in schematic form here, that allows a collimated beam of light to form a first machining spot 200. A second perimeter 106a of the collimated light 100 that is radially inward of the first portion 104a is permitted to pass through a second sufficiently sized opening 56 of the second scraper reflector 54 so that the second perimeter 106a of collimated light 100 is redirected by redirecting optical assembly 60 and second optical assembly 70. The redirected collimated light 100 can be expanded so that the second perimeter 106a of light is approximately the same cross-sectional area as the first portion.
Subsequently, the expanded second portion can be recollimated by a telescopic arrangement that can be part of the second optical assembly or formed as a separate arrangement. Alternatively, the second optical assembly can include a beam expander, such as, for example, a diverging lens or focusing optics with a pinhole. Regardless of the actual optical arrangements, the redirecting optical assembly 60 and second optical assembly 70 operates to focus the expanded and collimated second perimeter 106a of light to a second machining spot 202 that can be of the same size as the first machining spot 200. Each spot is spaced away from the other spot and the work piece 80 can rotate about an axis so that an orifice can be machined by the stationary machining spots. Alternatively, the work piece 80 can remain stationary while the machining spots can rotate about an axis so as to form an orifice. In yet another alternative, the first machining spot 200 can machine a first work piece 80 and the second machining spot 202 can machine a second work piece 80.
Referring to
Each focusing or machining spot is spaced away from the other machining spot, and the work piece 80 can rotate about an axis so that an orifice can be machined by the stationary machining spots. Alternatively, the work piece 80 can remain stationary while the machining spots can rotate about an axis generally parallel to the beam axis 30 so as to form an orifice 204. In yet another alternative, the first machining spot 200 can machine a first work piece 80 and the second machining spot 202 can machine a second work piece (not shown). In yet another, the first machining spot 200 can machine a first surface 82 while a second machining spot 202 can machine a second surface 84 or vice versa. And in yet another alternative, one of the first and second machining spots 200, 202 can form a through orifice 204 while the other of the first and second machining spots 200, 202 can form a chamfer (not shown) to provide for an increase in discharge orifice coefficient. As described herein, the term “chamfer” refers to a surface geometry of an orifice that can include an opening of the orifice or at any point between the first surface 82 and the second surface 84 of the at least one orifice 204. The surface geometry can be, for example, a square edge, a taper or a cone.
In the preferred embodiments, the first machining spot 200 can be directed to the work piece 80 at a first time interval and the second machining spot 202 can be directed to a different or same work piece 80 at a second time interval that can overlap each other. Alternatively, the machining spot corresponding to one of the first and second time intervals can be initiated while the light corresponding to the other time interval is not initiated until a time interval has passed such that the first and second time intervals end at the same instant in time. Preferably, the first and second time intervals are initiated substantially simultaneously and can terminate at the same time or at different intervals.
The preferred embodiments described herein can be used to form orifices for use in fuel injectors. Other applications can include, for example, ink-jet and laser printers, microcircuits including microcircuit boards, micro-machined devices, or any other devices which require a plurality of orifices of consistent dimensionalities and an uniform orifice coefficient for each of the orifices. The dimensionalities can be, for example, the diameter of the orifice, the diameters of the chamfer that can be used to describe the cross-sectional curve of the chamfer in three-dimension, the taper, or ellipticity of each orifice.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
Patent | Priority | Assignee | Title |
8704126, | Nov 02 2007 | Disco Corporation | Laser beam machining apparatus |
Patent | Priority | Assignee | Title |
3588218, | |||
