A simplified, low-cost actuator used in conjunction with a lumbar support device designed to significantly decrease manufacturing costs and assembly time. The present invention produces similar movement as the more expensive actuators but does so with a considerably smaller number of parts. The actuator consists merely of four pieces—a handle, a spring, a plunger, and a mounting bracket. The symmetry of design of this actuator allows it to be installed more easily in any orientation and on either side of the seat. Furthermore, the actuator may be adapted for use with a tension cable or a drive rod. The simplicity, low-cost, and ease of use associated with this actuator makes it an attractive alternative to other actuators disclosed in the prior art. Finally, this actuator allows adjustable lumbar support to be offered in a cost effective manner in lower tier seating.
|
1. A low cost lever actuator comprising:
a handle having a shaft and an attachment piece,
a plunger located within said shaft having a first end and a second end, said first end containing a push button and said second end containing a set of teeth;
a spring in communication with said plunger;
a mounting bracket having a gear set; and
an adjustable lumbar support operably attached to the handle;
whereby said spring exerts force upon said plunger such that said set of teeth communicate with said gear set of said mounting bracket thus preventing movement of said handle;
wherein movement of the handle adjusts the lumbar support.
28. A lumbar support device for a seat comprising:
a support surface that translates between a first, non-supporting position and a second supporting position;
a drive rod being operatively engaged with said support surface;
a handle having a shaft and an attachment piece being engaged with said drive rod;
a plunger located within said shaft having a first end and a second end, said first end containing a push button and said second end containing a set of teeth;
a spring in communication with said plunger; and
a mounting bracket having a gear set;
whereby said spring exerts force upon said plunger such that said set of teeth communicate with said gear set of said mounting bracket thus preventing movement of said handle.
17. A lumbar support device for a seat comprising:
a support surface that translates between a first, non-supporting position and a second supporting position;
a tension cable comprising a wire disposed to slide axially through a sleeve, said wire having a first end and a second end and said sleeve having a first end and a second end and said first end of said wire and said first end of said sleeve being operatively engaged with said support surface;
a handle having a shaft and an attachment piece connected to a portion of said tension cable;
a plunger located within said shaft having a first end and a second end, said first end containing a push button and said second end containing a set of teeth;
a spring in communication with said plunger; and
a mounting bracket having a gear set;
whereby said spring exerts force upon said plunger such that said set of teeth communicate with said gear set of said mounting bracket thus preventing movement of said handle.
7. The actuator of
11. The actuator of
13. The actuator of
15. The actuator of
16. The actuator of
18. The lumbar support device of
21. The lumbar support device of
23. The lumbar support device of
25. The lumbar support device of
27. The lumbar support device of
29. The lumbar support device of
32. The lumbar support device of
34. The lumbar support device of
36. The lumbar support device of
38. The lumbar support device of
|
None.
Not Applicable.
Not Applicable.
1. Field of the Invention
This invention relates generally to actuators and, more particularly, to actuators used in connection with lumbar support systems. The invention is generally targeted for use in seats manufactured for the airline and furniture industries but can be used in all types of seating. The lever actuator disclosed herein is designed to provide a simple inexpensive alternative to the actuators normally used in lumbar support systems.
2. Related Art
It is well known in the art to use an actuator to provide movement in a lumbar support device located within a seat frame. Normally, the lumbar support devices are offered in the higher end, more expensive costing seats. For example, seats manufactured for use in automobiles often contain lumbar support systems. However, lower tier seating such as those used in airplanes often do not possess the lumbar support feature because the seats cannot be manufactured in an economical manner. The extra cost associated with adding lumbar support to a seat is in part due to the manufacturing and assembly costs of the actuator used to move the lumbar device. Types of actuators range from complex electric motors to simple turn wheels. Normally, the actuators used in these types of systems are composed of as many as 25 different parts. Such a configuration causes significant labor costs in assembling the actuator as well as extra costs relating to the manufacture of each component. As such, more economically priced seats often fail to offer the lumbar support devices that expensive seats may contain. There is a need in the art for a simple seat actuator that is inexpensive to manufacture and is simple to assemble so that lumbar support may be offered in more economically priced seats.
Also known in the art is a type of actuator that works in a ratcheting type fashion. These actuators employ the use of technology often seen in car braking systems. An example is the actuator disclosed in reference FR2765531. However, these types of actuators are normally complex, employing the use of many different parts. The use of many parts makes the actuator more susceptible to breakdown, especially when used in situations such as an airplane where the seat is subject to significant forces on takeoff and landing. Furthermore, with the ratcheting actuators, the seat occupant lacks the desired feel for the amount of support that will be provided with each pull of the handle. There is a need in the art for a less complex actuator that provides the feel that seat occupants desire.
It is in view of the above problems that the present invention was developed. The invention is an actuator consisting of only four different pieces. As such, the costs of manufacturing and assembling the lever actuator are significantly less than other options offered in the prior art. The low cost of this actuator allows the lumbar support option to be offered in less expensive types of seating.
There are also advantages of this invention that relate to the actual operation of the lumbar support device. Normally, the actuator is connected to the lumbar support device through the use of a tension cable. The tension cable that is often used in this type of arrangement is a Bowden cable. A Bowden cable consists of a wire with wire ends on each side. The wire slides axially through a wire covering, sometimes referred to as a sleeve or conduit. In order to provide tension, the wire end is normally attached to a moving part while the sleeve is attached to a stationary unit. The moving part extends the wire away from the sleeve, thus creating a corresponding movement of the other wire end relative to the other sleeve end. The movement is used to actuate the lumbar support device. Instead of using a Bowden cable, some actuators are designed to operate in connection with a drive rod. In such instances, the actuator is connected directly to the drive rod such that movement of the actuator is transferred to the drive rod which in turn causes movement within the lumbar system. Often, a piece of the actuator is rotated thus causing the drive rod to rotate in a similar type fashion.
An advantage of this invention is that it can be adapted for use with either a Bowden cable or a drive rod. Such flexibility allows this actuator to be used in a variety of types of lumbar support systems. Furthermore, because of the symmetry of this invention, it can be used on both the right and left sides of the seat. This not only eliminates the need to purchase side specific actuators, it also allows for decreased assembly time and greater flexibility in the mounting placement and configuration within the seat.
A further advantage that this invention possesses over ratcheting type actuators is that it provides superior feel to the seat occupant. As seen in many ratcheting actuators, the user must pull the handle several times to achieve the maximum amount of support offered by the lumbar system. Each time the handle is pulled, however, the user does not know how close it is to maximum support. As such, the user is not aware of the amount of support that will be provided with each pull of the handle. In this invention, however, the handle stays in the position in which it is locked. As such, it gives the seat occupant greater feel for the amount of support that will be received with the movement of the handle and clearly indicates to the user the maximum level of support that will be provided by the lumbar system. In addition, the present invention is simpler than ratcheting type actuators. By employing a fewer number of parts, the chances of breakdown are dramatically decreased.
The invention comprises of only four pieces—a handle, a spring, a mounting bracket, and a plunger. The handle contains a shaft. The plunger is seated within the shaft and runs the length of that shaft. The plunger contains a set of teeth at one end for engaging a gear set located within a mounting bracket. A spring is attached to the plunger such that the spring pushes the set of teeth into the gears. When this occurs, the handle is locked and cannot be rotated to other positions. At the other end of the plunger is a push button. When pressure is applied to the push button, the plunger slides through the shaft and compresses the spring causing the teeth to disengage from the gear set. With the push button pressed, the handle is free to rotate in a clockwise or counterclockwise manner. Once the push button is released, the spring forces the teeth back into the gear set thus locking the handle and preventing its further movement.
The handle is engaged with the mounting bracket such that it will rotate around the bracket in a circular manner. The handle may be rotated in either direction to achieve varying degrees and positions of support. In this invention, rotation of the handle, in either direction, causes movement within the lumbar support device. Such movement is transferred to different parts of the system such that a greater or lesser amount of support is provided to the seat occupant relative to the direction the handle is moved.
As stated earlier, in this invention the handle can be attached to either a Bowden cable or a drive rod. In either type of connection, when the handle is rotated, the movement is transferred to the cable or the shaft thus moving other support components within the lumbar system. In one embodiment of this invention, the handle is connected directly to a drive rod. The drive rod runs horizontally across the seat back and is connected to the seat frame such that the rod can still rotate as the handle is moved. The rod has springs attached to it in such a manner that when the handle is moved in one direction, the springs push on the lower portion of the seat providing additional lower back support, and when the handle is moved in the opposite direction, the springs push on the upper portion of the seat providing additional upper back support. When the handle is moved to a middle position, the springs provide additional middle back support.
Further features and advantages of the present invention, as well as the structure and operation of various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and together with the description, serve to explain the principles of the invention. In the drawings:
Referring to the accompanying drawings in which like reference numbers indicate like elements, there are shown different components of the present invention. The new lever actuator apparatus is indicated generally at 10.
The teeth 24 located on the platform 34 are designed to engage a gear set 18. This engagement keeps the handle 10′ in a fixed position and prevents it from rotating unintentionally. On the opposite end of the plunger 12 is a push button 36. When assembled, this push button 36 extends through the top of the shaft 12 and extrudes out from the top of the handle 10′. The push button 36 provides the surface area in which force may be applied to move the plunger 12 within the shaft 30. Somewhere between the push button 36 and the platform 34 is a groove 22. This embodiment features two grooves 22, each running parallel with the shaft 30 along two sides of the plunger 12. Access to the grooves 22 may be obtained through two slots 20 located at various lengths along the groove 22. In this embodiment, the slots 20 are located at the top of the groove 22 relative to the push button 36 and somewhere near the midpoint of the groove 22. The position of these slots 20 are ideally placed when the pegs 32 located within the shaft 30 may gain easy access to the groove 22 but that future exit from the groove 22 will not easily be obtained once the spring 14 is engaged with the platform 34. The groove 22 is designed in such a manner than when the pegs 32 are inserted into the groove 22, the plunger 12 is only able to slide through the shaft 30 a distance equal to the length of the groove 22. Furthermore, the groove 22, in combination with the pegs 32, prevents the plunger 12 from completely exiting the shaft 30 once the force exerted by the spring 14 is applied.
In order to complete assembly, the handle 10′ is placed onto the mounting bracket 16. Pressure is applied to the push button 36 forcing the plunger 12 to slide down the shaft 30 and compress the spring 14. The handle 10′ is then placed on the mounting bracket 16 such that when the push button 36 is released, the spring 14 will push the plunger 12 up the shaft 30 and the teeth 24 will become engaged with a portion of the gear set 18.
Operation of this actuator is also very simple. When the seat occupant desires a change in the amount of lumber support being provided, the occupant merely needs to press down upon the push button 36. Such force moves the plunger down the shaft 30 compressing the spring 14. At this point, the teeth 24 have been disengaged from the gear set 18. The occupant then may rotate the handle 10′ in a clockwise or counterclockwise direction to adjust the level of support being provided. Once the desired support is being received, the occupant merely releases the push button 36 and the spring 14 forces the plunger 12 up the shaft 30 and the teeth 24 become engaged with a different portion of the gear set 18. When the teeth 24 become engaged with the gear set 18, the handle 10′ is prevented from moving and thus the support being received will be maintained.
In view of the foregoing, it will be seen that the several advantages of the new lever actuator apparatus are achieved and attained.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
As various modifications could be made in the constructions and methods herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. For example, even though this actuator is primarily intended to be used in conjunction with lumbar support devices for seats used in the airline and furniture industries, it can be used to provide actuation in any type system employing the use of a tension cable or a drive rod. Similarly, as discussed above, any type of spring or other compression device can be used in the present invention, such as a shock. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
Patent | Priority | Assignee | Title |
7575278, | Oct 19 2007 | Toyota Boshoku Kabushiki Kaisha; Toyota Boshoku America, Inc | Seat backs for vehicular seats |
8579375, | Dec 01 2010 | Safran Seats | Aircraft seat |
9386858, | Mar 19 2012 | Structure-improved multifunction chassis |
Patent | Priority | Assignee | Title |
4222474, | Feb 28 1977 | Outboard Marine Corporation | Single lever control with detent mechanism for holding lever vertically |
4819501, | Apr 12 1988 | Technology Holding Company | Self-adjusting brake mechanism |
5010780, | May 15 1990 | Plastic Industries, Inc. | Device for actuating a remotely positioned spring-biased latch |
5522639, | Jan 05 1994 | UV ART INC | Infant car seat having dual sunvisors |
5779316, | May 19 1995 | Matsushita Electric Works, Ltd. | Device for extending and retracting a footrest of a chair |
6223622, | Jan 21 2000 | L&P Property Management Company | Push button cable actuator |
6334651, | Feb 01 2000 | Schukra Geratebau GmbH | Lumbar support adjusting mechanism |
6715828, | Oct 07 2002 | Infant carrier | |
6957596, | Oct 25 2002 | L&P Property Management Company | Apparatus and method for braking ergonomic support actuator |
6971719, | Mar 21 2003 | L & P Property Management Company | Clutch actuator surface apparatus and method |
DE4038345, | |||
EP552904, | |||
EP1300306, | |||
FR2765531, | |||
GB158063, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 05 2004 | MCMILLEN, ROBERT | L& P PROPERTY MANAGMENT COMPANY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015416 | /0435 | |
May 28 2004 | L&P Property Management Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 28 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 29 2010 | ASPN: Payor Number Assigned. |
Jul 29 2010 | RMPN: Payer Number De-assigned. |
Jun 25 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 10 2018 | REM: Maintenance Fee Reminder Mailed. |
Feb 25 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 23 2010 | 4 years fee payment window open |
Jul 23 2010 | 6 months grace period start (w surcharge) |
Jan 23 2011 | patent expiry (for year 4) |
Jan 23 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 23 2014 | 8 years fee payment window open |
Jul 23 2014 | 6 months grace period start (w surcharge) |
Jan 23 2015 | patent expiry (for year 8) |
Jan 23 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 23 2018 | 12 years fee payment window open |
Jul 23 2018 | 6 months grace period start (w surcharge) |
Jan 23 2019 | patent expiry (for year 12) |
Jan 23 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |