Apparatus and systems including one or more first leds, each first led configured to generate first radiation having a first spectrum, and one or more second leds, each second led configured to generate second radiation having a second spectrum different than the first spectrum. A diffuser is employed to blend the first radiation and the second radiation, when generated, so as to provide a uniform color of light having a visible spectrum based on a combination of the first spectrum and the second spectrum. One or more controllers are configured to control the first led(s) and the second led(s) such that visible light provided by the diffuser is perceived as one or more colors. In different aspects, the apparatus/systems may be configured to generate white light and/or multicolor light, may be formed to resemble conventional light bulbs, and may be arranged as a linear chain of nodes.

Patent
   7161311
Priority
Aug 26 1997
Filed
Nov 04 2003
Issued
Jan 09 2007
Expiry
Aug 26 2017
Assg.orig
Entity
Large
389
548
EXPIRED
72. An led-based lightbulb, comprising:
at least one first led configured to generate first radiation having a first spectrum;
at least one second led configured to generate second radiation having a second spectrum different than the first spectrum;
a diffuser configured to blend the first radiation and the second radiation, when generated, so as to provide a uniform color of light having a visible spectrum based on a combination of the first spectrum and the second spectrum; and
at least one controller configured to control the at least one first led and the at least one second led such that the light provided by the lightbulb is perceived as white light,
wherein the led-based lightbulb is configured to have a form that resembles a conventional lightbulb.
35. A lighting system, comprising:
a plurality of lighting apparatus arranged as a linear chain of nodes, each lighting apparatus comprising:
a plurality of first leds, each first led configured to generate first radiation having a first spectrum;
a plurality of second leds, each second led configured to generate second radiation having a second spectrum different than the first spectrum;
a diffuser to blend the first radiation and the second radiation, when generated, so as to provide a uniform color of light having a visible spectrum based on a combination of the first spectrum and the second spectrum; and
at least one controller configured to control the first leds and the second leds such that all visible light provided by the diffuser is perceived only as one or more colors.
1. An apparatus, comprising:
a plurality of first leds, each first led configured to generate first radiation having a first spectrum;
a plurality of second leds, each second led configured to generate second radiation having a second spectrum different than the first spectrum;
a diffuser to blend the first radiation and the second radiation, when generated, so as to provide a uniform color of light having a visible spectrum based on a combination of the first spectrum and the second spectrum; and
at least one controller configured to control the first leds and the second leds based on a square wave signal applied to each led, such that all visible light provided by the diffuser is perceived only as one or more colors, and not as alphanumeric characters or graphic images,
wherein the apparatus is configured to have a form that resembles a conventional lightbulb.
30. An apparatus, comprising:
a plurality of first leds, each first led configured to generate first radiation having a first spectrum;
a plurality of second leds, each second led configured to generate second radiation having a second spectrum different than the first spectrum, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as at least one row;
a diffuser to blend the first radiation and the second radiation, when generated, so as to provide a uniform color of light having a visible spectrum based on a combination of the first spectrum and the second spectrum; and
at least one controller configured to control the first leds and the second leds based on a square wave signal applied to each led, such that all visible light provided by the diffuser is perceived only as one or more non-white colors, and not as alphanumeric characters or graphic images.
49. An apparatus, comprising:
a plurality of first leds, each first led configured to generate first radiation having a first spectrum;
a plurality of second leds, each second led configured to generate second radiation having a second spectrum different than the first spectrum;
a diffuser to blend the first radiation and the second radiation, when generated, so as to provide a uniform color of light having a visible spectrum based on a combination of the first spectrum and the second spectrum;
at least one controller configured to control the first leds and the second leds, such that all visible light provided by the diffuser is perceived only as white light, and not as alphanumeric characters or graphic images; and
at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically and electrically with a conventional light socket arrangement.
2. The apparatus of claim 1, wherein the at least one controller is configured to control the first leds and the second leds, based on the square wave signal applied to each led, so as to switch at least some of the first leds and the second leds on and off in a predetermined manner.
3. The apparatus of claim 2, wherein the at least one controller includes at least one register to store data relating to the predetermined manner in which the at least some of the first leds and the second leds are switched on and off.
4. The apparatus of claim 1, wherein the at least one controller is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived substantially as only one color at a given time.
5. The apparatus of claim 4, wherein the at least one controller is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived as a non-white color.
6. The apparatus of claim 4, wherein the at least one controller is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived as white light.
7. The apparatus of claim 1, wherein the at least one controller is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived substantially as a multicolor lighting effect.
8. The apparatus of claim 7, wherein the at least one controller is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived substantially as a time-varying multicolor lighting effect.
9. The apparatus of claim 8, wherein the apparatus is configured as a general illumination device capable of emitting multiple colors of the visible light in a continuously programmable spectrum.
10. The apparatus of claim 1, wherein the apparatus is configured as a general illumination device.
11. The apparatus of claim 1, wherein the diffuser is configured as a housing to substantially enclose at least the first leds and the second leds.
12. The apparatus of claim 11, wherein the the housing has the form that resembles the conventional lightbulb.
13. The apparatus of claim 12, wherein the at least one controller is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived as a non-white color.
14. The apparatus of claim 12, wherein the at least one controller is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived as white light.
15. The apparatus of claim 1, wherein the first leds and the second leds are arranged in the apparatus in a predetermined manner.
16. The apparatus of claim 15, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a serial array.
17. The apparatus of claim 16, wherein the plurality of first leds and the plurality of second leds are each arranged as a serial array.
18. The apparatus of claim 15, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a parallel array.
19. The apparatus of claim 15, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as at least one row.
20. The apparatus of claim 19, wherein at least one of the plurality of first leds and the plurality of second leds is configured as a parallel arrangement of rows.
21. The apparatus of claim 2, wherein the at least one controller includes a processor configured to receive lighting instructions from an external source, and wherein the processor is configured to control the at least some of the first leds and the second leds in response to the lighting instructions so as to switch the at least some of the first leds and the second leds on and off in the predetermined manner.
22. The apparatus of claim 21, wherein the external source is a network, and wherein the processor is configured to receive the lighting instructions from the network.
23. The apparatus of claim 3, wherein the at least one register includes:
a first register to store first data corresponding to the at least some of the first leds; and
a second register to store second data corresponding to the at least some of the second leds.
24. The apparatus of claim 2, further comprising at least one user interface coupled to the at least one controller and configured to facilitate control of the apparatus so as to switch the at least some of the first leds and the second leds on and off in the predetermined manner.
25. The apparatus of claim 24, wherein:
the at least one controller includes at least one register to store data relating to the predetermined manner in which the at least some of the first leds and the second leds are switched on and off; and
the at least one user interface is configured to facilitate programming the at least one register with the data.
26. A lighting system comprising:
a first apparatus according to claim 22 coupled to the network; and
a second apparatus according to claim 22 coupled to the network,
wherein the first apparatus and the second apparatus are arranged as a linear chain.
27. The lighting system of claim 26, wherein for each of the first apparatus and the second apparatus, at least one of the plurality of first leds and the plurality of second leds is arranged as a row.
28. The lighting system of claim 27, wherein at least one of the plurality of first leds and the plurality of second leds is configured as a parallel arrangement of rows.
29. The lighting system of claim 26, wherein for each of the first apparatus and the second apparatus, at least one of the plurality of first leds and the plurality of second leds is arranged as a serial array.
31. The apparatus of claim 30, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a serial array.
32. The apparatus of claim 31, wherein the plurality of first leds and the plurality of second leds are each arranged as a serial array.
33. The apparatus of claim 30, wherein at least one of the plurality of first leds and the plurality of second leds is configured as a parallel arrangement of rows.
34. The apparatus of claim 30, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a parallel array.
36. The lighting system of claim 35, wherein at least one of the plurality of first leds and the plurality of second leds in at least two lighting apparatus is arranged as at least one row.
37. The lighting system of claim 36, wherein at least one of the plurality of first leds and the plurality of second leds in at least two lighting apparatus is configured as a parallel arrangement of rows.
38. The lighting system of claim 35, wherein the at least one controller of at least one lighting apparatus is configured to control the first leds and the second leds based on a square wave signal applied to each led.
39. The lighting system of claim 35, wherein the at least one controller of at least two lighting apparatus is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived substantially as only one color at a given time.
40. The lighting system of claim 39, wherein the at least one controller of at least two lighting apparatus is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived as a non-white color.
41. The lighting system of claim 39, wherein the at least one controller of at least two lighting apparatus is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived as white light.
42. The lighting system of claim 35, wherein the at least one controller of at least two lighting apparatus is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived substantially as a multicolor lighting effect.
43. The lighting system of claim 42, wherein the at least one controller of at least two lighting apparatus is configured to control the first leds and the second leds such that the visible light provided by the diffuser is perceived substantially as a time-varying multicolor lighting effect.
44. The lighting system of claim 43, wherein each lighting apparatus is configured as a general illumination device capable of emitting multiple colors of the visible light in a continuously programmable spectrum.
45. The lighting system of claim 35, wherein the diffuser of at least two lighting apparatus is configured as a housing to substantially enclose at least the first leds and the second leds.
46. The lighting system of claim 35, wherein at least one of the plurality of first leds and the plurality of second leds in at least two lighting apparatus is arranged as a serial array.
47. The lighting system of claim 35, wherein at least one of the plurality of first leds and the plurality of second leds in at least two lighting apparatus is arranged as a parallel array.
48. The lighting system of claim 35, wherein:
each lighting apparatus is coupled to a network and configured as a node on the network;
the at least one controller of at least two lighting apparatus includes a processor configured to receive lighting instructions from the network; and
the processor is configured to control at least some of the first leds and the second leds in response to the lighting instructions so as to switch the at least some of the first leds and the second leds on and off in a predetermined manner.
50. The apparatus of claim 49, wherein the at least one controller is configured to control the first leds and the second leds so as to switch at least some of the first leds and the second leds on and off in a predetermined manner to provide the white light.
51. The apparatus of claim 50, wherein the at least one controller includes a processor configured to receive lighting instructions from an external source, and wherein the processor is configured to control the at least some of the first leds and the second leds in response to the lighting instructions so as to switch the at least some of the first leds and the second leds on and off in the predetermined manner.
52. The apparatus of claim 49, further comprising a plurality of third leds, each third led configured to generate third radiation having a third spectrum different from the first and second spectrums, wherein the plurality of first leds includes a plurality of red leds, the plurality of second leds includes a plurality of green leds, and the plurality of third leds includes a plurality of blue leds.
53. The apparatus of claim 49, wherein the diffuser is configured as a housing to substantially enclose at least the first leds and the second leds.
54. The apparatus of claim 53, wherein the diffuser is configured to resemble a lightbulb.
55. The apparatus of claim 54, wherein the diffuser is configured to resemble an Edison-mount lightbulb housing.
56. The apparatus of claim 49, wherein the first leds and the second leds are arranged in the apparatus in a predetermined manner.
57. The apparatus of claim 56, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a serial array.
58. The apparatus of claim 57, wherein the plurality of first leds and the plurality of second leds are arranged as a serial array.
59. The apparatus of claim 56, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a parallel array.
60. The apparatus of claim 56, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as at least one row.
61. The apparatus of claim 60, wherein at least one of the plurality of first leds and the plurality of second leds is configured as a parallel arrangement of rows.
62. The apparatus of claim 51, wherein the external source is a network, and wherein the processor is configured to receive the lighting instructions from the network.
63. The apparatus of claim 50, wherein the at least one controller is configured to control the first leds and the second leds based on a square wave signal applied to each led.
64. The apparatus of claim 50, wherein the at least one controller includes at least one register to store data relating to the predetermined manner in which the at least some of the first leds and the second leds are switched on and off.
65. The apparatus of claim 64, wherein the at least one register includes:
a first register to store first data corresponding to the at least some of the first leds; and
a second register to store second data corresponding to the at least some of the second leds.
66. The apparatus of claim 50, further comprising at least one user interface coupled to the at least one controller and configured to facilitate control of the apparatus so as to switch the at least some of the first leds and the second leds on and off in the predetermined manner.
67. The apparatus of claim 66, wherein:
the at least one controller includes at least one register to store data relating to the predetermined manner in which the at least some of the first leds and the second leds are switched on and off; and
the at least one user interface is configured to facilitate programming the at least one register with the data.
68. A lighting system comprising:
a first apparatus according to claim 62 coupled to the network; and
a second apparatus according to claim 62 coupled to the network,
wherein the first apparatus and the second apparatus are arranged as a linear chain.
69. The lighting system of claim 68, wherein for each of the first apparatus and the second apparatus, at least one of the plurality of first leds and the plurality of second leds is arranged as at least one row.
70. The lighting system of claim 69, wherein at least one of the plurality of first leds and the plurality of second leds is configured as a parallel arrangement of rows.
71. The lighting system of claim 68, wherein for each of the first apparatus and the second apparatus, at least one of the plurality of first leds and the plurality of second leds is arranged as a serial array.
73. The led-based lightbulb of claim 72, wherein the at least one first led includes a plurality of first leds and the at least one second led includes a plurality of second leds, and where the first leds and the second leds are arranged in the lightbulb in a predetermined manner.
74. The led-based lightbulb of claim 73, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a parallel array.
75. The led-based lightbulb of claim 72, wherein the diffuser is configured as a housing to substantially enclose at least the at least one first led and the at least one second led.
76. The led-based lightbulb of claim 75, wherein the diffuser is configured to resemble the conventional lightbulb.
77. The led-based lightbulb of claim 76, wherein the diffuser is configured to resemble an Edison-mount lightbulb housing.
78. The led-based lightbulb of claim 77, further comprising at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically and electrically with a conventional light socket.
79. The led-based lightbulb of claim 78, wherein the at least one power connection includes an Edison screw-type connection.
80. The led-based lightbulb of claim 72, further comprising at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically an electrically with a conventional light socket.
81. The led-based lightbulb of claim 80, wherein the at least one power connection includes an Edison screw-type connection.
82. The led-based lightbulb of claim 80, further comprising rectifier and voltage transformation means coupled to the at least one power connection.
83. The led-based lightbulb of claim 72, wherein the at least one controller is configured to independently control a first intensity of the first radiation and a second intensity of the second radiation.
84. The led-based lightbulb of claim 72, wherein the at least one controller is configured to control the at least one first led and the at least one second led based on a square wave signal applied to each led.
85. The led-based lightbulb of claim 84, wherein the at least one controller is configured to implement a pulse-width modulation technique to independently control a first intensity of the first radiation and a second intensity of the second radiation so as to determine the visible spectrum of the light provided by the lightbulb.
86. The led-based lightbulb of claim 72, wherein the at least one controller includes at least one register to store data relating to controlling the at least one first led and the at least one second led.
87. The led-based lightbulb of claim 86, wherein the at least one register includes:
a first register to store first data corresponding to the at least one first led; and
a second register to store second data corresponding to the at least one second led.
88. The led-based lightbulb of claim 72, further comprising at least one user interface coupled to the at least one controller and configured to facilitate control of the at least one first led and the at least one second led.
89. The led-based lightbulb of claim 88, wherein the at least one user interface is configured to facilitate control of the at least one first led and the at least one second led so as to vary the visible spectrum of the light provided by the lightbulb.
90. The led-based lightbulb of claim 88, wherein:
the at least one controller includes at least one register to store data relating to controlling the at least one first led and the at least one second led; and
the at least one user interface is configured to facilitate programming the at least one register with the data.
91. The led-based lightbulb of claim 72, further comprising at least one of a transmitter and a receiver configured to communicate via electromagnetic radiation at least one signal to or from the lightbulb.
92. The led-based lightbulb of claim 72, wherein the at least one controller includes a processor configured to receive lighting instructions from an external source, and wherein the processor is configured to control the at least one first led and the at least one second led in response to the lighting instructions.
93. The led-based lightbulb of claim 92, wherein the external source is a network, and wherein the processor is configured to receive the lighting instructions from the network.
94. The led-based lightbulb of claim 92, further comprising at least one of a transmitter and a receiver configured to communicate via electromagnetic radiation at least one signal to or from the lightbulb.
95. The led-based lightbulb of claim 94, wherein the at least one of the transmitter and the receiver is configured to communicate the lighting instructions between the external source and the lightbulb.
96. The led-based lightbulb of claim 73, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as at least one row.
97. The led-based lightbulb of claim 73, wherein at least one of the plurality of first leds and the plurality of second leds is arranged as a serial array.
98. The led-based lightbulb of claim 96, wherein at least one of the plurality of first leds and the plurality of second leds is configured as a parallel arrangement of rows.

This application is a continuation of application Ser. No. 09/971,367, filed on Oct. 4, 2001 now U.S. Pat. No. 6,788,011, which is a continuation of application Ser. No. 09/669,121, filed on Sep. 25, 2000 now U.S. Pat No. 6,806,659, which is a continuation of application Ser. No. 09/425,770, filed Oct. 22, 1999, now U.S. Pat. No. 6,150,774, which is a continuation of application Ser. No. 08/920,156, filed Aug. 26, 1997, now U.S. Pat. No. 6,016,038.

The present invention relates to providing light of a selectable color using LEDs. More particularly, the present invention is a method and apparatus for providing multicolored illumination. More particularly still, the present invention is an apparatus for providing a computer controlled multicolored illumination network capable of high performance and rapid color selection and change.

It is well known that combining the projected light of one color with the projected light of another color will result in the creation of a third color. It is also well known that the three most commonly used primary colors—red, blue and green—can be combined in different proportions to generate almost any color in the visible spectrum. The present invention takes advantage of these effects by combining the projected light from at least two light emitting diodes (LEDs) of different primary colors.

Computer lighting networks are not new. U.S. Pat. No. 5,420,482, issued to Phares, describes one such network that uses different colored LEDs to generate a selectable color. Phares is primarily for use as a display apparatus. However, the apparatus has several disadvantages and limitations. First, each of the three color LEDs in Phares is powered through a transistor biasing scheme in which the transistor base is coupled to a respective latch register through biasing resistors. The three latches are all simultaneously connected to the same data lines on the data bus. This means it is impossible in Phares to change all three LED transistor biases independently and simultaneously. Also, biasing of the transistors is inefficient because power delivered to the LEDs is smaller than that dissipated in the biasing network. This makes the device poorly suited for efficient illumination applications. The transistor biasing used by Phares also makes it difficult, if not impossible, to interchange groups of LEDs having different power ratings, and hence different intensity levels.

U.S. Pat. No. 4,845,481, issued to Havel, is directed to a multicolored display device. Havel addresses some, but not all of the switching problems associated with Phares. Havel uses a pulse width modulated signal to provide current to respective LEDs at a particular duty cycle. However, no provision is made for precise and rapid control over the colors emitted. As a stand alone unit, the apparatus in Havel suggests away from network lighting, and therefore lacks any teaching as to how to implement a pulse width modulated computer lighting network. Further, Havel does not appreciate the use of LEDs beyond mere displays, such as for illumination.

U.S. Pat. No. 5,184,114, issued to Brown, shows an LED display system. But Brown lacks any suggestion to use LEDs for illumination, or to use LEDs in a configurable computer network environment. U.S. Pat. No. 5,134,387, issued to Smith et al., directed to an LED matrix display, contains similar problems. Its rudimentary cur-rent control scheme severely limits the possible range of colors that can be displayed.

It is an object of the present invention to overcome the limitations of the prior art by providing a high performance computer controlled multicolored LED lighting network.

It is a further object of the present invention to provide a unique LED lighting network structure capable of both a linear chain of nodes and a binary tree configuration.

It is still another object of the present invention to provide a unique heat-dissipating housing to contain the lighting units of the lighting network.

It is yet another object of the present invention to provide a current regulated LED lighting apparatus, wherein the apparatus contains lighting modules each having its own maximum current rating and each conveniently interchangeable with one another.

It is a still further object of the present invention to provide a unique computer current-controlled LED lighting assembly for use as a general illumination device capable of emitting multiple colors in a continuously programmable 24-bit spectrum.

It is yet a still further object of the present invention to provide a unique flashlight, inclinometer, thermometer, general environmental indicator and lightbulb, all utilizing the general computer current-control principles of the present invention.

Other objects of the present invention will be apparent from the detailed description below.

In brief, the invention herein comprises a pulse width modulated current control for an LED lighting assembly, where each current-controlled unit is uniquely addressable and capable of receiving illumination color information on a computer lighting network. In a further embodiment, the invention includes a binary tree network configuration of lighting units (nodes). In another embodiment, the present invention comprises a heat dissipating housing, made out of a heat-conductive material, for housing the lighting assembly. The heat dissipating housing contains two stacked circuit boards holding respectively the power module and the light module. The light module is adapted to be conveniently interchanged with other light modules having programmable current, and hence maximum light intensity ratings. Other embodiments of the present invention involve novel applications for the general principles described herein.

FIG. 1 is a stylized electrical circuit schematic of the light module of the present invention.

FIG. 2 is a stylized electrical circuit schematic of the power module of the present invention.

FIG. 2A illustrates a network of addressable LED-based lighting units according to one embodiment of the invention.

FIGS. 2B-1 and 2B-2 respectively illustrate a linear chain of nodes (daisy chain configuration) and a binary tree configuration of a network according to various embodiments of the present invention.

FIG. 3 is an exploded view of the housing of one of the embodiments of the present invention.

FIG. 4 is a plan view of the LED-containing side of the light module of the present invention.

FIG. 5 is a plan view of the electrical connector side of the light module of the present invention.

FIG. 6 is a plan view of the power terminal side of the power module of the present invention.

FIG. 7 is a plan view of the electrical connector side of the power module of the present invention.

FIG. 8 is an exploded view of a flashlight assembly containing the LED lighting module of the present invention.

FIG. 9 is a control block diagram of the environmental indicator of the present invention.

FIG. 10 illustrates an LED-based lightbulb according to one embodiment of the present invention.

The structure and operation of a preferred embodiment will now be described. It should be understood that many other ways of practicing the inventions herein are available, and the embodiments described herein are exemplary and not limiting. Turning to FIG. 1, shown is an electrical schematic representation of a light module 100 of the present invention. FIGS. 4 and 5 show the LED-containing side and the electrical connector side of light module 100. Light module 100 is self-contained, and is configured to be a standard item interchangeable with any similarly constructed light module. Light module 100 contains a ten-pin electrical connector 110 of the general type. In this embodiment, the connector 110 contains male pins adapted to fit into a complementary ten-pin connector female assembly, to be described below. Pin 180 is the power supply. A source of DC electrical potential enters module 100 on pin 180. Pin 180 is electrically connected to the anode end of light emitting diode (LED) sets 120, 140 and 160 to establish a uniform high potential on each anode end.

LED set 120 contains red LEDs, set 140 contains blue and set 160 contains green, each obtainable from the Nichia America Corporation. These LEDs are primary colors, in the sense that such colors when combined in preselected proportions can generate any color in the spectrum. While three primary colors is preferred, it will be understood that the present invention will function nearly as well with only two primary colors to generate any color in the spectrum. Likewise, while the different primary colors are arranged herein on sets of uniformly colored LEDs, it will be appreciated that the same effect may be achieved with single LEDs containing multiple color-emitting semiconductor dies. LED sets 120, 140 and 160 each preferably contains a serial/parallel array of LEDs in the manner described by Okuno in U.S. Pat. No. 4,298,869, incorporated herein by reference. In the present embodiment, LED set 120 contains three parallel connected rows of nine red LEDs (not shown), and LED sets 140 and 160 each contain five parallel connected rows of five blue and green LEDs, respectively (not shown). It is understood by those in the art that, in general, each red LED drops the potential in the line by a lower amount than each blue or green LED, about 2.1 V, compared to 4.0 V, respectively, which accounts for the different row lengths. This is because the number of LEDs in each row is determined by the amount of voltage drop desired between the anode end at the power supply voltage and the cathode end of the last LED in the row. Also, the parallel arrangement of rows is a fail-safe measure that ensures that the light module 100 will still function even if a single LED in a row fails, thus opening the electrical circuit in that row. The cathode ends of the three parallel rows of nine red LEDs in LED set 120 are then connected in common, and go to pin 128 on connector 110. Likewise, the cathode ends of the five parallel rows of five blue LEDs in LED set 140 are connected in common, and go to pin 148 on connector 110. The cathode ends of the five parallel rows of five green LEDs in LED set 160 are connected in common, and go to pin 168 on connector 110. Finally, on light module 100, each LED set is associated with a programming resistor that combines with other components, described below, to program the maximum current through each set of LEDs. Between pin 124 and 126 is resistor 122, 6.2. Between pin 144 and 146 is resistor 142, 4.7. Between pin 164 and 166 is resistor 162, 4.7. Resistor 122 programs maximum current through red LED set 120, resistor 142 programs maximum current through blue LED set 140, and resistor 162 programs maximum current through green LED set 160. The values these resistors should take are determined empirically, based on the desired maximum light intensity of each LED set. In the present embodiment, the resistances above program red, blue and green currents of 70, 50 and 50 A, respectively.

With the electrical structure of light module 100 described, attention will now be given to the electrical structure of power module 200, shown in FIG. 2. FIGS. 6 and 7 show the power terminal side and electrical connector side of an embodiment of power module 200. Like light module 100, power module 200 is self contained. Interconnection with male pin set 110 is achieved through complementary female pin set 210. Pin 280 connects with pin 180 for supplying power, delivered to pin 280 from supply 300. Supply 300 is shown as a functional block for simplicity. In actuality, supply 300 can take numerous forms for generating a DC voltage. In the present embodiment, supply 300 provides 24 Volts through a connection terminal (not shown), coupled to pin 280 through transient protection capacitors (not shown) of the general type. It will be appreciated that supply 300 may also supply a DC voltage after rectification and/or voltage transformation of an AC supply, as described more fully in U.S. Pat. No. 4,298,869.

Also connected to pin connector 210 are three current programming integrated circuits, ICR 220, ICB 240 and ICG 260. Each of these is a three terminal adjustable regulator, preferably part number LM317B, available from the National Semiconductor Corporation, Santa Clara, Calif. The teachings of the LM317 datasheet are incorporated herein by reference. Each regulator contains an input terminal, an output terminal and an adjustment terminal, labeled I, O and A, respectively. The regulators function to maintain a constant maximum current into the input terminal and out of the output terminal. This maximum current is pre-programmed by setting a resistance between the output and the adjustment terminals. This is because the regulator will cause the voltage at the input terminal to settle to whatever value is needed to cause 1.25 V to appear across the fixed current set resistor, thus causing constant current to flow. Since each functions identically, only ICR 220 will now be described. First, current enters the input terminal of ICR 220 from pin 228. Of course, pin 228 in the power module is coupled to pin 128 in the light module, and receives current directly from the cathode end of the red LED set 120. Since resistor 122 is ordinarily disposed between the output and adjustment terminals of ICR 220 through pins 224/124 and 226/126, resistor 122 programs the amount of current regulated by ICR 220. Eventually, the current output from the adjustment terminal of ICR 220 enters a Darlington driver. In this way, ICR 220 and associated resistor 122 program the maximum current through red LED set 120. Similar results are achieved with ICB 240 and resistor 142 for blue LED set 140, and with ICG 260 and resistor 162 for green LED set 160.

The red, blue and green LED currents enter another integrated circuit, IC1 380, at respective nodes 324, 344 and 364. IC1 380 is preferably a high current/voltage Darlington driver, part no. DS2003 available from the National Semiconductor Corporation, Santa Clara, Calif. IC1 380 is used as a current sink, and functions to switch current between respective LED sets and ground 390. As described in the DS2003 datasheet, incorporated herein by reference, IC1 contains six sets of Darlington transistors with appropriate on-board biasing resistors. As shown, nodes 324, 344 and 364 couple the current from the respective LED sets to three pairs of these Darlington transistors, in the well known manner to take advantage of the fact that the current rating of IC1 380 may be doubled by using pairs of Darlington transistors to sink respective currents. Each of the three on-board Darlington pairs is used in the following manner as a switch. The base of each Darlington pair is coupled to signal inputs 424, 444 and 464, respectively. Hence, input 424 is the signal input for switching current through node 324, and thus the red LED set 120. Input 444 is the signal input for switching current through node 344, and thus the blue LED set 140. Input 464 is the signal input for switching current through node 364, and thus the green LED set 160. Signal inputs 424, 444 and 464 are coupled to respective signal outputs 434, 454 and 474 on microcontroller IC2 400, as described below. In essence, when a high frequency square wave is incident on a respective signal input, IC1 380 switches current through a respective node with the identical frequency and duty cycle. Thus, in operation, the states of signal inputs 424, 444 and 464 directly correlate with the opening and closing of the power circuit through respective LED sets 120, 140 and 160.

The structure and operation of microcontroller IC2 400 will now be described. Microcontroller IC2 400 is preferably a MICROCHIP brand PIC16C63, although almost any properly programmed microcontroller or microprocessor can perform the software functions described herein. The main function of microcontroller IC2 400 is to convert numerical data received on serial Rx pin 520 into three independent high frequency square waves of uniform frequency but independent duty cycles on signal output pins 434, 454 and 474. The FIG. 2 representation of microcontroller IC2 400 is partially stylized, in that persons of skill in the art will appreciate that certain of the twenty-eight standard pins have been omitted or combined for greatest clarity.

Microcontroller IC2 400 is powered through pin 450, which is coupled to a 5 Volt source of DC power 700. Source 700 is preferably driven from supply 300 through a coupling (not shown) that includes a voltage regulator (not shown). An exemplary voltage regulator is the LM340 3-terminal positive regulator, available from the National Semiconductor Corporation, Santa Clara, Calif. The teachings of the LM340 datasheet are hereby incorporated by reference. Those of skill in the art will appreciate that most microcontrollers, and many other independently powered digital integrated circuits, are rated for no more than a 5 Volt power source. The clock frequency of microcontroller IC2 400 is set by crystal 480, coupled through appropriate pins. Pin 490 is the microcontroller IC2 400 ground reference.

Switch 600 is a twelve position dip switch that may be alterably and mechanically set to uniquely identify the microcontroller IC2 400. When individual ones of the twelve mechanical switches within dip switch 600 are closed, a path is generated from corresponding pins 650 on microcontroller IC2 400 to ground 690. Twelve switches create 212 possible settings, allowing any microcontroller IC2 400 to take on one of 4096 different IDs, or addresses. In the preferred embodiment, only nine switches are actually used because the DMX-512 protocol, discussed below, is employed.

Once switch 600 is set, microcontroller IC2 400 “knows” its unique address (“who am I”), and “listens” on serial line 520 for a data stream specifically addressed to it. A high speed network protocol, preferably a DMX protocol, is used to address network data to each individually addressed microcontroller IC2 400 from a central network controller 1000, as shown for example in FIG. 2A. The DMX protocol is described in a United States Theatre Technology, Inc. publication entitled “DMX512/1990 Digital Data Transmission Standard for Dimmers and Controllers,” incorporated herein by reference. Basically, in the network protocol used herein, a central controller creates a stream of network data consisting of sequential data packets. Each packet first contains a header, which is checked for conformance to the standard and discarded, followed by a stream of sequential bytes representing data for sequentially addressed devices. For instance, if the data packet is intended for light number fifteen, then fourteen bytes from the data stream will be discarded, and the device will save byte number fifteen. If as in the preferred embodiment, more than one byte is needed, then the address is considered to be a starting address, and more than one byte is saved and utilized. Each byte corresponds to a decimal number 0 to 255, linearly representing the desired intensity from Off to Full. (For simplicity, details of the data packets such as headers and stop bits are omitted from this description, and will be well appreciated by those of skill in the art.) This way, each of the three LED colors is assigned a discrete intensity value between 0 and 255. These respective intensity values are stored in respective registers within the memory of microcontroller IC2 400 (not shown). Once the central controller exhausts all data packets, it starts over in a continuous refresh cycle. The refresh cycle is defined by the standard to be a minimum of 1196 microseconds, and a maximum of 1 second.

Microcontroller IC2 400 is programmed continually to “listen” for its data stream. When microcontroller IC2 400 is “listening,” but before it detects a data packet intended for it, it is running a routine designed to create the square wave signal outputs on pins 434, 454 and 474. The values in the color registers determine the duty cycle of the square wave. Since each register can take on a value from 0 to 255, these values create 256 possible different duty cycles in a linear range from 0% to 100%. Since the square wave frequency is uniform and determined by the program running in the microcontroller IC2 400, these different discrete duty cycles represent variations in the width of the square wave pulses. This is known as pulse width modulation (PWM).

The PWM interrupt routine is implemented using a simple counter, incrementing from 0 to 255 in a cycle during each period of the square wave output on pins 434, 454 and 474. When the counter rolls over to zero, all three signals are set high. Once the counter equals the register value, signal output is changed to low. When microcontroller IC2 400 receives new data, it freezes the counter, copies the new data to the working registers, compares the new register values with the current count and updates the output pins accordingly, and then restarts the counter exactly where it left off. Thus, intensity values may be updated in the middle of the PWM cycle. Freezing the counter and simultaneously updating the signal outputs has at least two advantages. First, it allows each lighting unit to quickly pulse/strobe as a strobe light does. Such strobing happens when the central controller sends network data having high intensity values alternately with network data having zero intensity values at a rapid rate. If one restarted the counter without first updating the signal outputs, then the human eye would be able to perceive the staggered deactivation of each individual color LED that is set at a different pulse width. This feature is not of concern in incandescent lights because of the integrating effect associated with the heating and cooling cycle of the illumination element. LEDs, unlike incandescent elements, activate and deactivate essentially instantaneously in the present application. The second advantage is that one can “dim” the LEDs without the flickering that would otherwise occur if the counter were reset to zero. The central controller can send a continuous dimming signal when it creates a sequence of intensity values representing a uniform and proportional decrease in light intensity for each color LED. If one did not update the output signals before restarting the counter, there is a possibility that a single color LED will go through nearly two cycles without experiencing the zero current state of its duty cycle. For instance, assume the red register is set at 4 and the counter is set at 3 when it is frozen. Here, the counter is frozen just before the “off” part of the PWM cycle is to occur for the red LEDs. Now assume that the network data changes the value in the red register from 4 to 2 and the counter is restarted without deactivating the output signal. Even though the counter is greater than the intensity value in the red register, the output state is still “on”, meaning that maximum current is still flowing through the red LEDs. Meanwhile, the blue and green LEDs will probably turn off at their appropriate times in the PWM cycle. This would be perceived by the human eye as a red flicker in the course of dimming the color intensities. Freezing the counter and updating the output for the rest of the PWM cycle overcomes these disadvantages, ensuring the flicker does not occur.

The network interface for microcontroller IC2 400 will now be described. Jacks 800 and 900 are standard RJ-8 network jacks. Jack 800 is used as an input jack, and is shown for simplicity as having only three inputs: signal inputs 860, 870 and ground 850. Network data enters jack 800 and passes through signal inputs 860 and 870. These signal inputs are then coupled to IC3 500, which is an RS-485/RS-422 differential bus repeater of the standard type, preferably a DS96177 from the National Semiconductor Corporation, Santa Clara, Calif. The teachings of the DS96177 datasheet are hereby incorporated by reference. The signal inputs 860, 870 enter IC3 500 at pins 560, 570. The data signal is passed through from pin 510 to pin 520 on microcontroller IC2 400. The same data signal is then returned from pin 540 on IC2 400 to pin 530 on IC3 500. Jack 900 is used as an output jack and is shown for simplicity as having only five outputs: signal outputs 960, 970, 980, 990 and ground 950. Outputs 960 and 970 are split directly from input lines 860 and 870, respectively. Outputs 980 and 990 come directly from IC3 500 pins 580 and 590, respectively. It will be appreciated that the foregoing assembly enables two network nodes (i.e., lighting or illumination units) to be connected for receiving the network data. Thus, a network may be constructed as a daisy chain 3000 (or linear chain of nodes) if only single nodes 2000 are strung together, as shown in FIG. 2B-1, or as a binary tree 4000, if two nodes are attached to the output of each single node, as shown in FIG. 2B-2.

From the foregoing description, one can see that an addressable network of LED illumination or display units 2000 as shown in FIG. 2A and FIGS. 2B-1 and 2B-2 can be constructed from a collection of power modules each connected to a respective light module. As long as at least two primary color LEDs are used, any illumination or display color may be generated simply by preselecting the light intensity that each color emits. Further, each color LED can emit light at any of 255 different intensities, depending on the duty cycle of PWM square wave, with a full intensity pulse generated by passing maximum current through the LED. Further still, the maximum intensity can be conveniently programmed simply by adjusting the ceiling for the maximum allowable current using programming resistances for the current regulators residing on the light module. Light modules of different maximum current ratings may thereby be conveniently interchanged.

The foregoing embodiment may reside in any number of different housings. A preferred housing for an illumination unit is described. Turning now to FIG. 3, there is shown an exploded view of an illumination unit 2000 of the present invention comprising a substantially cylindrical body section 10, a light module 20, a conductive sleeve 30, a power module 40, a second conductive sleeve 50 and an enclosure plate 60. It is to be assumed here that the light module 20 and the power module 40 contain the electrical structure and software of light module 100 and power module 200, described above. Screws 62, 64, 66, 68 allow the entire apparatus to be mechanically connected. Body section 10, conductive sleeves 30 and 50 and enclosure plate 60 are preferably made from a material that conducts heat, most preferably aluminum. Body section 10 has an open end 10, a reflective interior portion 12 and an illumination end 13, to which module 20 is mechanically affixed. Light module 20 is disk shaped and has two sides. The illumination side (not shown) comprises a plurality of LEDs of different primary colors. The connection side holds an electrical connector male pin assembly 22. Both the illumination side and the connection side are coated with aluminum surfaces to better allow the conduction of heat outward from the plurality of LEDs to the body section 10. Likewise, power module 40 is disk shaped and has every available surface covered with aluminum for the same reason. Power module 40 has a connection side holding an electrical connector female pin assembly 44 adapted to fit the pins from assembly 22. Power module 40 has a power terminal side holding a terminal 42 for connection to a source of DC power. Any standard AC or DC jack may be used, as appropriate.

Interposed between light module 20 and power module 40 is a conductive aluminum sleeve 30, which substantially encloses the space between modules 20 and 40. As shown, a disk-shaped enclosure plate 60 and screws 62, 64, 66 and 68 sad all of the components together, and conductive sleeve 50 is thus interposed between enclosure plate 60 and power module 40. Once sealed together as a unit, the illumination apparatus may be connected to a data network as described above and mounted in any convenient manner to illuminate an area. In operation, preferably a light diffusing means 17 will be inserted in body section 10 to ensure that the LEDs on light module 20 appear to emit a single uniform frequency of light.

From the foregoing, it will be appreciated that PWM current control of LEDs to produce multiple colors may be incorporated into countless environments, with or without networks. For instance, FIG. 8 shows a hand-held flashlight can be made to shine any conceivable color using an LED assembly of the present invention. The flashlight contains an external adjustment means 5, that may be for instance a set of three potentiometers coupled to an appropriately programmed microcontroller 92 through respective A/D conversion means 15. Each potentiometer would control the current duty cycle, and thus the illumination intensity, of an individual color LED on LED board 25. With three settings each capable of generating a different byte from 0 to 255, a computer-controlled flashlight may generate twenty-four bit color. Of course, three individual potentiometers can be incorporated into a single device, such as a track ball or joystick, so as to be operable as a single adjuster. Further, it is not necessary that the adjustment means must be a potentiometer. For instance, a capacitive or resistive thumb plate may also be used to program the two or three registers necessary to set the color. A lens assembly 93 may be provided for reflecting the emitted light. A non-hand held embodiment of the present invention may be used as an underwater swimming pool light. Since the present invention can operate at relatively low voltages and low current, it is uniquely suited for safe underwater operation.

Similarly, the present invention may be used as a general indicator of any given environmental condition. FIG. 9 shows the general functional block diagram for such an apparatus. Shown within FIG. 9 is also an exemplary chart showing the duty cycles of the three color LEDs during an exemplary period. As one example of an environmental indicator 96, the power module can be coupled to an inclinometer. The inclinometer measures general angular orientation with respect to the earth's center of gravity. The inclinometer's angle signal can be converted through an A/D converter 94 and coupled to the data inputs of the microcontroller 92 in the power module. The microcontroller 92 can then be programmed to assign each discrete angular orientation a different color through the use of a lookup table associating angles with LED color register values. A current switch 90, coupled to the microcontroller 92, may be used to control the current supply to LEDs 120, 140, and 160 of different colors. The microcontroller 92 may be coupled to a transceiver 95 for transmitting and receiving signals. The “color inclinometer” may be used for safety, such as in airplane cockpits, or for novelty, such as to illuminate the sails on a sailboat that sways in the water. Another indicator use is to provide an easily readable visual temperature indication. For example, a digital thermometer can be connected to provide the microcontroller a temperature reading. Each temperature will be associated with a particular set of register values, and hence a particular color output. A plurality of such “color thermometers” can be located over a large space, such as a storage freezer, to allow simple visual inspection of temperature over three dimensions.

Another use of the present invention is as a lightbulb 5000, as shown for example in FIG. 10. Using appropriate rectifier and voltage transformation means 97, the entire power and light modules may be placed in an Edison-mount (screw-type 5010) lightbulb housing. Each bulb can be programmed with particular register values to deliver a particular color bulb, including white. The current regulator can be pre-programmed to give a desired current rating and thus preset light intensity. Naturally, the lightbulb will have a transparent or translucent section 5050 that allows the passage of light into the ambient.

While the foregoing has been a detailed description of the preferred embodiment of the invention, the claims which follow define more freely the scope of invention to which applicant is entitled. Modifications or improvements which may not come within the explicit language of the claims described in the preferred embodiments should be treated as within the scope of invention insofar as they are equivalent or otherwise consistent with the contribution over the prior art and such contribution is not to be limited to specific embodiments disclosed.

Lys, Ihor A., Mueller, George G.

Patent Priority Assignee Title
10030844, May 29 2015 INTEGRATED ILLUMINATION SYSTEMS, INC Systems, methods and apparatus for illumination using asymmetrical optics
10036549, Oct 24 2008 iLumisys, Inc. Lighting including integral communication apparatus
10039174, Aug 11 2014 RAB Lighting Inc Systems and methods for acknowledging broadcast messages in a wireless lighting control network
10051709, Dec 17 2013 SIGNIFY HOLDING B V Selectable control for high intensity LED illumination system to maintain constant color temperature on a lit surface
10054270, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
10060599, May 29 2015 INTEGRATED ILLUMINATION SYSTEMS, INC Systems, methods and apparatus for programmable light fixtures
10085328, Aug 11 2014 RAB Lighting Inc Wireless lighting control systems and methods
10104750, Oct 26 2012 Lutron Technology Company LLC Controllable light source
10136504, Dec 07 2015 Pentair Water Pool and Spa, Inc. Systems and methods for controlling aquatic lighting using power line communication
10139095, Nov 10 2014 Savant Technologies, LLC Reflector and lamp comprised thereof
10147560, Oct 26 2012 Lutron Technology Company LLC Battery-powered retrofit remote control device
10159132, Jul 26 2011 Hunter Industries, Inc. Lighting system color control
10161568, Jun 01 2015 iLumisys, Inc. LED-based light with canted outer walls
10161786, Jun 25 2014 Lutron Technology Company LLC Emitter module for an LED illumination device
10176689, Oct 24 2008 iLumisys, Inc. Integration of led lighting control with emergency notification systems
10182480, Oct 24 2008 iLumisys, Inc. Light and light sensor
10187619, Aug 01 2012 Pentair Water Pool and Spa, Inc. Underwater image projection system and method
10210750, Sep 13 2011 Lutron Technology Company LLC System and method of extending the communication range in a visible light communication system
10219356, Aug 11 2014 RAB Lighting Inc Automated commissioning for lighting control systems
10219695, Nov 10 2006 DOHENY EYE INSTITUTE Enhanced visualization illumination system
10219975, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
10228711, May 26 2015 Hunter Industries, Inc.; HUNTER INDUSTRIES, INC Decoder systems and methods for irrigation control
10260686, Jan 22 2014 iLumisys, Inc. LED-based light with addressed LEDs
10264652, Oct 10 2013 DIGITAL LUMENS, INC Methods, systems, and apparatus for intelligent lighting
10272014, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
10278247, Jul 09 2012 iLumisys, Inc. System and method for controlling operation of an LED-based light
10302935, Aug 01 2012 Pentair Water Pool and Spa, Inc. Multidimensional rotary motion apparatus moving a reflective surface and method of operating same
10306733, Nov 03 2011 OSRAM SYLVANIA Inc Methods, systems, and apparatus for intelligent lighting
10340424, Aug 30 2002 Savant Technologies, LLC Light emitting diode component
10342086, Oct 24 2008 iLumisys, Inc. Integration of LED lighting with building controls
10344992, Oct 11 2010 Broan-Nutone LLC Lighting and ventilating system and method
10345001, Oct 11 2010 Broan-Nutone LLC Lighting and ventilation system having plate with central aperture positioned over grille to define intake gap
10362658, Apr 14 2008 OSRAM SYLVANIA Inc Lighting fixtures and methods for automated operation of lighting fixtures via a wireless network having a mesh network topology
10363197, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
10368419, Dec 23 2003 Solar powered light assembly to produce light of varying colors
10375793, Jul 26 2011 Hunter Industries, Inc. Systems and methods for providing power and data to devices
10413477, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
10418193, Oct 26 2012 Lutron Technology Company LLC Controllable light source
10433397, Dec 23 2003 Solar powered light assembly to produce light of varying colors
10469811, Aug 01 2012 Pentair Water Pool and Spa, Inc. Underwater image projection system and method
10470972, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
10485068, Apr 14 2008 OSRAM SYLVANIA Inc Methods, apparatus, and systems for providing occupancy-based variable lighting
10531545, Aug 11 2014 RAB Lighting Inc Commissioning a configurable user control device for a lighting control system
10539311, Apr 14 2008 OSRAM SYLVANIA Inc Sensor-based lighting methods, apparatus, and systems
10557593, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
10560992, Oct 24 2008 iLumisys, Inc. Light and light sensor
10571115, Oct 24 2008 iLumisys, Inc. Lighting including integral communication apparatus
10584848, May 29 2015 Integrated Illumination Systems, Inc. Systems, methods and apparatus for programmable light fixtures
10595372, Jun 25 2014 Lutron Technology Company LLC Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
10605652, Jun 25 2014 Lutron Technology Company LLC Emitter module for an LED illumination device
10690296, Jun 01 2015 iLumisys, Inc. LED-based light with canted outer walls
10713915, Oct 24 2008 iLumisys, Inc. Integration of LED lighting control with emergency notification systems
10718507, Apr 28 2010 HAYWARD INDUSTRIES, INC Underwater light having a sealed polymer housing and method of manufacture therefor
10779377, Dec 23 2003 Solar powered light assembly to produce light of varying colors
10791599, Apr 19 2013 Lutron Technology Company LLC Systems and methods for controlling color temperature
10801714, Oct 03 2019 AAMP OF FLORIDA, INC Lighting device
10841997, Feb 03 2017 Ledvance LLC Method of control of power supply for solid-state lamp
10847026, Sep 13 2011 Lutron Technology Company LLC Visible light communication system and method
10849206, Oct 26 2012 Lutron Technology Company LLC Battery-powered retrofit remote control device
10855488, Aug 11 2014 RAB Lighting Inc. Scheduled automation associations for a lighting control system
10874003, Jul 26 2011 Hunter Industries, Inc. Systems and methods for providing power and data to devices
10918030, May 26 2015 Hunter Industries, Inc. Decoder systems and methods for irrigation control
10932339, Oct 24 2008 iLumisys, Inc. Light and light sensor
10966295, Jul 09 2012 iLumisys, Inc. System and method for controlling operation of an LED-based light
10973094, Oct 24 2008 iLumisys, Inc. Integration of LED lighting with building controls
10976713, Mar 15 2013 HAYWARD INDUSTRIES, INC Modular pool/spa control system
10989372, Mar 09 2017 KORRUS, INC Fixtures and lighting accessories for lighting devices
11000449, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11022279, Mar 08 2016 KORRUS, INC Lighting system with lens assembly
11028972, Jun 01 2015 iLumisys, Inc. LED-based light with canted outer walls
11028980, Oct 30 2013 KORRUS, INC Flexible strip lighting apparatus and methods
11041609, May 01 2018 KORRUS, INC Lighting systems and devices with central silicone module
11043115, Jun 24 2014 Lutron Technology Company LLC Battery-powered retrofit remote control device
11045384, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11045385, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11054127, Oct 03 2019 AAMP OF FLORIDA, INC Lighting device
11060702, Mar 08 2016 KORRUS, INC Lighting system with lens assembly
11073275, Oct 24 2008 iLumisys, Inc. Lighting including integral communication apparatus
11096862, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11102874, Oct 26 2012 Lutron Technology Company LLC Controllable light source
11102875, Oct 26 2012 Lutron Technology Company LLC Battery-powered retrofit remote control device
11122669, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11129256, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11168876, Mar 06 2019 HAYWARD INDUSTRIES, INC Underwater light having programmable controller and replaceable light-emitting diode (LED) assembly
11193652, Apr 14 2008 OSRAM SYLVANIA Inc Lighting fixtures and methods of commissioning light fixtures
11210934, Sep 13 2011 Lutron Technology Company LLC Visible light communication system and method
11211538, Dec 23 2020 Thermal management system for electrically-powered devices
11229168, May 26 2015 Hunter Industries, Inc. Decoder systems and methods for irrigation control
11243112, Jun 25 2014 Lutron Technology Company LLC Emitter module for an LED illumination device
11252798, Apr 19 2013 Lutron Technology Company LLC Systems and methods for controlling color temperature
11252805, Jun 25 2014 Lutron Technology Company LLC Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
11272599, Jun 22 2018 Lutron Technology Company LLC Calibration procedure for a light-emitting diode light source
11296057, Jan 27 2017 KORRUS, INC Lighting systems with high color rendering index and uniform planar illumination
11326761, Oct 03 2013 Lutron Technology Company LLC Color mixing optics for LED illumination device
11333308, Oct 24 2008 iLumisys, Inc. Light and light sensor
11339932, Mar 09 2017 KORRUS, INC Fixtures and lighting accessories for lighting devices
11353200, Dec 17 2018 KORRUS, INC Strip lighting system for direct input of high voltage driving power
11359796, Mar 08 2016 KORRUS, INC Lighting system with lens assembly
11398924, Aug 11 2014 RAB Lighting Inc. Wireless lighting controller for a lighting control system
11428370, Jun 01 2015 iLumisys, Inc. LED-based light with canted outer walls
11503694, Jul 26 2011 Hunter Industries, Inc. Systems and methods for providing power and data to devices
11512838, Mar 08 2016 KORRUS, INC Lighting system with lens assembly
11578857, May 01 2018 KORRUS, INC Lighting systems and devices with central silicone module
11644819, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11657702, Jun 24 2014 Lutron Technology Company LLC Battery-powered retrofit remote control device
11658163, Jan 27 2017 KORRUS, INC. Lighting systems with high color rendering index and uniform planar illumination
11662077, Oct 03 2013 Lutron Technology Company LLC Color mixing optics for LED illumination device
11687060, Jan 22 2016 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11708966, Dec 17 2018 KORRUS, INC. Strip lighting system for direct input of high voltage driving power
11720085, Jan 22 2016 HAYWARD INDUSTRIES, INC Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
11722332, Aug 11 2014 RAB Lighting Inc. Wireless lighting controller with abnormal event detection
11729879, Apr 19 2013 Lutron Technology Company LLC Systems and methods for controlling color temperature
11754268, Mar 06 2019 HAYWARD INDUSTRIES, INC Underwater light having programmable controller and replaceable light-emitting diode (LED) assembly
11771024, May 26 2015 Hunter Industries, Inc. Decoder systems and methods for irrigation control
11822300, Mar 15 2013 HAYWARD INDUSTRIES, INC Modular pool/spa control system
11837418, Oct 26 2012 Lutron Technology Company LLC Battery-powered retrofit remote control device
11867382, Mar 08 2016 KORRUS, INC. Lighting system with lens assembly
11915581, Sep 13 2011 Lutron Technology Company, LLC Visible light communication system and method
11917740, Jul 26 2011 HUNTER INDUSTRIES, INC ; Hunter Industries, Inc. Systems and methods for providing power and data to devices
12060989, Mar 06 2019 HAYWARD INDUSTRIES, INC Underwater light having a replaceable light-emitting diode (LED) module and cord assembly
12062645, Jan 27 2017 KORRUS, INC. Lighting systems with high color rendering index and uniform planar illumination
12068881, Aug 11 2014 RAB Lighting Inc. Wireless lighting control system with independent site operation
12072091, Oct 03 2013 Lutron Technology Company LLC Color mixing optics for LED illumination device
12129990, Mar 08 2016 KORRUS, INC. Lighting system with lens assembly
7238061, Sep 18 2006 Vehicle lighting source adapter
7262813, Aug 01 2003 Alpine Electronics, Inc Video output device and method
7419281, Mar 03 2005 S.C. Johnson & Son, Inc. LED light bulb with active ingredient emission
7550935, Apr 24 2000 SIGNIFY NORTH AMERICA CORPORATION Methods and apparatus for downloading lighting programs
7598683, Jul 31 2007 SACO TECHNOLOGIES INC Control of light intensity using pulses of a fixed duration and frequency
7641364, Jul 02 2003 S C JOHNSON & SON, INC Adapter for light bulbs equipped with volatile active dispenser and light emitting diodes
7652216, Dec 18 2007 Streamlight, Inc Electrical switch, as for controlling a flashlight
7658506, May 12 2006 SIGNIFY NORTH AMERICA CORPORATION Recessed cove lighting apparatus for architectural surfaces
7674003, Apr 20 2006 Streamlight, Inc Flashlight having plural switches and a controller
7683801, May 28 2007 Multicolor visual feedback for portable, non-volatile storage
7781979, Nov 10 2006 SIGNIFY NORTH AMERICA CORPORATION Methods and apparatus for controlling series-connected LEDs
7880100, Dec 18 2007 Streamlight, Inc.; Streamlight, Inc Electrical switch, as for controlling a flashlight
7880637, Jun 11 2007 SEEGRID OPERATING CORPORATION Low-profile signal device and method for providing color-coded signals
7926975, Dec 21 2007 Ilumisys, Inc Light distribution using a light emitting diode assembly
7938562, Oct 24 2008 Ilumisys, Inc Lighting including integral communication apparatus
7946729, Jul 31 2008 Ilumisys, Inc Fluorescent tube replacement having longitudinally oriented LEDs
7961113, Oct 19 2006 SIGNIFY HOLDING B V Networkable LED-based lighting fixtures and methods for powering and controlling same
7972028, Oct 31 2008 Future Electronics Inc. System, method and tool for optimizing generation of high CRI white light, and an optimized combination of light emitting diodes
7976196, Jul 09 2008 Ilumisys, Inc Method of forming LED-based light and resulting LED-based light
8004211, Dec 13 2005 SIGNIFY HOLDING B V LED lighting device
8016470, Oct 05 2007 KAVO DENTAL TECHNOLOGIES, LLC LED-based dental exam lamp with variable chromaticity
8026673, Jan 05 2007 SIGNIFY NORTH AMERICA CORPORATION Methods and apparatus for simulating resistive loads
8070325, Apr 24 2006 Integrated Illumination Systems LED light fixture
8089218, Aug 18 2006 EPISTAR CORPORATION Lighting devices
8102127, Jun 24 2007 PHILIPS LIGHTING HOLDING B V Hybrid gas discharge lamp-LED lighting system
8110760, Apr 20 2006 Streamlight, Inc. Electrical switch having plural switching elements, as for controlling a flashlight
8118447, Dec 20 2007 Ilumisys, Inc LED lighting apparatus with swivel connection
8134303, Jan 05 2007 SIGNIFY NORTH AMERICA CORPORATION Methods and apparatus for simulating resistive loads
8172834, Feb 28 2007 DOHENY EYE INSTITUTE Portable handheld illumination system
8179787, Jan 27 2009 Lutron Technology Company LLC Fault tolerant network utilizing bi-directional point-to-point communications links between nodes
8186852, Jun 24 2009 eLumigen LLC Opto-thermal solution for multi-utility solid state lighting device using conic section geometries
8192057, Jun 24 2009 eLumigen LLC Solid state spot light assembly
8193702, Apr 27 2007 SWITCH BULB COMPANY, INC Method of light dispersion and preferential scattering of certain wavelengths of light-emitting diodes and bulbs constructed therefrom
8203281, Apr 29 2008 DAN J AND DENISE L COSTA 1997 FAMILY TRUST Wide voltage, high efficiency LED driver circuit
8207830, Jan 04 2007 SIGNIFY HOLDING B V Network communication system
8214084, Oct 24 2008 Ilumisys, Inc Integration of LED lighting with building controls
8232745, Apr 14 2008 OSRAM SYLVANIA Inc Modular lighting systems
8243278, May 16 2008 INTEGRATED ILLUMINATION SYSTEMS, INC Non-contact selection and control of lighting devices
8251544, Oct 24 2008 Ilumisys, Inc Lighting including integral communication apparatus
8253349, Sep 21 2007 CHEMTRON RESEARCH LLC System and method for regulation of solid state lighting
8253666, Sep 21 2007 CHEMTRON RESEARCH LLC Regulation of wavelength shift and perceived color of solid state lighting with intensity and temperature variation
8255487, May 16 2008 INTEGRATED ILLUMINATION SYSTEMS, INC Systems and methods for communicating in a lighting network
8256924, Sep 15 2008 Ilumisys, Inc LED-based light having rapidly oscillating LEDs
8258416, Dec 18 2007 Streamlight, Inc.; Streamlight, Inc Electrical switch and flashlight
8264172, May 16 2008 INTEGRATED ILLUMINATION SYSTEMS, INC Cooperative communications with multiple master/slaves in a LED lighting network
8264448, Sep 21 2007 CHEMTRON RESEARCH LLC Regulation of wavelength shift and perceived color of solid state lighting with temperature variation
8277082, Jun 24 2009 eLumigen LLC Solid state light assembly having light redirection elements
8278845, Jul 26 2011 HUNTER INDUSTRIES, INC Systems and methods for providing power and data to lighting devices
8282250, Jun 09 2011 eLumigen LLC Solid state lighting device using heat channels in a housing
8299695, Jun 02 2009 Ilumisys, Inc Screw-in LED bulb comprising a base having outwardly projecting nodes
8299722, Dec 12 2008 PHILIPS LIGHTING HOLDING B V Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
8324817, Oct 24 2008 Ilumisys, Inc Light and light sensor
8330381, May 14 2009 Ilumisys, Inc Electronic circuit for DC conversion of fluorescent lighting ballast
8339069, Apr 14 2008 OSRAM SYLVANIA Inc Power management unit with power metering
8360598, Apr 20 2006 Streamlight, Inc. Flashlight having a switch for programming a controller
8360599, May 23 2008 Ilumisys, Inc Electric shock resistant L.E.D. based light
8362700, Dec 23 2003 Solar powered light assembly to produce light of varying colors
8362710, Jan 21 2009 Ilumisys, Inc Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
8368321, Apr 14 2008 OSRAM SYLVANIA Inc Power management unit with rules-based power consumption management
8368636, Sep 21 2007 CHEMTRON RESEARCH LLC Regulation of wavelength shift and perceived color of solid state lighting with intensity variation
8373362, Apr 14 2008 OSRAM SYLVANIA Inc Methods, systems, and apparatus for commissioning an LED lighting fixture with remote reporting
8382332, Oct 11 2010 BANK OF AMERICA, N A Lighting and ventilating system and method
8415695, Oct 24 2007 SWITCH BULB COMPANY, INC Diffuser for LED light sources
8419218, Jun 24 2009 eLumigen LLC Solid state light assembly having light sources in a ring
8421366, Jun 23 2009 Ilumisys, Inc Illumination device including LEDs and a switching power control system
8421368, Jul 31 2007 SACO TECHNOLOGIES INC Control of light intensity using pulses of a fixed duration and frequency
8436553, Jan 26 2007 INTEGRATED ILLUMINATION SYSTEMS, INC Tri-light
8439528, Oct 03 2007 SWITCH BULB COMPANY, INC Glass LED light bulbs
8441216, Sep 03 2008 BROWNLEE, MICHAEL Power supply system for a building
8444292, Oct 24 2008 Ilumisys, Inc End cap substitute for LED-based tube replacement light
8449137, Jun 24 2009 eLumigen LLC Solid state tube light assembly
8454193, Jul 08 2010 Ilumisys, Inc Independent modules for LED fluorescent light tube replacement
8456092, Sep 05 2008 Lutron Technology Company LLC Broad spectrum light source calibration systems and related methods
8456109, May 14 2012 USAI, LLC Lighting system having a dimming color simulating an incandescent light
8469542, May 18 2004 Collimating and controlling light produced by light emitting diodes
8471496, Sep 05 2008 Lutron Technology Company LLC LED calibration systems and related methods
8485696, Oct 11 2010 BANK OF AMERICA, N A Lighting and ventilating system and method
8521035, Sep 05 2008 Lutron Technology Company LLC Systems and methods for visible light communication
8523394, Oct 29 2010 Ilumisys, Inc Mechanisms for reducing risk of shock during installation of light tube
8531134, Apr 14 2008 OSRAM SYLVANIA Inc LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and time-based tracking of operational modes
8536802, Apr 14 2008 OSRAM SYLVANIA Inc LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, and local state machine
8540401, Mar 26 2010 Ilumisys, Inc LED bulb with internal heat dissipating structures
8541958, Mar 26 2010 Ilumisys, Inc LED light with thermoelectric generator
8543249, Apr 14 2008 OSRAM SYLVANIA Inc Power management unit with modular sensor bus
8547002, May 02 2006 SUPERBULBS, INC Heat removal design for LED bulbs
8552664, Apr 14 2008 OSRAM SYLVANIA Inc Power management unit with ballast interface
8556452, Jan 15 2009 Ilumisys, Inc LED lens
8567982, Nov 17 2006 INTEGRATED ILLUMINATION SYSTEMS, INC Systems and methods of using a lighting system to enhance brand recognition
8569949, May 02 2006 Switch Bulb Company, Inc. Method of light dispersion and preferential scattering of certain wavelengths of light-emitting diodes and bulbs constructed therefrom
8581520, May 14 2012 USAI, LLC Lighting system having a dimming color simulating an incandescent light
8585245, Apr 23 2009 Integrated Illumination Systems, Inc.; INTEGRATED ILLUMINATION SYSTEMS, INC Systems and methods for sealing a lighting fixture
8587217, Aug 24 2007 SIGNIFY HOLDING B V Multi-LED control
8591069, Sep 21 2011 Switch Bulb Company, Inc.; SWITCH BULB COMPANY, INC LED light bulb with controlled color distribution using quantum dots
8593135, Apr 14 2008 OSRAM SYLVANIA Inc Low-cost power measurement circuit
8596813, Jul 12 2010 Ilumisys, Inc Circuit board mount for LED light tube
8604709, Jul 31 2007 GREENVISION GROUP TECHNOLOGIES CORPORATION Methods and systems for controlling electrical power to DC loads
8610376, Apr 14 2008 OSRAM SYLVANIA Inc LED lighting methods, apparatus, and systems including historic sensor data logging
8610377, Apr 14 2008 OSRAM SYLVANIA Inc Methods, apparatus, and systems for prediction of lighting module performance
8653984, Oct 24 2008 Ilumisys, Inc Integration of LED lighting control with emergency notification systems
8662701, Apr 20 2006 Streamlight, Inc Flashlight having a controller providing programmable operating states
8664880, Jan 21 2009 Ilumisys, Inc Ballast/line detection circuit for fluorescent replacement lamps
8674626, Sep 02 2008 Ilumisys, Inc LED lamp failure alerting system
8674913, Sep 05 2008 Lutron Technology Company LLC LED transceiver front end circuitry and related methods
8702257, May 02 2006 SWITCH BULB COMPANY, INC Plastic LED bulb
8704442, May 02 2006 Switch Bulb Company, Inc. Method of light dispersion and preferential scattering of certain wavelengths of light for light-emitting diodes and bulbs constructed therefrom
8704456, Sep 21 2007 CHEMTRON RESEARCH LLC Regulation of wavelength shift and perceived color of solid state lighting with intensity variation
8710770, Jul 26 2011 HUNTER INDUSTRIES, INC Systems and methods for providing power and data to lighting devices
8716945, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
8723424, Dec 30 2010 eLumigen LLC Light assembly having light sources and adjacent light tubes
8723766, Sep 21 2007 CHEMTRON RESEARCH LLC System and apparatus for regulation of wavelength shift and perceived color of solid state lighting with intensity and temperature variation
8727565, Sep 14 2009 ECKER, JAMES L , MR LED lighting devices having improved light diffusion and thermal performance
8729833, Mar 19 2012 OSRAM SYLVANIA Inc Methods, systems, and apparatus for providing variable illumination
8733949, Dec 24 2007 Columbia Insurance Company System for representing colors including an integrating light capsule
8742686, Sep 24 2007 SENTRY CENTERS HOLDINGS, LLC Systems and methods for providing an OEM level networked lighting system
8742695, May 14 2012 USAI, LLC Lighting control system and method
8746923, Dec 05 2011 COOLEDGE LIGHTING, INC Control of luminous intensity distribution from an array of point light sources
8749172, Jul 08 2011 Lutron Technology Company LLC Luminance control for illumination devices
8749177, Sep 21 2007 CHEMTRON RESEARCH LLC Regulation of wavelength shift and perceived color of solid state lighting with temperature variation
8752984, Oct 03 2007 Switch Bulb Company, Inc. Glass LED light bulbs
8754589, Apr 14 2008 OSRAM SYLVANIA Inc Power management unit with temperature protection
8773026, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
8773042, Dec 13 2005 SIGNIFY HOLDING B V LED lighting device
8773336, Sep 05 2008 Lutron Technology Company LLC Illumination devices and related systems and methods
8805550, Apr 14 2008 OSRAM SYLVANIA Inc Power management unit with power source arbitration
8807785, May 23 2008 iLumisys, Inc. Electric shock resistant L.E.D. based light
8823277, Apr 14 2008 OSRAM SYLVANIA Inc Methods, systems, and apparatus for mapping a network of lighting fixtures with light module identification
8836532, Jul 16 2009 Gentex Corporation Notification appliance and method thereof
8840282, Mar 26 2010 iLumisys, Inc. LED bulb with internal heat dissipating structures
8841859, Apr 14 2008 OSRAM SYLVANIA Inc LED lighting methods, apparatus, and systems including rules-based sensor data logging
8853921, May 02 2006 Switch Bulb Company, Inc. Heat removal design for LED bulbs
8866396, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
8866408, Apr 14 2008 OSRAM SYLVANIA Inc Methods, apparatus, and systems for automatic power adjustment based on energy demand information
8870412, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
8870415, Dec 09 2010 Ilumisys, Inc LED fluorescent tube replacement light with reduced shock hazard
8886047, Sep 05 2008 Lutron Technology Company LLC Optical communication device, method and system
8894430, Oct 29 2010 iLumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
8894437, Jul 19 2012 INTEGRATED ILLUMINATION SYSTEMS, INC Systems and methods for connector enabling vertical removal
8901823, Oct 24 2008 Ilumisys, Inc Light and light sensor
8903577, Oct 30 2009 GREENVISION GROUP TECHNOLOGIES CORPORATION Traction system for electrically powered vehicles
8928025, Dec 20 2007 iLumisys, Inc. LED lighting apparatus with swivel connection
8946996, Oct 24 2008 iLumisys, Inc. Light and light sensor
8954170, Apr 14 2008 OSRAM SYLVANIA Inc Power management unit with multi-input arbitration
8967832, Oct 11 2010 Broan-Nutone LLC Lighting and ventilating system and method
8981405, Oct 24 2007 Switch Bulb Company, Inc. Diffuser for LED light sources
9004723, Oct 11 2010 Broan-Nutone LLC Lighting and ventilating system and method
9006990, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9006993, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9013119, Mar 26 2010 iLumisys, Inc. LED light with thermoelectric generator
9014829, Nov 04 2010 OSRAM SYLVANIA Inc Method, apparatus, and system for occupancy sensing
9041305, Sep 21 2007 CHEMTRON RESEARCH LLC Regulation of wavelength shift and perceived color of solid state lighting with intensity variation
9057493, Mar 26 2010 Ilumisys, Inc LED light tube with dual sided light distribution
9066381, Mar 16 2011 INTEGRATED ILLUMINATION SYSTEMS, INC System and method for low level dimming
9072133, Apr 14 2008 OSRAM SYLVANIA Inc Lighting fixtures and methods of commissioning lighting fixtures
9072171, Aug 24 2011 Ilumisys, Inc Circuit board mount for LED light
9084314, Nov 28 2006 HAYWARD INDUSTRIES, INC Programmable underwater lighting system
9089364, May 13 2010 DOHENY EYE INSTITUTE Self contained illuminated infusion cannula systems and methods and devices
9101026, Oct 24 2008 iLumisys, Inc. Integration of LED lighting with building controls
9125254, Mar 23 2008 OSRAM SYLVANIA Inc Lighting fixtures and methods of commissioning lighting fixtures
9133987, Sep 14 2009 James L., Ecker LED lighting devices
9144131, May 14 2012 USAI, LLC Lighting control system and method
9146028, Dec 05 2013 Lutron Technology Company LLC Linear LED illumination device with improved rotational hinge
9155155, Aug 20 2013 Lutron Technology Company LLC Overlapping measurement sequences for interference-resistant compensation in light emitting diode devices
9163794, Jul 06 2012 Ilumisys, Inc Power supply assembly for LED-based light tube
9184518, Mar 02 2012 Ilumisys, Inc Electrical connector header for an LED-based light
9189996, Dec 17 2013 SIGNIFY HOLDING B V Selectable, zone-based control for high intensity LED illumination system
9222626, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9234657, Apr 08 2005 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
9237612, Jan 26 2015 Lutron Technology Company LLC Illumination device and method for determining a target lumens that can be safely produced by an illumination device at a present temperature
9237620, Aug 20 2013 Lutron Technology Company LLC Illumination device and temperature compensation method
9237623, Jan 26 2015 Lutron Technology Company LLC Illumination device and method for determining a maximum lumens that can be safely produced by the illumination device to achieve a target chromaticity
9241392, Mar 19 2012 OSRAM SYLVANIA Inc Methods, systems, and apparatus for providing variable illumination
9247605, Aug 20 2013 Lutron Technology Company LLC Interference-resistant compensation for illumination devices
9249967, Apr 08 2005 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
9267650, Oct 09 2013 Ilumisys, Inc Lens for an LED-based light
9271367, Jul 09 2012 iLumisys, Inc. System and method for controlling operation of an LED-based light
9276766, Sep 05 2008 Lutron Technology Company LLC Display calibration systems and related methods
9285084, Mar 14 2013 iLumisys, Inc.; Ilumisys, Inc Diffusers for LED-based lights
9295112, Sep 05 2008 Lutron Technology Company LLC Illumination devices and related systems and methods
9301359, May 14 2012 USAI, LLC Lighting control system and method
9332598, Aug 20 2013 Lutron Technology Company LLC Interference-resistant compensation for illumination devices having multiple emitter modules
9345097, Aug 20 2013 Lutron Technology Company LLC Interference-resistant compensation for illumination devices using multiple series of measurement intervals
9353939, Oct 24 2008 Ilumisys, Inc Lighting including integral communication apparatus
9360174, Dec 05 2013 Lutron Technology Company LLC Linear LED illumination device with improved color mixing
9360746, Aug 01 2012 Pentair Water Pool and Spa, Inc. Underwater image projection system and method
9379578, Nov 19 2012 INTEGRATED ILLUMINATION SYSTEMS, INC Systems and methods for multi-state power management
9386668, Sep 30 2010 Lutron Technology Company LLC Lighting control system
9392660, Aug 28 2014 Lutron Technology Company LLC LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device
9392663, Jun 25 2014 Lutron Technology Company LLC Illumination device and method for controlling an illumination device over changes in drive current and temperature
9395075, Mar 26 2010 iLumisys, Inc. LED bulb for incandescent bulb replacement with internal heat dissipating structures
9398661, Oct 24 2008 iLumisys, Inc. Light and light sensor
9416923, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9420665, Dec 28 2012 INTEGRATION ILLUMINATION SYSTEMS, INC Systems and methods for continuous adjustment of reference signal to control chip
9423608, Sep 25 2012 PENTAIR WATER POOL AND SPA, INC Multidimensional rotary motion apparatus moving a reflective surface and method of operating same
9435997, Aug 01 2012 Pentair Water Pool and Spa, Inc. Multidimensional rotary motion apparatus moving a reflective surface and method of operating same
9478371, Dec 18 2007 Streamlight, Inc Electrical switch, as for controlling a flashlight
9485813, Jan 26 2015 Lutron Technology Company LLC Illumination device and method for avoiding an over-power or over-current condition in a power converter
9485814, Jan 04 2013 INTEGRATED ILLUMINATION SYSTEMS, INC Systems and methods for a hysteresis based driver using a LED as a voltage reference
9509525, Sep 05 2008 Lutron Technology Company LLC Intelligent illumination device
9510400, May 13 2014 Ilumisys, Inc User input systems for an LED-based light
9510416, Aug 28 2014 Lutron Technology Company LLC LED illumination device and method for accurately controlling the intensity and color point of the illumination device over time
9510426, Nov 03 2011 OSRAM SYLVANIA Inc Methods, systems, and apparatus for intelligent lighting
9521725, Jul 26 2011 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
9538603, Apr 19 2013 Lutron Technology Company LLC Systems and methods for controlling color temperature
9538619, Oct 26 2012 Lutron Technology Company LLC Controllable light source
9557214, Jun 25 2014 Lutron Technology Company LLC Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
9565742, Oct 26 2012 Lutron Technology Company LLC Battery-powered retrofit remote control device
9574717, Jan 22 2014 Ilumisys, Inc LED-based light with addressed LEDs
9578703, Dec 28 2012 Integrated Illumination Systems, Inc. Systems and methods for continuous adjustment of reference signal to control chip
9578724, Aug 20 2013 Lutron Technology Company LLC Illumination device and method for avoiding flicker
9585216, Oct 24 2008 iLumisys, Inc. Integration of LED lighting with building controls
9605867, Oct 11 2010 Broan-Nutone LLC Lighting and ventilating system and method
9609720, Jul 26 2011 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
9633557, Jun 24 2014 Lutron Technology Company LLC Battery-powered retrofit remote control device
9635727, Oct 24 2008 iLumisys, Inc. Light and light sensor
9651219, Aug 20 2014 eLumigen LLC Light bulb assembly having internal redirection element for improved directional light distribution
9651632, Aug 20 2013 Lutron Technology Company LLC Illumination device and temperature calibration method
9668314, Dec 05 2013 Lutron Technology Company LLC Linear LED illumination device with improved color mixing
9668315, Apr 19 2013 Lutron Technology Company LLC Systems and methods for controlling color temperature
9730302, Dec 28 2015 SIGNIFY HOLDING B V System and method for control of an illumination device
9736895, Oct 03 2013 Lutron Technology Company LLC Color mixing optics for LED illumination device
9736903, Jun 25 2014 Lutron Technology Company LLC Illumination device and method for calibrating and controlling an illumination device comprising a phosphor converted LED
9736904, Dec 17 2013 SIGNIFY HOLDING B V Selectable, zone-based control for high intensity LED illumination system
9739428, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9746139, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9752736, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9759392, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9769899, Jun 25 2014 Lutron Technology Company LLC Illumination device and age compensation method
9772098, Apr 08 2005 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
9777893, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9803806, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9807842, Jul 09 2012 iLumisys, Inc. System and method for controlling operation of an LED-based light
9807855, Dec 07 2015 PENTAIR WATER POOL AND SPA, INC Systems and methods for controlling aquatic lighting using power line communication
9813684, Aug 01 2012 Pentair Water Pool and Spa, Inc. Underwater image projection system and method
9832832, Mar 19 2012 OSRAM SYLVANIA Inc Methods, systems, and apparatus for providing variable illumination
9841175, May 04 2012 Savant Technologies, LLC Optics system for solid state lighting apparatus
9841554, Jun 07 2013 Steelcase Inc. Panel light assembly
9860961, Apr 14 2008 OSRAM SYLVANIA Inc Lighting fixtures and methods via a wireless network having a mesh network topology
9883567, Aug 11 2014 RAB Lighting Inc Device indication and commissioning for a lighting control system
9915416, Nov 04 2010 OSRAM SYLVANIA Inc Method, apparatus, and system for occupancy sensing
9924576, Apr 30 2013 Digital Lumens, Inc. Methods, apparatuses, and systems for operating light emitting diodes at low temperature
9951938, Oct 02 2009 Savant Technologies, LLC LED lamp
9967940, May 05 2011 INTEGRATED ILLUMINATION SYSTEMS, INC Systems and methods for active thermal management
9970601, Feb 11 2000 iLumisys, Inc. Light tube and power supply circuit
9974150, Aug 11 2014 RAB Lighting Inc Secure device rejoining for mesh network devices
9983400, Aug 01 2012 Pentair Water Pool and Spa, Inc. Multidimensional rotary motion apparatus moving a reflective surface and method of operating same
9992841, Apr 19 2013 Lutron Technology Company LLC Systems and methods for controlling color temperature
9995444, Oct 17 2011 KORRUS, INC Linear LED light housing
ER3541,
ER6614,
ER7043,
ER8497,
RE48297, Aug 20 2013 Lutron Ketra, LLC Interference-resistant compensation for illumination devices having multiple emitter modules
RE48298, Aug 20 2013 Lutron Ketra, LLC Interference-resistant compensation for illumination devices using multiple series of measurement intervals
RE48452, Aug 28 2014 Lutron Technology Company LLC LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device
RE48812, Jun 24 2009 eLUMIGEN, LLC Light assembly having a control circuit in a base
RE48922, Dec 05 2013 Lutron Technology Company LLC Linear LED illumination device with improved color mixing
RE48955, Aug 20 2013 Lutron Technology Company LLC Interference-resistant compensation for illumination devices having multiple emitter modules
RE48956, Aug 20 2013 Lutron Technology Company LLC Interference-resistant compensation for illumination devices using multiple series of measurement intervals
RE49137, Jan 26 2015 Lutron Technology Company LLC Illumination device and method for avoiding an over-power or over-current condition in a power converter
RE49246, Aug 28 2014 Lutron Technology Company LLC LED illumination device and method for accurately controlling the intensity and color point of the illumination device over time
RE49421, Aug 20 2013 Lutron Technology Company LLC Illumination device and method for avoiding flicker
RE49454, Sep 30 2010 Lutron Technology Company LLC Lighting control system
RE49479, Aug 28 2014 Lutron Technology Company LLC LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device
RE49705, Aug 20 2013 Lutron Technology Company LLC Interference-resistant compensation for illumination devices using multiple series of measurement intervals
RE50018, Aug 20 2013 Lutron Technology Company LLC Interference-resistant compensation for illumination devices having multiple emitter modules
Patent Priority Assignee Title
1603055,
2591680,
2642553,
2644912,
2651743,
2657338,
2673923,
2686866,
2909097,
3037110,
3111057,
3163077,
3205755,
3215022,
3240099,
3241419,
3307443,
3318185,
3540343,
3550497,
3561719,
3586936,
3595991,
3601621,
3643088,
3644785,
3706914,
3740570,
3746918,
3760174,
3787752,
3818216,
3832503,
3845468,
3858086,
3875456,
3909670,
3924120,
3942065, Feb 29 1972 Motorola, Inc. Monolithic, milticolor, light emitting diode display device
3958885, Sep 05 1972 Wild Heerbrugg Aktiengesellschaft Optical surveying apparatus, such as transit, with artificial light scale illuminating system
3974637, Mar 28 1975 Time Computer, Inc. Light emitting diode wristwatch with angular display
4001571, Jul 26 1974 National Service Industries, Inc. Lighting system
4045664, Sep 04 1971 U.S. Philips Corporation Lighting fitting provided with at least two-low-pressure mercury vapor discharge lamps
4054814, Oct 31 1975 AT & T TECHNOLOGIES, INC , Electroluminescent display and method of making
4070568, Dec 09 1976 AG COMMUNICATION SYSTEMS CORPORATION, 2500 W UTOPIA RD , PHOENIX, AZ 85027, A DE CORP Lamp cap for use with indicating light assembly
4074318, Dec 13 1976 Bell Telephone Laboratories, Incorporated LED array imaging system-serial approach
4074319, Dec 13 1976 Bell Telephone Laboratories, Incorporated Light emitting diode array imaging system - parallel approach
4082395, Feb 22 1977 GENLYTE GROUP INCORPORATED, THE A CORP OF DELAWARE Light track device with connector module
4095139, May 18 1977 VARI-LITE, INC , A CORP OF DE Light control system
4096349, Apr 04 1977 GENLYTE GROUP INCORPORATED, THE A CORP OF DELAWARE Flexible connector for track lighting systems
4151547, Sep 07 1977 GE FAUNC AUTOMATION NORTH AMERICA, A CORP OF DE; GENERAL ELECTRIC COMPANY, A CORP OF NY Arrangement for heat transfer between a heat source and a heat sink
4176581, Nov 28 1977 Audio amplitude-responsive lighting display
4241295, Feb 21 1979 Digital lighting control system
4267559, Sep 24 1979 Bell Telephone Laboratories, Incorporated Low thermal impedance light-emitting diode package
4271408, Oct 17 1978 Stanley Electric Co., Ltd. Colored-light emitting display
4272689, Sep 22 1978 Hubbell Incorporated Flexible wiring system and components therefor
4273999, Jan 18 1980 The United States of America as represented by the Secretary of the Navy Equi-visibility lighting control system
4298869, Jun 29 1978 Zaidan Hojin Handotai Kenkyu Shinkokai Light-emitting diode display
4317071, Nov 02 1978 Computerized illumination system
4329625, Jul 24 1978 Zaidan Hojin Handotai Kenkyu Shinkokai Light-responsive light-emitting diode display
4339788, Aug 15 1980 EVEREADY BATTERY COMPANY, INC , A CORP OF DE Lighting device with dynamic bulb position
4342906, Jun 04 1973 Pulse width modulated feedback arrangement for illumination control
4342947, Oct 14 1977 Light indicating system having light emitting diodes and power reduction circuit
4367464, May 29 1979 Mitsubishi Denki Kabushiki Kaisha Large scale display panel apparatus
4388567, Feb 25 1980 Toshiba Electric Equipment Corporation Remote lighting-control apparatus
4388589, Jun 23 1980 Color-emitting DC level indicator
4392187, Mar 02 1981 VARI-LITE, INC , A CORP OF DE Computer controlled lighting system having automatically variable position, color, intensity and beam divergence
4394600, Jan 29 1981 Litton Systems, Inc. Light emitting diode matrix
4420711, Jun 15 1981 ABBOTT LABORATORIES, A CORP OF IL Circuit arrangement for different color light emission
4455562, Aug 14 1981 Pitney Bowes Inc. Control of a light emitting diode array
4470044, May 15 1981 Momentary visual image apparatus
4500796, May 13 1983 CITIBANK, N A , AS ADMINISTRATIVE AND COLLATERAL AGENT System and method of electrically interconnecting multiple lighting fixtures
4597033, May 17 1983 H KOCH & SONS CO Flexible elongated lighting system
4622881, Dec 06 1984 FRED HAYMAN BEVERLY HILLS, INC Visual display system with triangular cells
4625152, Jul 18 1983 Matsushita Electric Works, Ltd. Tricolor fluorescent lamp
4635052, Jul 27 1982 Toshiba Denzai Kabushiki Kaisha Large size image display apparatus
4647217, Jan 08 1986 Variable color digital timepiece
4654629, Jul 02 1985 Westinghouse Air Brake Company Vehicle marker light
4654754, Nov 02 1982 FAIRCHILD WESTON SYSTEMS, INC Thermal link
4656398, Dec 02 1985 Lighting assembly
4668895, Mar 18 1985 Omega Electronics S.A. Driving arrangement for a varying color light emitting element
4675575, Jul 13 1984 E & G ENTERPRISES SCOTTSDALE ARIZONA A PARTNERSHIP OF ARIZONA Light-emitting diode assemblies and systems therefore
4677533, Sep 05 1984 Lighting fixture
4682079, Oct 04 1984 Hallmark Cards, Inc. Light string ornament circuitry
4686425, Apr 28 1986 Multicolor display device
4687340, Jan 08 1986 Electronic timepiece with transducers
4688154, Oct 19 1983 Track lighting system with plug-in adapters
4688869, Dec 12 1985 Modular electrical wiring track arrangement
4695769, Nov 27 1981 WIDE- LITE INTERNATIONAL CORPORATION Logarithmic-to-linear photocontrol apparatus for a lighting system
4701669, May 14 1984 Honeywell Inc. Compensated light sensor system
4705406, Jan 08 1986 Electronic timepiece with physical transducer
4707141, Jan 08 1986 Variable color analog timepiece
4727289, Jul 22 1985 STANLEY ELECTRIC CO , LTD , A CORP OF JAPAN LED lamp
4729076, Nov 15 1984 JAPAN TRAFFIC MANAGEMENT TECHNOLOGY ASSOCIATION, A CORP OF JAPAN; KOITO INDUSTRIES, LTD , A CORP OF JAPAN; STANLEY ELECTRIC CO , LTD , A CORP OF JAPAN UNDIVIDED ONE-THIRD INTEREST Signal light unit having heat dissipating function
4740882, Jun 27 1986 Environmental Computer Systems, Inc. Slave processor for controlling environments
4753148, Dec 01 1986 Sound emphasizer
4768086, Mar 20 1985 Color display apparatus for displaying a multi-color visual pattern derived from two audio signals
4771274, Jan 08 1986 Variable color digital display device
4780621, Jun 30 1987 Frank J., Bartleucci; Anthony, Ciuffo Ornamental lighting system
4794383, Jan 15 1986 TEXAS DIGITAL SYSTEMS, INC Variable color digital multimeter
4818072, Jul 22 1986 Raychem Corporation Method for remotely detecting an electric field using a liquid crystal device
4824269, Mar 14 1986 Variable color display typewriter
4833542, Jul 15 1986 Mitsubishi Denki Kabushiki Kaisha Large screen display apparatus having modular structure
4837565, Aug 13 1987 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Tri-state function indicator
4843627, Aug 05 1986 STEBBINS, RUSSELL T Circuit and method for providing a light energy response to an event in real time
4845481, Jan 08 1986 TEXAS DIGITAL SYSTEMS, INC Continuously variable color display device
4845745, Nov 17 1986 Display telephone with transducer
4857801, Apr 18 1983 Litton Systems, Inc Dense LED matrix for high resolution full color video
4863223, Apr 18 1986 ZUMTOBEL LICHT GMBH & CO Workstation arrangement for laboratories, production facilities and the like
4870325, Dec 18 1985 , Ornamental light display apparatus
4874320, May 24 1988 Lucifer Lighting Company Flexible light rail
4887074, Jan 20 1988 AMERATECH, INC , 2708 WRONDELL WAY RENO, NV 89502, A NV CORP Light-emitting diode display system
4922154, Jan 11 1988 Chromatic lighting display
4929866, Nov 17 1987 Mitsubishi Cable Industries, Ltd. Light emitting diode lamp
4934852, Mar 14 1986 Variable color display typewriter
4935665, Dec 24 1987 Mitsubishi Cable Industries Ltd. Light emitting diode lamp
4957291, Mar 11 1988 Venture Technologies, Inc. Electronic puzzle
4962687, Sep 06 1988 ZODIAC POOL SYSTEMS, INC Variable color lighting system
4963798, Feb 21 1989 Synthesized lighting device
4965561, Jan 08 1986 TEXAS DIGITAL SYSTEMS, INC Continuously variable color optical device
4973835, Nov 30 1989 Actively-illuminated accessory
4974119, Sep 14 1988 The Charles Stark Draper Laboratories, Inc. Conforming heat sink assembly
4979081, Dec 07 1989 ARDEE LIGHTING U S A , INC , A CORP OF FL Electrical supply system
4980806, Jul 17 1986 VARI-LITE, INC , A CORP OF DE Computer controlled lighting system with distributed processing
4992704, Apr 17 1989 Basic Electronics, Inc. Variable color light emitting diode
5003227, Feb 08 1984 Power distribution for lighting systems
5008595, Dec 18 1985 Laser Link, Inc.; William K., Wells, Jr. Ornamental light display apparatus
5008788, Apr 02 1990 Electronic Research Associates, Inc. Multi-color illumination apparatus
5010459, Jul 17 1986 GENLYTE THOMAS GROUP LLC, A DELAWARE LIMITED LIABILITY COMPANY Console/lamp unit coordination and communication in lighting systems
5027262, May 24 1988 Lucifer Lighting Company Flexible light rail
5034807, Mar 10 1986 RESPONSE REWARD SYSTEMS, L C System for evaluation and rewarding of responses and predictions
5036248, Mar 31 1989 Ledstar Inc. Light emitting diode clusters for display signs
5038255, Sep 09 1989 Stanley Electric Co., Ltd.; FURUKAWA ELECTRIC CO., LTD. Vehicle lamp
5072216, Dec 07 1989 ELECTRONIC THEATRE CONTROLS, INC Remote controlled track lighting system
5078039, Sep 06 1988 ELECTRONIC THEATRE CONTROLS, INC Microprocessor controlled lamp flashing system with cooldown protection
5083063, Aug 16 1989 De La Rue Systems Limited Radiation generator control apparatus
5089748, Jun 13 1990 Delphi Technologies Inc Photo-feedback drive system
5107408, Mar 31 1988 Thomas & Betts International, Inc Lighting system
5122733, Jan 15 1986 Variable color digital multimeter
5126634, Sep 25 1990 Beacon Light Products, Inc.; BEACON LIGHT PRODUCTS, INC Lamp bulb with integrated bulb control circuitry and method of manufacture
5128595, Oct 23 1990 Minami International Corporation Fader for miniature lights
5130909, Apr 18 1991 H KOCH & SONS CO Emergency lighting strip
5134387, Nov 06 1989 Texas Digital Systems, Inc. Multicolor display system
5136483, Sep 08 1989 Illuminating device
5142199, Nov 29 1990 Novitas, Incorporated Energy efficient infrared light switch and method of making same
5143442, May 07 1991 Tamapack Co., Ltd. Portable projection device
5154641, Apr 30 1991 Lucifer Lighting Company Adapter to energize a light rail
5161879, Apr 10 1991 Flashlight for covert applications
5164715, May 25 1989 Stanley Electric Co. Ltd. Color display device
5165778, Sep 05 1989 UNIVERSAL FIBER OPTICS, INC , A CORP OF CA Aquarium lighting system
5173839, Dec 10 1990 Grumman Aerospace Corporation Heat-dissipating method and device for led display
5184114, Nov 04 1982 General Electric Company Solid state color display system and light emitting diode pixels therefor
5194854, Jan 15 1986 Multicolor logic device
5209560, Jul 17 1986 Vari-Lite, Inc. Computer controlled lighting system with intelligent data distribution network
5225765, Aug 15 1984 Inductorless controlled transition and other light dimmers
5226723, May 11 1992 Light emitting diode display
5235347, Sep 07 1990 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD Light emitting diode print head
5235416, Jul 30 1991 UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES System and method for preforming simultaneous bilateral measurements on a subject in motion
5254910, Apr 03 1992 Color-differential type light display device
5256948, Apr 03 1992 Tri-color flasher for strings of dual polarity light emitting diodes
5262658, Dec 24 1991 XEROX CORPORATION A CORPORATION OF NEW YORK Thermally stabilized light emitting diode structure
5268828, Apr 19 1991 Takiron Co., Ltd. Illuminant display device
5278542, Nov 06 1989 Texas Digital Systems, Inc. Multicolor display system
5282121, Apr 30 1991 Vari-Lite, Inc. High intensity lighting projectors
5283517, Jan 15 1986 TEXAS DIGITAL SYSTEMS, INC Variable color digital multimeter
5287352, Jul 17 1992 SIEMENS ENTERPRISE COMMUNICATIONS, INC Method and apparatus to reduce register overhead in a serial digital interface
5294865, Sep 18 1992 GTE Products Corporation Lamp with integrated electronic module
5298871, Dec 25 1991 Renesas Electronics Corporation Pulse width modulation signal generating circuit
5301090, Mar 16 1992 AHARON ZEEV HED Luminaire
5307295, Jan 14 1991 VARI-LITE, INC Creating and controlling lighting designs
5329431, Jul 17 1986 Vari-Lite, Inc. Computer controlled lighting system with modular control resources
5350977, Jun 15 1992 Matsushita Electric Works, Ltd. Luminaire of variable color temperature for obtaining a blend color light of a desired color temperature from different emission-color light sources
5352957, Dec 21 1989 Zumtobel Aktiengessellschaft Appliance control system with programmable receivers
5357170, Feb 12 1993 Lutron Technology Company LLC Lighting control system with priority override
5365084, Feb 20 1991 PRESSCO TECHNOLOGY INC Video inspection system employing multiple spectrum LED illumination
5371618, Jan 05 1993 Brite View Technologies Color liquid crystal display employing dual cells driven with an EXCLUSIVE OR relationship
5374876, Dec 19 1991 HORIBATA, HIROSHI Portable multi-color signal light with selectively switchable LED and incandescent illumination
5375043, Jul 27 1992 Inoue Denki Co., Inc. Lighting unit
5381074, Jun 01 1993 Chrysler Corporation Self calibrating lighting control system
5386351, Feb 15 1994 Blue Tiger Corporation Convenience flashlight
5388357, Apr 08 1993 Computer Power Inc. Kit using led units for retrofitting illuminated signs
5400228, Jul 12 1994 Lite Vision Corporation Full color illuminating unit
5402702, Jul 14 1992 Jalco Co., Ltd. Trigger circuit unit for operating light emitting members such as leds or motors for use in personal ornament or toy in synchronization with music
5404282, Sep 17 1993 Lumileds LLC Multiple light emitting diode module
5406176, Jan 12 1994 SUGDEN, WALTER H Computer controlled stage lighting system
5410328, Mar 28 1994 Trans-Lux Corporation Replaceable intelligent pixel module for large-scale LED displays
5412284, Mar 25 1992 Two photocell controlled lighting system employing filters for the two photocells that control on/off operation for the system
5412552, Mar 25 1993 Lighting lamp bar
5418697, Sep 19 1994 Signal lamp assembly for bicycles
5420482, Feb 11 1993 Controlled lighting system
5421059, May 24 1993 Traverse support rod
5432408, Apr 09 1991 Ken, Hayashibara Filling composition for incandescent lamp, and incandescent lamp containing the same and its use
5436535, Dec 29 1992 Multi-color display unit
5436853, Jul 24 1991 NEC Electronics Corporation Remote control signal processing circuit for a microcomputer
5450301, Oct 05 1993 Trans-Lux Corporation Large scale display using leds
5461188, Mar 07 1994 DRAGO, MARCELLO S Synthesized music, sound and light system
5463280, Mar 03 1994 ABL IP Holding, LLC Light emitting diode retrofit lamp
5465144, May 31 1990 GVBB HOLDINGS S A R L Remote tracking system for moving picture cameras and method
5471052, Oct 25 1993 CAMP, INC Color sensor system using a secondary light receiver
5475300, Jan 15 1986 TEXAS DIGITAL SYSTEMS, INC Variable color digital multimeter
5475368, Jul 01 1994 DAC Technologies of America Inc. Key chain alarm and light
5489827, May 06 1994 Philips Electronics North America Corporation Light controller with occupancy sensor
5491402, Jul 20 1993 Echelon Corporation Apparatus and method for providing AC isolation while supplying DC power
5493183, Nov 14 1994 WORLD PROPERTIES, INC Open loop brightness control for EL lamp
5504395, Mar 08 1993 BEACON LIGHT PRODUCTS, INC Lamp bulb having integrated RFI suppression and method of restricting RFI to selected level
5519496, Jan 07 1994 APPLIED INTELLIGENT SYSTEMS, INC Illumination system and method for generating an image of an object
5521708, Nov 25 1992 Canon Kabushiki Kaisha Correlated color temperature detector
5528474, Jul 18 1994 GROTE INDUSTRIES, INC Led array vehicle lamp
5532848, Nov 25 1992 Canon Kabushiki Kaisha Method and apparatus for adjusting correlated color temperature
5541817, Jun 20 1995 Key with a built-in light
5545950, Nov 05 1993 Adapter, fitting into an incandescent socket, for receiving a compact flourescent lamp
5559681, May 13 1994 CNC Automation, Inc.; CNC AUTOMATION, INC Flexible, self-adhesive, modular lighting system
5561346, Aug 10 1994 LED lamp construction
5575459, Apr 27 1995 Uniglo Canada Inc. Light emitting diode lamp
5575554, May 13 1991 Multipurpose optical display for articulating surfaces
5577832, Jan 26 1995 Multilayer led assembly
5583349, Nov 02 1995 UNIVERSAL DISPLAY CORPORATION Full color light emitting diode display
5583350, Nov 02 1995 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Full color light emitting diode display assembly
5592051, Nov 13 1991 IWS INTERNATIONAL INC Intelligent lamp or intelligent contact terminal for a lamp
5607227, Aug 27 1993 SANYO ELECTRIC CO , LTD ; TOTTORI SANYO ELECTRIC CO , LTD Linear light source
5614788, Jan 31 1995 BENEDICT, CHARLES E Automated ambient condition responsive daytime running light system
5621282, Apr 10 1995 Programmable distributively controlled lighting system
5621603, Jul 26 1995 United Technologies Corporation Pulse width modulated solenoid driver controller
5633629, Feb 08 1995 Relume Technologies, Inc Traffic information system using light emitting diodes
5634711, Sep 13 1993 EXCELITAS CANADA, INC Portable light emitting apparatus with a semiconductor emitter array
5636303, Dec 18 1995 World Precision Instruments, Inc. Filterless chromatically variable light source
5640061, Nov 05 1993 VARI-LITE, INC Modular lamp power supply system
5642129, Mar 23 1994 Kopin Corporation Color sequential display panels
5642933, Dec 29 1993 Patlite Corporation Light source structure for signal indication lamp
5653529, Sep 14 1995 Illuminated safety device
5655830, Dec 01 1993 Hubbell Incorporated Lighting device
5656935, Jan 15 1986 TEXAS DIGITAL SYSTEMS, INC Variable color display system
5668537, Nov 12 1993 LEVITON MANUFACTURING CO , INC Theatrical lighting control network
5671996, Dec 30 1994 Donnelly Corporation Vehicle instrumentation/console lighting
5673059, Mar 23 1994 Kopin Corporation Head-mounted display apparatus with color sequential illumination
5684309, Jul 11 1996 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
5688042, Nov 17 1995 Thomas & Betts International LLC LED lamp
5701058, Jan 04 1996 Honeywell Inc.; Honeywell INC Method of semiautomatic ambient light sensor calibration in an automatic control system
5712650, Aug 18 1995 CAPITALSOURCE FINANCE LLC Large incandescent live image display system
5721471, Mar 10 1995 U.S. Philips Corporation Lighting system for controlling the color temperature of artificial light under the influence of the daylight level
5726535, Apr 10 1996 Technical Consumer Products, Inc LED retrolift lamp for exit signs
5730013, Apr 02 1997 Key structure with illumination function
5734590, Oct 16 1992 Recording medium and device for generating sounds and/or pictures
5749646, Jan 17 1992 Special effect lamps
5751118, Jul 07 1995 Universal Lighting Technologies, Inc Universal input dimmer interface
5752766, Mar 11 1997 BELLIVEAU, RICHARD S Multi-color focusable LED stage light
5769527, Jul 17 1986 VARI-LITE, INC Computer controlled lighting system with distributed control resources
5782555, Jun 27 1996 Relume Technologies, Inc Heat dissipating L.E.D. traffic light
5784006, Jul 05 1996 Relume Technologies, Inc Annunciator system with mobile receivers
5790329, Sep 27 1995 Color changing device for illumination purposes
5803579, Jun 13 1996 Gentex Corporation Illuminator assembly incorporating light emitting diodes
5808592, Apr 28 1994 Hewlett-Packard Company Integrated light-emitting diode lamp and method of producing the same
5808689, Apr 20 1994 Shoot The Moon Products, Inc. Method and apparatus for nesting secondary signals within a television signal
5812105, Jun 10 1996 Cree, Inc Led dot matrix drive method and apparatus
5821695, Aug 06 1996 APPLETON ELECTRIC LLC Encapsulated explosion-proof pilot light
5828178, Dec 09 1996 Koninklijke Philips Electronics N V High intensity discharge lamp color
5831686, Nov 25 1992 Canon Kabushiki Kaisha Method and apparatus for adjusting correlated color temperature
5836676, May 07 1996 KOHA CO , LTD Light emitting display apparatus
5838247, Apr 01 1997 Solid state light system
5848837, Aug 28 1995 StanTech Integrally formed linear light strip with light emitting diodes
5850126, Apr 11 1997 The Cooper Union For The Advancement Of Science and Art Screw-in led lamp
5851063, Oct 28 1996 General Electric Company Light-emitting diode white light source
5852658, Jun 12 1997 MICRO TECHNOLOGY SERVICES, INC Remote meter reading system
5854542, Aug 30 1996 IGT, a Nevada Corporation Flashing and diming fluorescent lamps for a gaming device
5857767, Sep 23 1996 Relume Technologies, Inc Thermal management system for L.E.D. arrays
5859508, Feb 25 1991 Pixtech, Inc. Electronic fluorescent display system with simplified multiple electrode structure and its processing
5893631, Nov 03 1997 SOG Specialty Knives and Tools, LLC Compact flashlight
5894196, May 03 1996 PHANTOM PRODUCTS INC Angled elliptical axial lighting device
5895986, Apr 30 1997 ABL IP Holding LLC Photoelectric load control system and method
5896010, Sep 29 1995 Visteon Global Technologies, Inc System for controlling lighting in an illuminating indicating device
5902166, Jan 18 1996 Configurable color selection circuit for choosing colors of multi-colored LEDs in toys
5907742, Mar 09 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Lamp control scheme for rapid warmup of fluorescent lamp in office equipment
5912653, Sep 15 1994 SQUIB INTERNATIONAL, INC Garment with programmable video display unit
5924784, Aug 21 1995 Microprocessor based simulated electronic flame
5927845, Aug 28 1995 StanTech Integrally formed linear light strip with light emitting diodes
5938321, Dec 30 1994 Donnelly Corporation Vehicle instrumentation/console lighting
5946209, Feb 02 1995 Hubbell Incorporated Motion sensing system with adaptive timing for controlling lighting fixtures
5949581, Aug 12 1997 Daktronics, Inc. Display system
5952680, Oct 11 1994 International Business Machines Corporation Monolithic array of light emitting diodes for the generation of light at multiple wavelengths and its use for multicolor display applications
5959316, Sep 01 1998 Lumileds LLC Multiple encapsulation of phosphor-LED devices
5959547, Feb 09 1995 Baker Hughes Incorporated Well control systems employing downhole network
5961201, Feb 14 1996 Artemide S.p.A. Polychrome lighting device having primary colors and white-light sources with microprocessor adjustment means and remote control
5963185, Jul 07 1986 TEXAS DIGITAL SYSTEMS, INC Display device with variable color background area
5974553, Jul 31 1996 MEDIAFLOW INC Method for powering elements connected in a two-wire bus network transmitting both power supply and data information pulses
5980064, Nov 02 1998 Illumination cell for a votive light
5982969, Apr 24 1997 Bridgestone Corporation Optical transmission tube, making method, and linear illuminant system
5998925, Jul 29 1996 Nichia Corporation Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material
6008783, May 28 1996 Kawai Musical Instruments Manufacturing Co. Ltd. Keyboard instrument with the display device employing fingering guide
6016038, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Multicolored LED lighting method and apparatus
6018237, May 23 1988 TEXAS DIGITAL SYSTEMS, INC Variable color display system
6020825, Nov 12 1993 LEVITON MANUFACTURING CO , INC Theatrical lighting control network
6023255, Aug 08 1997 Presenting images to an observer
6025550, Feb 05 1998 Casio Computer Co., Ltd. Musical performance training data transmitters and receivers, and storage mediums which contain a musical performance training program
6031343, Mar 11 1998 Brunswick Bowling & Billiards Corporation Bowling center lighting system
6056420, Aug 13 1998 OXYGEN ENTERPRISES LTD Illuminator
6066861, May 20 1998 Osram GmbH Wavelength-converting casting composition and its use
6068383, Mar 02 1998 H E WILLIAMS, INC Phosphorous fluorescent light assembly excited by light emitting diodes
6069597, Aug 29 1997 Canon Kabushiki Kaisha Circuit and method for controlling the brightness of an FED device
6072280, Aug 28 1998 Fiber Optic Designs, Inc. Led light string employing series-parallel block coupling
6092915, Jan 30 1998 The Boeing Company; Boeing Company, the Decorative lighting laminate
6095661, Mar 19 1998 Lemaire Illumination Technologies, LLC Method and apparatus for an L.E.D. flashlight
6097352, Mar 23 1994 Kopin Corporation Color sequential display panels
6127783, Dec 18 1998 Philips Electronics North America Corp.; Philips Electronics North America Corp LED luminaire with electronically adjusted color balance
6132072, Jun 13 1996 Gentex Corporation Led assembly
6135604, Oct 25 1999 Decorative water lamp
6139172, Dec 30 1994 Donnelly Corporation Interior mirror assembly for a vehicle incorporating a solid-state light source
6149283, Dec 09 1998 Rensselaer Polytechnic Institute (RPI) LED lamp with reflector and multicolor adjuster
6150771, Jun 11 1997 MANUFACTURERS & TRADERS TRUST COMPANY Circuit for interfacing between a conventional traffic signal conflict monitor and light emitting diodes replacing a conventional incandescent bulb in the signal
6150774, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Multicolored LED lighting method and apparatus
6166496, Dec 17 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Lighting entertainment system
6175201, Feb 26 1999 MAF Technologies Corp. Addressable light dimmer and addressing system
6175342, Apr 15 1996 ADDCO LLC Enhanced modular message board
6181126, Jan 15 1986 Texas Digital Systems, Inc. Dual variable color measuring system
6183086, Mar 12 1999 Bausch & Lomb Surgical, Inc.; BAUSCH & LOMB SURGICAL, INC Variable multiple color LED illumination system
6183104, Feb 18 1998 Decorative lighting system
6184628, Nov 30 1999 ZODIAC POOL CARE, INC Multicolor led lamp bulb for underwater pool lights
6188181, Aug 25 1998 Lutron Technology Company LLC Lighting control system for different load types
6190018, Jan 06 1999 Armament Systems and Procedures Miniature LED flashlight
6196471, Nov 30 1999 ZODIAC POOL SYSTEMS LLC Apparatus for creating a multi-colored illuminated waterfall or water fountain
6211626, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Illumination components
6215409, May 17 1996 Sotek Australia Pty Ltd Display apparatus
6245259, Sep 20 1996 Osram GmbH Wavelength-converting casting composition and light-emitting semiconductor component
6250774, Jan 23 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Luminaire
6252358, Aug 14 1998 Wireless lighting control
6273338, Sep 22 1998 Low cost color-programmable focusing ring light
6273589, Jan 29 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Solid state illumination source utilizing dichroic reflectors
6277301, Sep 20 1996 Osram GmbH Method of producing a wavelength-converting casting composition
6283612, Mar 13 2000 Light emitting diode light strip
6292901, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Power/data protocol
6299329, Feb 23 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Illumination source for a scanner having a plurality of solid state lamps and a related method
6299338, Nov 30 1998 General Electric Company Decorative lighting apparatus with light source and luminescent material
6310590, Jan 15 1986 Texas Digital Systems, Inc. Method for continuously controlling color of display device
6323832, Sep 27 1986 TOHOKU UNIVERSITY Color display device
6329764, Apr 19 2000 LIGHTHOUSE TECHNOLOGIES, LTD Method and apparatus to improve the color rendering of a solid state light source
6330111, Jun 13 2000 GREENBERG, EDWARD; PERRY, MICHAEL Lighting elements including light emitting diodes, microprism sheet, reflector, and diffusing agent
6331915, Jun 13 2000 GREENBERG, EDWARD; PERRY, MICHAEL Lighting element including light emitting diodes, microprism sheet, reflector, and diffusing agent
6335548, Mar 15 1999 EVERLIGHT ELECTRONICS CO , LTD Semiconductor radiation emitter package
6340868, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Illumination components
6357893, Mar 15 2000 ELECTRONIC THEATRE CONTROLS, INC Lighting devices using a plurality of light sources
6361198, Jul 31 1998 Interactive light display
6379022, Apr 25 2000 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Auxiliary illuminating device having adjustable color temperature
6386720, Aug 01 1995 Canon Kabushiki Kaisha Light source device and optical apparatus
6441943, Apr 02 1997 CRAWFORD, CHRISTOPHER M Indicators and illuminators using a semiconductor radiation emitter package
6445139, Dec 18 1998 PHILIPS LIGHTING HOLDING B V Led luminaire with electrically adjusted color balance
6448550, Apr 27 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and apparatus for measuring spectral content of LED light source and control thereof
6459919, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Precision illumination methods and systems
6474837, Nov 20 2000 ELECTRONIC THEATRE CONTROLS, INC Lighting device with beam altering mechanism incorporating a plurality of light souces
6495964, Dec 18 1998 PHILIPS LIGHTING HOLDING B V LED luminaire with electrically adjusted color balance using photodetector
6498355, Oct 09 2001 Lumileds LLC High flux LED array
6504301, Sep 03 1999 Lumileds LLC Non-incandescent lightbulb package using light emitting diodes
6507159, Mar 29 2001 SIGNIFY HOLDING B V Controlling method and system for RGB based LED luminary
6528954, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Smart light bulb
6548967, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Universal lighting network methods and systems
6550952, Apr 28 2000 ILight Technologies, Inc. Optical waveguide illumination and signage device and method for making same
6551282, Feb 23 1998 Covidien LP Universal seal for use with endoscopic cannula
6568834, Mar 04 1999 GOEKEN GROUP CORP Omnidirectional lighting device
6576930, Jun 26 1996 Osram AG Light-radiating semiconductor component with a luminescence conversion element
6577080, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Lighting entertainment system
6577287, Jan 15 1986 Texas Digital Systems, Inc. Dual variable color display device
6592238, Jan 31 2001 LUMINII PURCHASER, LLC Illumination device for simulation of neon lighting
6592780, Sep 20 1996 Osram GmbH Wavelength-converting casting composition and white light-emitting semiconductor component
6608453, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Methods and apparatus for controlling devices in a networked lighting system
6618031, Feb 26 1999 EMERSON RADIO CORP Method and apparatus for independent control of brightness and color balance in display and illumination systems
6624597, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Systems and methods for providing illumination in machine vision systems
6630801, Oct 22 2001 KONINKLIJKE PHILIPS N V Method and apparatus for sensing the color point of an RGB LED white luminary using photodiodes
6676284, Sep 04 1998 PHILIPS LIGHTING HOLDING B V Apparatus and method for providing a linear effect
6717376, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Automotive information systems
6720745, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Data delivery track
6726350, May 29 2002 Herold Design Group, LLC Simulated neon-light tube
6744223, Oct 30 2002 ALLY BANK, AS COLLATERAL AGENT; ATLANTIC PARK STRATEGIC CAPITAL FUND, L P , AS COLLATERAL AGENT Multicolor lamp system
6774584, Aug 26 1997 PHILIPS LIGHTING NORTH AMERICA CORPORATION Methods and apparatus for sensor responsive illumination of liquids
6787999, Oct 03 2002 Savant Technologies, LLC LED-based modular lamp
6812500, Jun 26 1996 Osram AG Light-radiating semiconductor component with a luminescence conversion element
20010033488,
20020038157,
20020044066,
20020047569,
20020047624,
20020048169,
20020057061,
20020070688,
20020074559,
20020078221,
20020101197,
20020130627,
20020145394,
20020145869,
20020152045,
20020153851,
20020158583,
20020163316,
20020171365,
20020171377,
20020171378,
20020176259,
20020195975,
20030011538,
20030028260,
20030057884,
20030057886,
20030057887,
20030057890,
20030076281,
20030100837,
20030107887,
20030133292,
20030137258,
20030189412,
20030198061,
20030222587,
20040032226,
20040036006,
20040052076,
20040066652,
20040090787,
20040105261,
20040130909,
20040218387,
20050122064,
20050122292,
20050122718,
20050128743,
AU62679,
CA2134848,
CA2178432,
DE1950581,
DE205307,
DE2243245,
DE2315709,
DE3438154,
DE3526590,
DE19525987,
DE19602891,
DE19624087,
DE19638667,
DE19651140,
DE19829270,
DE20007134,
DE205307,
DE29607270,
DE29620583,
DE3805998,
DE3837313,
DE3916875,
DE3917101,
DE3925767,
DE4041338,
DE4130576,
DE4419006,
DE8902905,
DE9414688,
DE9414689,
EP29474,
EP482680,
EP495305,
EP534710,
EP567280,
EP734082,
EP752632,
EP823812,
EP935234,
EP942631,
EP971421,
EP1020352,
EP1113215,
EP1162400,
EP340479,
EP507366,
EP629508,
EP876085,
FR2586844,
FR2640791,
FR8817359,
GB2045098,
GB2131589,
GB2135536,
GB2176042,
GB2210720,
GB238327,
GB238997,
GB271212,
GB296884,
GB296885,
GB325218,
GB368113,
GB376744,
GB411868,
GB412217,
GB438884,
GB441461,
GB480126,
GB481167,
GB640693,
GB646642,
GB661083,
GB685209,
GB686746,
GB712050,
GB718535,
GB942630,
JP10071951,
JP10242513,
JP10302514,
JP1031240,
JP11039917,
JP11087770,
JP11087774,
JP11133891,
JP11202330,
JP1993073807,
JP2001153690,
JP2247688,
JP2269939,
JP3045166,
JP4015685,
JP439235,
JP6043830,
JP6334223,
JP7020711,
JP7275200,
JP7335942,
JP739120,
JP8106264,
JP8248901,
JP8293391,
JP9007774,
JP9139289,
JP9152840,
JP9167861,
JP9269746,
KR1019910009812,
RE36030, Jan 08 1993 Intermatic Incorporated Electric distributing system
WO9611499,
WO33390,
WO173818,
WO201921,
WO2061328,
WO3053108,
WO8100637,
WO8101602,
WO8605409,
WO8905086,
WO9418809,
WO9513498,
WO9641098,
WO9748138,
WO9906759,
WO9930537,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 03 1998MUELLER, GEORGE G COLOR KINETICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0142170660 pdf
Nov 03 1998LYS, IHORCOLOR KINETICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0142170660 pdf
Nov 04 2003Color Kinetics Incorporated(assignment on the face of the patent)
Sep 26 2007Color Kinetics IncorporatedPhilips Solid-State Lighting Solutions, IncCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0211720250 pdf
Dec 20 2013Philips Solid-State Lighting Solutions, IncPHILIPS LIGHTING NORTH AMERICA CORPORATIONCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0394280310 pdf
Date Maintenance Fee Events
Mar 25 2008ASPN: Payor Number Assigned.
Jul 06 2010M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 02 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 27 2018REM: Maintenance Fee Reminder Mailed.
Feb 11 2019EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 09 20104 years fee payment window open
Jul 09 20106 months grace period start (w surcharge)
Jan 09 2011patent expiry (for year 4)
Jan 09 20132 years to revive unintentionally abandoned end. (for year 4)
Jan 09 20148 years fee payment window open
Jul 09 20146 months grace period start (w surcharge)
Jan 09 2015patent expiry (for year 8)
Jan 09 20172 years to revive unintentionally abandoned end. (for year 8)
Jan 09 201812 years fee payment window open
Jul 09 20186 months grace period start (w surcharge)
Jan 09 2019patent expiry (for year 12)
Jan 09 20212 years to revive unintentionally abandoned end. (for year 12)