3953706, | Mar 29 1974 | Martin Marietta Corporation | Laser bent beam controlled dwell wire stripper |
4059876, | Nov 03 1976 | General Motors Corporation | Method of alloying and forming a valve seat |
4160894, | May 14 1975 | Winkler & Dunnebier Maschinenfabrik und Eisengiesserei KG | Method and apparatus for the focal form cutting of a moving web of material by a laser beam |
4370540, | Jan 04 1979 | United Technologies Corporation | Reflective beam rotator |
4636611, | Apr 15 1985 | General Electric Company | Quiescent circle and arc generator |
4694139, | Dec 03 1984 | MESSER GRIESHEIM GMBH, FRANKFURT MAIN, GERMANY A CORP OF GERMANY | Guidance device for a laser beam for three-dimensional machining of workpieces |
4818834, | Mar 21 1988 | Raycon Corporation | Process for drilling chamfered holes |
4911711, | Dec 05 1986 | AMO Manufacturing USA, LLC | Sculpture apparatus for correcting curvature of the cornea |
5043553, | Oct 12 1988 | Rolls-Royce plc | Method and apparatus for drilling a shaped hole in a workpiece |
5093548, | Oct 17 1989 | Robert Bosch GmbH | Method of forming high precision through holes in workpieces with a laser beam |
5163934, | Aug 05 1987 | AMO Manufacturing USA, LLC | Photorefractive keratectomy |
5237148, | Oct 04 1990 | Brother Kogyo Kabushiki | Device for manufacturing a nozzle and its manufacturing method |
5523544, | Apr 06 1993 | Eastman Kodak Company | Perforated vacuum transport drum and method of manufacture |
5601733, | Sep 30 1993 | Cymer, INC | Full field mask illumination enhancement methods and apparatus |
5607606, | Feb 10 1994 | Fanuc Ltd. | Laser beam machine for performing piercing and cutting via focus change |
5632083, | Aug 05 1993 | Hitachi Construction Machinery Co., Ltd. | Lead frame fabricating method and lead frame fabricating apparatus |
5670069, | Dec 22 1994 | Matsushita Electric Industrial Co., Ltd. | Laser processing method |
5751588, | Apr 28 1995 | International Business Machines Corporation | Multi-wavelength programmable laser processing mechanisms and apparatus utilizing vaporization detection |
5805748, | Dec 27 1996 | Showa Optronic Co., Ltd. | Laser beam shaping system |
5885199, | Feb 06 1996 | Compact machining center for multifunction | |
6172331, | Sep 17 1997 | General Electric Company | Method and apparatus for laser drilling |
6229113, | Jul 19 1999 | United Technologies Corporation | Method and apparatus for producing a laser drilled hole in a structure |
6264486, | Feb 12 1999 | MICRON SEMICONDUCTOR, INC | Zero insertion force sockets using negative thermal expansion materials |
6355907, | Sep 18 1997 | Robert Bosch GmbH | Optical device for boring using a laser beam |
6365871, | Sep 03 1997 | Oxford Lasers Limited | Laser-drilling |
6452132, | Jun 23 1999 | Sumitomo Electric Industries, Ltd. | Laser hole boring apparatus |
6541732, | Aug 30 2000 | Canon Kabushiki Kaisha | Laser machining apparatus |
6600132, | Jul 31 2001 | Vitesco Technologies USA, LLC | Method and apparatus to generate orifice disk entry geometry |
6603095, | Jul 23 2001 | Vitesco Technologies USA, LLC | Apparatus and method of overlapping formation of chamfers and orifices by laser light |
6635847, | Jul 31 2001 | Vitesco Technologies USA, LLC | Method of forming orifices and chamfers by collimated and non-collimated light |
JP9225665, | |||
JP9236066, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 07 2004 | Siemens VDO Automotive Corporation | (assignment on the face of the patent) | / | |||
Nov 20 2006 | HORSTING, JOHN JAMES | Siemens VDO Automotive Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018542 | /0104 |
Date | Maintenance Fee Events |
Jun 04 2008 | ASPN: Payor Number Assigned. |
Jun 30 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 22 2014 | REM: Maintenance Fee Reminder Mailed. |
Jan 09 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 09 2010 | 4 years fee payment window open |
Jul 09 2010 | 6 months grace period start (w surcharge) |
Jan 09 2011 | patent expiry (for year 4) |
Jan 09 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 09 2014 | 8 years fee payment window open |
Jul 09 2014 | 6 months grace period start (w surcharge) |
Jan 09 2015 | patent expiry (for year 8) |
Jan 09 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 09 2018 | 12 years fee payment window open |
Jul 09 2018 | 6 months grace period start (w surcharge) |
Jan 09 2019 | patent expiry (for year 12) |
Jan 09 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |