An apparatus and method are provided for treating wastewater with alkanes such as butane. An oxygen-containing gas may also be introduced into the wastewater. Butane, because of its relatively high solubility, rapidly dissolves in the wastewater, thereby significantly increasing the heterogeneous microbial community and heterotrophic microbial population. This enhanced microbial population may rapidly absorb and mineralize materials in the wastestream. After an initial growth phase, the organic matter available in the wastewater effluent may be rapidly decreased, thereby reducing the amount of BOD, TDS, sludge and other pollutants. In addition, the use of butane reduces noxious odors associated with municipal wastewater sludges and other types of wastewater.
|
15. A method of reducing odor of municipal wastewater comprising introducing butane to the municipal wastewater.
1. A method of treating material contained in municipal sewage system wastewater, the method comprising:
stimulating growth of aerobic butane-utilizing bacteria; and
allowing the butane-utilizing bacteria to degrade at least a portion of the municipal sewage system wastewater material.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 09/924,791 filed Aug. 8, 2001 now U.S. Pat. No. 6,669,846, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/291,165 filed May 15, 2001. This application is also a continuation-in-part of U.S. application Ser. No. 09/729,039 filed Dec. 4, 2000, now U.S. Pat. No. 6,488,850 issued Dec. 3, 2002, which is a continuation-in-part of U.S. application Ser. No. 09/275,320 filed Mar. 24, 1999, now U.S. Pat. No. 6,245,235 issued Jun. 12, 2001, which is a continuation-in-part of U.S. application Ser. No. 08/767,750 filed Dec. 17, 1996, now U.S. Pat. No. 5,888,396 issued Mar. 30, 1999. The Ser. No. 09/729,039 application also claims the benefit of U.S. Provisional Application Ser. No. 60/234,482 filed Sep. 22, 2000. All of the foregoing applications and patents are incorporated herein by reference.
The present invention relates to the treatment of wastewater, and more particularly relates to the use of alkanes to aerobically and/or anaerobically treat municipal, agricultural and industrial wastewater.
Liquid wastes are produced by most human activities including domestic sewage, agricultural processes and industrial operations. For example, according to the U.S. Department of Commerce, industrial water users discharge approximately 285 billion gallons of wastewater daily.
Some types of conventional wastewater treatment processes are microbiologically mediated. Municipal, agricultural and industrial wastewater is often treated aerobically, thereby converting pollutants into environmentally acceptable analogues. The addition of micro-bubbles of oxygen has been demonstrated to be an effective enhancement of the aerobic treatment of wastewater to lower biological oxygen demand (BOD), total dissolved solids (TDS) and total organic carbon (TOC).
Anaerobic wastewater treatment methods have also been used. For example, the addition of hydrogen has been found to enhance anaerobic processes, and to reduce unsaturated organic liquids and sludges. Anaerobic digestion is one of the oldest processes used for the stabilization of sludges. It involves the decomposition of organic matter and inorganic matter in the absence of molecular oxygen. During conventional anaerobic digestion, the organic matter in mixtures of primary settled and biological sludges is converted biologically, under anaerobic conditions, to produce methane (CH4) and carbon dioxide (CO2). During conventional anaerobic digestion, a consortium of organisms converts organic sludges and wastes. One group hydrolyzes organic polymers and lipids. A second group of anaerobic bacteria ferments the breakdown products to simple organic acids. A third group of microorganisms converts the hydrogen and acetic acid to methane gas and carbon dioxide.
Gas-liquid mixing systems are used in various processes and methods employed in the wastewater industries. Many types of mechanical devices and mixers have been developed to improve wastewater treatment by enhancing gas-liquid mixing. By enhancing gas-liquid mixing, wastewater aerobic treatment processes are improved through increased oxygen (aerobic) and hydrogen (anaerobic) dissolution and residence time.
U.S. Pat. Nos. 5,916,491 and 5,925,290, which are incorporated herein by reference, disclose apparatus and methods for mixing gas and liquid through vortex or venturi devices. The mixers are particularly suited for mixing oxygen-containing gases into industrial and municipal wastewater. Other types of gas-liquid mixers are also disclosed in U.S. Pat. Nos. 3,969,446, 4,328,175, 4,454,077, Re. 32,562, 4,645,603, 4,695,378, 4,956,080, 5,061,406, 5,073,309, 5,085,809, 5,314,076 and 5,494,576, which are incorporated herein by reference.
The bioremediation of various pollutants such as chlorinated solvents and other types of pollutants using butane-utilizing bacteria is disclosed in U.S. Pat. Nos. 5,888,396, 6,051,130, 6,110,372, 6,156,203, 6,210,579 and 6,245,235 which are incorporated herein by reference.
In accordance with the present invention, alkanes, e.g., methane, ethane, propane and butane, can be used to effectively degrade pollutants and other materials typically found in wastewater such as chemical, industrial and municipal effluents. In a preferred embodiment, butane, having the highest solubility of the alkanes, can be used to control BOD, TOC and TDS, as well as pollutants typically found in wastewater through enhanced growth of aerobic and/or anaerobic bacteria, and possibly other microorganisms that oxidize or reduce dissolved organic matter and sludge effluents, thereby significantly decreasing the BOD of a wastestream.
Alkanes, preferably butane, may be used under aerobic and/or anaerobic conditions to enhance wastewater treatment processes during primary, secondary or tertiary treatment. Butane is highly soluble and ideally suited to serve as a microbial growth substrate, thereby significantly increasing the heterogeneous microbial community and total heterotrophic microbial population found in wastewater. This enhanced microbial population may rapidly absorb and mineralize the dissolved organic nutrients in the wastestream. To accelerate the dissolved organic nutrient reductions, the butane may be pulsed in the wastestream to create feeding frenzy/starvation cycles. After the initial growth phase, the organic matter available in the wastewater effluent may be rapidly decreased thereby reducing the BOD, TOC and TDS.
An aspect of the present invention is to provide a method of treating wastewater comprising introducing a butane substrate into the wastewater.
Another aspect of the present invention is to provide a method of treating material contained in wastewater. The method comprises stimulating growth of butane-utilizing bacteria, and allowing the butane-utilizing bacteria to degrade at least a portion of the material.
A further aspect of the present invention is to provide a method of treating municipal wastewater comprising introducing a butane substrate into the wastewater.
Another aspect of the present invention is to provide a method of treating material contained in municipal wastewater comprising stimulating growth of butane-utilizing bacteria, and allowing the butane-utilizing bacteria to degrade at least a portion of the municipal wastewater material.
A further aspect of the present invention is to provide a method of reducing odor of municipal wastewater comprising introducing butane to the municipal wastewater.
Another aspect of the present invention is to provide an apparatus for treating wastewater comprising means for introducing a butane substrate into the wastewater.
A further aspect of the invention is to provide an apparatus for treating wastewater comprising a wastewater containment vessel, a source of an alkane, and at least one alkane injector in flow communication with the wastewater containment vessel.
These and other aspects of the present invention will be more apparent from the following description.
In accordance with the present invention, aerobic and/or anaerobic digestion with alkane-utilizing bacteria is used to treat wastewater materials, such as organic sludges produced from various treatment processes. In accordance with a preferred embodiment of the present invention, butane, which has relatively high solubility, rapidly dissolves in wastewater, thereby significantly increasing heterogeneous microbial communities and heterotrophic microbial populations. Butane is a low molecular weight organic compound ideally suited to serve as a microbial food substrate under aerobic and/or anaerobic conditions. Butane is non-toxic and may be added, for example, as an amendment in a primary settling tank, aeration tank or secondary settling tank.
In accordance with an embodiment of the present invention, a butane substrate may be added to the wastewater to be treated. A preferred embodiment of the present invention relates to the treatment of wastewater BOD, TDS and sludge. For example, a butane substrate may be injected into the wastewater in a large treatment vessel equipped with oxygen injectors and turbulent mixing devices. In one embodiment of the present invention, the wastewater comprises municipal wastewater, e.g., wastewater from municipal sewage systems that is treated in municipal wastewater treatment plants. The butane substrate may be provided in any desired form, such as a liquid or gas injected into the wastewater, or within a capsule that dissolves in the wastewater.
As used herein, the term “butane substrate” includes liquids and gases in which butane is present in sufficient amounts to stimulate growth of butane-utilizing bacteria. Butane is preferably the most prevalent compound of the butane substrate on a weight percent basis, and typically comprises at least about 10 weight percent of the butane substrate. The other constituents of the butane substrate may include any suitable compounds, including other alkanes such as methane, ethane and propane. Inert gases may be added to the butane substrate, e.g., as a pusher gas to facilitate delivery of the butane substrate to the treatment zone. The butane substrate preferably comprises at least about 50 weight percent butane. More preferably, the butane substrate comprises at least about 90 weight percent butane. In a particular embodiment, the butane substrate comprises at least about 99 weight percent n-butane. The butane may contain straight (n-butane) and/or branched chain compounds.
Oxygen may be introduced into the wastewater during at least a portion of the treatment time. As used herein, the term “oxygen-containing gas” means gases which comprise oxygen, including pure oxygen as well as mixtures of oxygen with other gases. For example, the oxygen-containing gas may comprise air, pure oxygen, or oxygen blended with inert gases such as helium, argon, nitrogen, carbon monoxide or the like.
Although the use of a butane substrate is primarily described herein, it is to be understood that other alkanes, i.e., methane, ethane and/or propane, may be used in addition to, or in place of, butane. For example, natural gas may be used as a food source. Furthermore, alternative food sources may be used in addition to, or in place of, the alkanes. Examples of alternate food sources include agars, simple and complex sugars, carbohydrates, carbon sources, milk products, egg albumin, egg products, blood serums, urea, urea broth, beet molasses, glucose, xylose and glucose, xylose, mannose, lactate, mannitol, yeast extract, sorbitol, wheat bran, straw, molasses, cereals, corn, potato starch, corn cob, fish meal, grain, gelatin, corn steep liquor, corn meal, nutrient gelatin, rice bran, casein hydrolysate, ethanol, agricultural residues, peat moss hydrolysate, lactose, sugar-cane syrup, synthetic ethanol, gasoline, petroleum distillates, aliphatic and aromatic hydrocarbons, non-petroleum compounds, fructose, fatty acids, proteins, cellulose, engineered biological fuel components, nitrates/nitrites/ammonia, maltose, sucrose, starch, acetate, glycerol, soluble starch, amino acids, casamino acids, meat extracts, organic acids, barley, barley malt, blood meal, cane (black strap) molasses, cerelose, CFS concentrate, corn gluten meal, cotton seed meal, dried distillers' solubles, edamine, enzose, fermamin, fish solubles, fish meal, linseed meal, meat and bone meal, NZ-Amine B, oat flour, peanut meal and hulls, pharmamedia, rice flour, soybean meal, wheat flour, whey powder, brewers' yeast, yeast hydrolysate, yeast tortula, arabinose, fumarate, pyruvate, succinate, phosphate, galactose, glycol, crotonate, glutamate, arginine, ribose, methanol, propanol, fuel oils, all volatile petroleum hydrocarbons (VPH) and all extractable petroleum hydrocarbons (EPH) including the C5–C8 aliphatic range, C9–C12 aliphatic range, C9–C10 aromatic range, C11–C22 aromatic range, C9–C18 aliphatic range, C19–C36 aliphatic range, C36 and higher aliphatic range, benzene, toluene, ethylbenzene, xylenes, naphthalene, polynuclear (1, 2, 3 rings and higher) hydrocarbons (PAHs), butyrate, butylaldehyde, butanol, 1-butanol, 2-butanol, pentane, nonane, styrene, octane, n-octane, organic compounds, alcohols, hexadecanol, ethylene glycol, microbial metabolites, carboxylic acids, acids, such as formic, acetic, propionic, oxalic, acrylic, methacrylic, mineral spirits, mineral oils, petroleum jellies, aldehydes, mushroom extracts, mushrooms, aliphatic amines, aromatic amines, ethers, aliphatic and aromatic esters, glycol ethers, ketones, grain dust, phenols, cheese whey, gas oils, cellulose-pulping, carbon dioxide, gas and oil, carob bean extract, waste starch, fermentation products, endogenous oxidized cell tissue, high molecular mass compounds, cell protoplasm, dead microbial cells, wood, wood chips, sawdust, coal and coal dust.
In accordance with a preferred embodiment, butane availability results in the selection of robust and diverse microbial populations. These enhanced microbial populations may rapidly absorb and mineralize the dissolved organic nutrients in the wastestream. After this initial growth phase, the organic matter available in the wastewater effluent will be rapidly decreased thereby reducing the BOD, TDS and sludge components.
Typically, during aerobic digestion, in a process known as endogenous respiration, as an available food substrate is depleted, the microorganisms begin to consume their own protoplasm to obtain energy for cell maintenance reactions as shown by the following equation:
##STR00001##
For example, if activated or trickling filter sludge is mixed with primary sludge and the combination is to be aerobically digested, there will be both direct oxidation of the organic matter in the primary sludge and endogenous oxidation of the cell tissue as the readily available organic matter is depleted. One consequence of butane availability in a wastestream, e.g., by cycling or pulsing, is to accelerate oxidation of the organic matter by reducing endogenous respiration. Another benefit of butane availability is the direct result of the increase in cell densities and the microbiological diversity resulting under butane tension. This increased microbiological community will further enhance organic matter digestion.
The butane aerobic digesters may be used, for example, to treat waste-activated or trickling-filter sludge, mixtures of waste-activated or trickling-filter sludge and primary sludge, and/or waste sludge from activated-sludge treatment plants designed without primary settling.
In addition to dissolved solids removal, the butane/oxygen process may be used to accelerate sludge decomposition and reduction. High oxygen concentrations may be maintained for microbial proliferation and to reduce bulking of the sewage sludge. For example, by retrofitting existing conventional wastewater treatment tanks, a butane aerobic digester may be added into the process flow during any stage of the overall treatment process. Settled and dissolved biomass may be continuously recycled to maximize the rate of aerobic digestion. Since many wastewater facilities include aeration tanks equipped with mixers and air and/or oxygen injection diffusers, the system retrofit may simply include the addition of butane injectors such as ports and/or diffusers. Likewise, conventional anaerobic digesters may be converted to butane anaerobic digesters through the addition of butane injectors.
In accordance with an embodiment of the present invention, alkane-utilizing bacteria may be used to anaerobically treat wastewater materials. For example, butane may serve as an electron donor to degrade recalcitrant compounds under anaerobic conditions through reductive dechlorination processes. Under anaerobic conditions, butane availability may increase enzyme-mediated biotransformations, such that higher-molecular-mass compounds are converted into compounds suitable for use as a source of energy and cell carbon. Butane may thus serve as an electron donor to degrade recalcitrant compounds under anaerobic conditions.
In addition to the embodiments shown in
The butane injection processes may be used to treat BOD, TOC, ammonia, nitrates, nitrites, phosphorus, total organic carbon, organic and mineral settleable and nonsettleable suspended solids, organic and mineral colloidal and dissolved filterable solids and sludge. For example, the butane/air process will treat sludge and solids contaminated with nitrogen-based aromatics (explosives), PCBs, pesticides, chlorinated aliphatic and aromatic compounds, aliphatic and aromatic hydrocarbons, and PAHs, esters, ethers, aldehydes, amines, dioxin-and related compounds, herbicides, ketones, phenols, sulfur-containing organics and alcohols, ethylene dibromide (EDB), chlorophenolic compounds (chlorophenols, chloroguiacols, and chlorocatechols, pulp mill effluent, low-level radioactive wastes, chlorate (pulp bleaching), cyanide, arsenic, chromium, copper, iron, lead, and other metals.
Some of the pollutants which may be degraded by the present system and method include chlorinated aliphatics, chlorinated aromatics and non-chlorinated aromatics and aliphatics, with chlorinated aliphatic hydrocarbons being of particular interest. Specific hydrocarbon pollutants include trichloroethene (TCE), trichloroethane (TCA) (e.g., 1,1,2-trichloroethane and 1,1,1-trichloroethane), methylene chloride, 1,1-dichloroethane, chloroform, 1,2-dichloropropane, dibromochloromethane, 2-chloroethylvinyl ether, tetrachloroethene (PCE), chlorobenzene, 1,2-dichloroethane, bromodichloromethane, trans-1,3-dichloropropene, cis-1,3-dichloropropene, bromoform, chloromethane, bromomethane, vinyl chloride, chloroethane, 1,1-dichloroethene, trans-1,2-dichloroethene, methyl tertiary butyl ether (MTBE), polychlorinated biphenyl (PCB), dichlorobenzenes, cis-1,2-dichloroethene, dibromomethane, 1,4-dichlorobutane, 1,2,3-trichloropropane, bromochloromethane, 2,2-dichloropropane, 1,2-dibromoethane, 1,3-dichloropropane, bromobenzene, chlorotoluenes, trichlorobenzenes, trimethylbenzenes, trans-1,4-dichloro-2-butene and butylbenzenes. Additional pollutants include petroleum compounds such as crude oil, refined oil, Nos. 2, 4 and 6 fuel oils, gasoline, benzene, toluene, ethylbenzene and xylene (BTEX), and creosote.
Facultative anacrobes and microaerophilic bacteria are capable of surviving at low levels of oxygen. They do not require strict anaerobic conditions such as the obligate anaerobes. Acidophilic, alkaliphilic, anaerobe, anoxygenic, autotrophic, chemolithotrophic, chemoorganotroph, chemotroph, halophilic, methanogenic, neutrophilic, phototroph, saprophytic, thermoacidophilic, and thermophilic bacteria may be used.
Wastewater treatment processes that may be used in accordance with the present invention include the use of butane-utilizing microorganisms which may be found naturally in wastewater. Bacteria may include the following Groups (in addition to fungi, algae, protozoa, rotifers and all other microbial populations found in municipal, agricultural and industrial wastewaters.)
Degradation of complex organic pollutants in the butane digester preferably requires the interaction of microbial populations (consortia). Butane or alkane-utilizing bacteria may degrade pollutants aerobically (or anaerobically) through direct metabolism, sequential metabolism, reductive metabolism, dehalogenation, or cometabolism.
The requirement for a controlled environment and biological community may dictate the design of treatment facilities and the kinetics of biological growth. Typically, during conventional wastewater treatment, bacterial growth can be expressed as the variation of the mass of the microorganisms with time. Four phases have been used to describe bacterial growth: the lag phase; the log-growth phase; the declining growth phase; and the endogneous phase.
The lag phase represents the time required for bacteria to acclimate to their nutritional environment. Butane availability may shorten the lag phase by acclimating (and stabilizing) the microbial populations in their environment. For example, by stabilizing the microbial populations during pulsed cycles of butane and air (or oxygen), the entire microbial community may be better adapted for purification processes.
In the log-growth phase, there is excess food surrounding the organisms, and the rate of metabolism and growth is a function of the ability of the bacterial populations to process the substrate. Because of its solubility, pulsed cycles of butane may adapt the microbial populations to better utilize the excess of available carbon substrates (of varying availabilities) in the wastewater by acclimating (and stabilizing) the microbial populations in the apparently nutrient-rich environment. This in turn will increase the microbial communities to process an increased number of available substrates. Butane may be pulsed to create feeding frenzy/starvation cycles. During the starvation cycle, the increased microbial populations (a larger percentage of the population containing butane-utilizing bacteria) will be forced to consume and mineralize the remaining wastewater constituents, such as organic substrates possessing varying microbial availabilities at biological rates that would exceed conventional treatment processes.
In the declining growth phase, the rate of increase of bacterial mass decreases because of limitations in the food supply. Butane availability will reverse the effects of limitations in the food supply thereby increasing the rate of bacterial mass. During conventional wastewater treatment, the established microbial populations consume the most readily available carbon sources. As the readily available sources diminish, the more recalcitrant carbon sources remain in the wastewater mix. This in turn causes a decrease in the bacterial mass. Butane pulsing offsets the effects of carbon source availability by reinforcing and strengthening the adapted microbial populations. The adapted populations attack the remaining carbon sources during the starvation cycles with renewed vigor.
In the endogenous phase, microorganisms are forced to metabolize their own protoplasm without replacement because the concentration of available food is at a minimum. Butane availability will reverse the effects of the endogenous phase. With butane pulses, the endogenous phase period will be drastically reduced and may occur (if at all) during the starvation cycles (of short duration).
The following examples are intended to illustrate various aspects of the present invention and are not intended to limit the disclosure or claims of the invention.
Return activated-sludge (RAS) was collected from a municipal wastewater treatment plant located in Massachusetts. The RAS was drawn from the return line of a settling tank (after treatment in an aeration tank) in an activated-sludge process municipal wastewater treatment plant. RAS consists of the mixture of old and new aerobic bacterial cells, which have settled out in the settling tank over a period of time. The activated-sludge was introduced into a bioreactor vessel comprising aeration diffusers, a constant speed electric mixer with propeller, an air-supply pump, and vent line, as illustrated in
The reactor contained approximately five gallons of organic waste, which consisted of water with the addition of the return activated-sludge from the treatment plant. The return activated-sludge appeared to have the consistency of slurry prior to the addition of water. Prior to the butane injections, the solids were thoroughly mixed and a composite sample was drawn for analysis of total solids. The results are summarized in Table 1 below. The constant speed mixer and aeration system were operated continually (200 liters per hour) with brief stops every hour to conduct butane injections (500 ml of n-butane). The butane was injected into a syringe port connected to the air-supply line at hourly intervals as shown on Table 1 and in
On Day No. 1, a pretreatment composite sample was collected from the bioreactor after thorough mixing of the RAS with the propeller unit (2 minutes). The sample was submitted to Rhode Island Analytical Laboratory for total solids analysis referencing EPA Method 160.3. The results are summarized in Table 2 below.
On Day No. 5, a composite sample was collected from the bioreactor (post butane treatment) and submitted to Rhode Island Analytical Laboratory for total solids analysis referencing EPA Methods 160.3. The results are summarized in Table 1 below.
TABLE 1
Volume of
Aeration
Day No.
Time
Butane
(200 L/hr)
Mixing
1
19:00
500 ml
On
On
1
20:00
500 ml
On
On
1
21:00
500 ml
On
On
2
08:00
500 ml
On
On
2
09:00
500 ml
On
On
2
11:00
500 ml
On
On
2
12:00
500 ml
On
On
2
13:00
500 ml
On
On
2
14:00
500 ml
On
On
2
15:00
500 ml
On
On
2
16:00
500 ml
On
On
2
17:00
500 ml
On
On
2
18:00
500 ml
On
On
2
19:00
500 ml
On
On
2
20:00
500 ml
On
On
3
10:00
500 ml
On
On
3
11:00
500 ml
On
On
3
12:00
500 ml
On
On
3
13:00
500 ml
On
On
3
14:00
500 ml
On
On
3
15:00
500 ml
On
On
3
16:00
500 ml
On
On
3
17:00
500 ml
On
On
3
18:00
500 ml
On
On
TABLE 2
Day No.
Total Solids (mg/l)
Settleable Solids (ml/l)
1 (Pretreatment)
2,200
329
5 (Butane Treatment)
1,900 (14% reduction)
158 (52% reduction)
The RAS slurry immediately thinned (within 10 hours) after the butane injections. The RAS appeared less dense with a flocculant consistency. In addition, all odors associated with the RAS sludge sample were not detectable by olfactory senses after the first three butane injections conducted on Day No. 1. Thus, butane may be used for odor control in wastewater and other industries.
On Day No. 3, the sludge was observed to rise in the bioreactor chamber and into the vent tubing. In addition, small diameter bubbles were observed at the liquid surface. We believe the bubbles were nitrogen gas generated during denitrification processes. As the nitrogen gas formed in the RAS, the sludge mass became buoyant and rose in the bioreactor chamber (rising sludge phenomenon). Since denitrification was believed to be an anaerobic process, this phenomenon was unexpected since the aeration process was operated continually during the process treatment. Although not intending to be bound by any particular theory, the principal biochemcial pathways of denitrification may not be anaerobic but rather a modification of aerobic pathways. Alternatively, the butane injections may have increased oxygen demand to the point that exceeded the capacity of the aeration unit used for the study. Consequently, the bioreactor may have turned slightly anoxic. The bioreactor example described above only details the process and method conception. Optimization of the process (i.e., butane volume and flow rates) was not detailed or considered.
A butane-injection system was installed in a municipal wastewater treatment plant comprising an extended aeration activated sludge system. The plant included an aerated 12,000 gallon sludge thickening and holding tank. The sludge tank was equipped with an air/butane injector and diffuser. The injector constantly fed air to the tank at a rate of about 5 cubic feet per minute. Twice per day butane was added to the injected air stream for 6 minutes. During an initial 8-day period, a total amount of approximately 120 pounds of butane was pulsed to the tank. After the initial 8-day period, settleable solids of the sludge were measured by placing a sample of the treated sludge in a one liter container and observing the upper level of the settleable solids versus the upper level of the liquid after 120 minutes. The initial 8-day sample had a 50 ml/l drop after 120 minutes. A subsequent 8-day test was then conducted. All but 2,000 gallons of the initial butane treated sludge was removed from the tank, and the tank was refilled with fresh sludge. Air and butane were injected into the sludge tank in the same manner as the initial 8-day test. After the second 8-day treatment period, settleable solids were measured as a 75 ml/l drop after 120 minutes. The greater drop after the second 8-day test indicates improved settleable solids reduction. Optimization of the butane injection process would further optimize the solids reduction. In addition to solids reduction resulting from the butane treatment, upon initiation of the butane injection, odor of the sludge tank was substantially reduced.
In accordance with an embodiment of the present invention, butane enhanced treatment of wastewater may be conducted as a modification of existing aeration tanks in municipal or chemical wastewater treatment facilities or as stand alone or ancillary treatment reactors. Many variations or process permutations exist or may be implemented using the alkane process. The process could be modified to pre-treat sludge, treat sludge on-line, treat return sludge, lower biological oxygen demand, total organic carbon or any other form of wastewater where solids reduction, odor control or organics removal is desirable. The alkane process may also be used to further treat sludge obtained from anaerobic digestion processes. The process may be used to reduce solids in any type of wastewater effluent. Furthermore, butane may be injected into wastewater early in the treatment process to abate nuisance odors associated with wastewater liquids/solids.
Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.
Patent | Priority | Assignee | Title |
11338225, | Sep 05 2019 | ITERRO, INC | Filter agitator |
7550085, | Aug 16 2002 | Global BioSciences, Inc. | Bioventing remediation method |
7560607, | Apr 16 2004 | GTC Technology US, LLC | Process for converting gaseous alkanes to liquid hydrocarbons |
7579510, | Feb 03 2006 | REACTION 35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
7674941, | Apr 16 2004 | SULZER MANAGEMENT AG | Processes for converting gaseous alkanes to liquid hydrocarbons |
7838708, | Jun 20 2001 | REACTION 35, LLC | Hydrocarbon conversion process improvements |
7847139, | Jul 15 2003 | REACTION 35, LLC | Hydrocarbon synthesis |
7880041, | Apr 16 2004 | SULZER MANAGEMENT AG | Process for converting gaseous alkanes to liquid hydrocarbons |
7883568, | Feb 03 2006 | REACTION 35, LLC | Separation of light gases from halogens |
7964764, | Jul 15 2003 | REACTION 35, LLC | Hydrocarbon synthesis |
7998438, | May 24 2007 | REACTION 35, LLC | Zone reactor incorporating reversible hydrogen halide capture and release |
8008535, | Apr 16 2004 | SULZER MANAGEMENT AG | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
8053616, | Feb 03 2006 | REACTION 35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
8173851, | Apr 16 2004 | SULZER MANAGEMENT AG | Processes for converting gaseous alkanes to liquid hydrocarbons |
8198495, | Mar 02 2010 | GTC Technology US, LLC | Processes and systems for the staged synthesis of alkyl bromides |
8232441, | Apr 16 2004 | SULZER MANAGEMENT AG | Process for converting gaseous alkanes to liquid hydrocarbons |
8273929, | Jul 18 2008 | REACTION 35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
8282810, | Jun 13 2008 | GTC Technology US, LLC | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
8367884, | Mar 02 2010 | SULZER MANAGEMENT AG | Processes and systems for the staged synthesis of alkyl bromides |
8415512, | Jun 20 2001 | REACTION 35, LLC | Hydrocarbon conversion process improvements |
8415517, | Jul 18 2008 | REACTION 35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
8436220, | Jun 10 2011 | SULZER MANAGEMENT AG | Processes and systems for demethanization of brominated hydrocarbons |
8642822, | Apr 16 2004 | GTC Technology US, LLC | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
8802908, | Oct 21 2011 | SULZER MANAGEMENT AG | Processes and systems for separate, parallel methane and higher alkanes' bromination |
8815050, | Mar 22 2011 | SULZER MANAGEMENT AG | Processes and systems for drying liquid bromine |
8829256, | Jun 30 2011 | SULZER MANAGEMENT AG | Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons |
8921625, | Feb 05 2007 | REACTION 35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
9133078, | Mar 02 2010 | SULZER MANAGEMENT AG | Processes and systems for the staged synthesis of alkyl bromides |
9193641, | Dec 16 2011 | SULZER MANAGEMENT AG | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
9206093, | Apr 16 2004 | SULZER MANAGEMENT AG | Process for converting gaseous alkanes to liquid hydrocarbons |
Patent | Priority | Assignee | Title |
2234637, | |||
3242071, | |||
3616216, | |||
3687646, | |||
3829377, | |||
3846290, | |||
3969446, | Jun 03 1974 | Apparatus and method for aerating liquids | |
4033763, | Oct 15 1975 | World Resources Company | Process for recovery of selected metal values from waste waters |
4111808, | Dec 11 1975 | Apparatus for sludge digestion | |
4285812, | Nov 27 1978 | Storm drainage systems | |
4328175, | Oct 02 1979 | PRAXAIR TECHNOLOGY, INC | Apparatus for contacting a liquid with a gas |
4454077, | Jul 08 1982 | UNION CARBIDE INDUSTRIAL GASES TECHNOLOGY CORPORATION, A CORP OF DE | Process and apparatus for mixing a gas and a liquid |
4508824, | May 08 1980 | MICROLIFE TECHNICS, INC , A CORP OF DE | Pseudomonas degradation of hydrocarbons |
4510057, | Oct 17 1983 | Texaco Inc. | Rotating disk biotreatment of syngas waste water |
4521515, | Oct 21 1981 | Seiken Kai Foundation Juridical Person | Bacterial strain for purifying hydrocarbons pollution and purification process |
4522723, | Jun 01 1984 | Kerr-McGee Corporation | Process for the removal and recovery of heavy metals from aqueous solutions |
4645603, | Apr 05 1976 | Liquid aeration device and method | |
4695378, | Nov 07 1984 | The United States of America as represented by the Secretary of the | Acid mine water aeration and treatment system |
4713343, | Aug 29 1985 | University of Oklahoma | Biodegradation of halogenated aliphatic hydrocarbons |
4737289, | Nov 26 1986 | RADIAN INTERNATONAL, LLC | Process for wastewater treatment |
4789478, | Oct 14 1986 | KNOXVILLE COLLEGE | Conversion of inorganic ions to metal sulfides by microorganisms |
4790940, | Nov 26 1986 | RADIAN INTERNATONAL, LLC | Process for wastewater treatment |
4906454, | Feb 23 1989 | The Procter & Gamble Company; Procter & Gamble Company, The | Deodorant compositions containing specific piroctone salts and perfumes |
4956080, | Aug 03 1987 | MICROLIFT SYSTEMS LIMITED PARTNERSHIP A PARTNERSHIP OF NV | High pressure oxygen-saturated water treatment apparatus |
5006250, | Dec 04 1987 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Pulsing of electron donor and electron acceptor for enhanced biotransformation of chemicals |
5032512, | Jan 15 1987 | Rijksuniversiteit te Groningen | Process for producing compounds containing a terminal hydroxyl or epoxy group and microorganisms suitable therefor |
5037551, | Dec 19 1988 | Weyerhaeuser Company | High-flow rate capacity aerobic biological dehalogenation reactor |
5038715, | Apr 14 1989 | Aquaculture system | |
5057221, | Dec 19 1988 | Weyerhaeuser Company | Aerobic biological dehalogenation reactor |
5061405, | Feb 12 1990 | ESSICK AIR PRODUCTS, INC | Constant humidity evaporative wicking filter humidifier |
5062956, | Apr 04 1988 | Allied-Signal Inc | Bioremediation of chromium (VI) contaminated aqueous systems by sulfate reducing bacteria |
5073309, | Nov 03 1987 | Elf France | Device for dispersion of gas in a liquid phase |
5082652, | Aug 22 1989 | MENNEN COMPANY, THE | Aerosol deodorant composition and packaged aerosol deodorant |
5085809, | Nov 04 1987 | W & P INVESTMENTS, INC ; Hazleton Environmental; R&M ENVIRONMENTAL STRATEGIES, INC ; H E P MANAGEMENT INC | Apparatus for gas absorption in a liquid |
5135859, | Dec 02 1986 | Rijks Universiteit to Groningen | Process for producing polyesters by fermentation; a process for producing optically active carboxylic acids and esters |
5169532, | Jul 08 1991 | Homestake Mining Company | Method for biological removal of cyanides, thiocyanate and toxic heavy metals from highly alkaline environments |
5173428, | Jan 15 1987 | Rijksuniversiteit te Groningen | Microorganisms suitable for producing compounds containing a terminal hydroxyl or epoxy group |
5277815, | May 04 1992 | E I DU PONT DE NEMOURS AND COMPANY | In situ biodegradation of groundwater contaminants |
5302286, | Mar 17 1992 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE, A CORP OF CA | Method and apparatus for in situ groundwater remediation |
5314076, | Feb 04 1991 | Gie Anjou-Recherche | Installation for the mixing of two fluid phases by mechanical stirring, notably for the treatment of water by transfer of oxidizing gas, and use of such an installation |
5316940, | Apr 24 1992 | Board of Regents, The University of Texas System | Constitutive soluble methane monooxygenase mutants of methanotrophic bacteria such as Methylosinus trichosporium A.T.C.C. 55314 |
5326703, | Jan 05 1990 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE DEPARTMENT OF ENERGY | Method of degrading pollutants in soil |
5337820, | Dec 22 1992 | Phillips Petroleum Company | Injection of scale inhibitors for subterranean microbial processes |
5342769, | Sep 04 1992 | YELLOWSTONE ENVIRONMENTAL SCIENCE INC | Microbial dehalogenation using methanosarcina |
5354688, | May 11 1990 | Brookhaven Science Associates | Anaerobic microbial remobilization of coprecipitated metals |
5371002, | Jun 07 1989 | James Madison University | Method of production of poly-beta-hydroxyalkanoate copolymers |
5384048, | Aug 27 1992 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF ENERGY | Bioremediation of contaminated groundwater |
5397473, | Aug 27 1993 | Cornell Research Foundation, Inc | Biological treatment method for water |
5397481, | Aug 03 1992 | Martin Marietta Energy Systems, Inc. | Submergible torch for treating waste solutions and method thereof |
5441887, | Nov 17 1988 | MINNESOTA UNIVERSITY OF, REGENTS OF THE | Rapid degradation of halogenated hydrocarbons by soluble methane monooxygenase |
5468090, | Jul 15 1992 | Bending weir | |
5494576, | Jun 15 1992 | Pollution Management Industries | System and method for treating water |
5512479, | Oct 14 1993 | Envirogen, Inc. | Method of degrading volatile organochlorides and remediation thereof |
5529693, | Mar 29 1994 | KOBELCO ECO-SOLUTIONS CO LTD | Method and apparatus for treating water containing organic sulfur compounds |
5651890, | Apr 04 1995 | Use of propane as stripper gas in anaerobic digestion of wastewaters | |
5660730, | Jul 13 1994 | Eniricerche S.p.A. | Inertization of liquid waste, mud and solid waste containing heavy metals by sulphate-reducing bacteria |
5678632, | Apr 29 1993 | Cleansorb Limited | Acidizing underground reservoirs |
5733067, | Jul 11 1994 | HUNT, SETH C | Method and system for bioremediation of contaminated soil using inoculated support spheres |
5789236, | Jul 07 1995 | ConocoPhillips Company | Process of using sulfide-oxidizing bacteria |
5814514, | Jul 10 1996 | SHAW ENVIRONMENTAL & INFRASTRUCTURE, INC | Biodegradation of the gasoline oxygenates |
5820759, | Aug 19 1997 | MFM Environmental Co. | Integrated aquaculture and bioremediation system and method |
5833855, | Aug 22 1996 | ENVIROTRACE, L L C | Situ bioremediation of contaminated groundwater |
5888396, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Bioremediation of pollutants with butane-utilizing bacteria |
5916491, | Jan 16 1997 | RHONE-POULENC, INC | Gas-liquid vortex mixer and method |
5925290, | Aug 08 1997 | Rhone-Poulenc Inc. | Gas-liquid venturi mixer |
5945026, | Nov 04 1994 | HAZARD CONTROL TECHNOLOGIES, INC | Composition and methods for firefighting hydrocarbon fires |
6051130, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Bioreactor for remediation of pollutants with butane utilizing bacteria |
6110372, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Bioremediation of petroleum pollutants with alkane-utilizing bacteria |
6156203, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Bioremediation of polychlorinated biphenyl pollutants with butane-utilizing bacteria |
6183644, | Feb 12 1999 | Weber State University | Method of selenium removal |
6210579, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Bioremediation of pollutants with butane-utilizing bacteria |
6217766, | Jul 16 1996 | Biostar Development C.V. | Sulphur reducing bacterium and its use in biological desulphurization processes |
6244346, | Mar 24 1999 | GLOBAL BIOSCIENCES, INC | Method and apparatus for reducing fouling of injection and recovery wells |
6245235, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | System and method of in-situ bioremediation with butane-utilizing bacteria |
6303366, | Jul 10 1997 | SHAW ENVIRONMENTAL & INFRASTRUCTURE, INC | Biodegradation of the gasoline oxygenates |
6306302, | Aug 01 1997 | CSIR | Process for treatment of sulphate-containing water |
6322700, | Apr 11 1995 | ARCADIS U S , INC | Engineered in situ anaerobic reactive zones |
6361694, | Jun 26 2000 | Enhanced biomass digestion through intermittent injection of propane | |
6383388, | Aug 08 1995 | Lawrence Livermore National Security LLC | Water treatment process and system for metals removal using Saccharomyces cerevisiae |
6391209, | Aug 04 1999 | Entegris, Inc | Regeneration of plating baths |
6488850, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Method and apparatus for anaerobically degrading pollutants with alkanes |
6669846, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Wastewater treatment with alkanes |
DE4142063, | |||
EP98138, | |||
JP5396380, | |||
RE32562, | Jun 10 1986 | PRAXAIR TECHNOLOGY, INC | Process and apparatus for mixing a gas and a liquid |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 02 2002 | Global BioSciences, Inc. | (assignment on the face of the patent) | / | |||
Feb 24 2003 | PERRIELLO, FELIX ANTHONY | GLOBAL BIOSCIENCES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013902 | /0695 |
Date | Maintenance Fee Events |
Oct 04 2010 | REM: Maintenance Fee Reminder Mailed. |
Feb 25 2011 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Feb 25 2011 | M2554: Surcharge for late Payment, Small Entity. |
Oct 10 2014 | REM: Maintenance Fee Reminder Mailed. |
Feb 27 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 27 2010 | 4 years fee payment window open |
Aug 27 2010 | 6 months grace period start (w surcharge) |
Feb 27 2011 | patent expiry (for year 4) |
Feb 27 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 27 2014 | 8 years fee payment window open |
Aug 27 2014 | 6 months grace period start (w surcharge) |
Feb 27 2015 | patent expiry (for year 8) |
Feb 27 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 27 2018 | 12 years fee payment window open |
Aug 27 2018 | 6 months grace period start (w surcharge) |
Feb 27 2019 | patent expiry (for year 12) |
Feb 27 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |