An electrochemical mechanical processing station having a zoned polishing pad assembly is provided. The zoned polishing pad assembly includes a conductive layer coupled to an upper layer having a non-conductive processing surface. At least two zones of different current permeability are defined across the processing surface of the upper layer. Each zone is defined by an attribute of the upper layer.
|
1. A multi-zoned processing pad assembly for processing a substrate, comprising:
a conductive layer;
an upper layer having a non-conductive processing surface coupled to the conductive layer;
a conductive surface positioned substantially coplanar with the non-conductive processing surface, wherein a side of the substrate disposed on the upper layer contacts the conductive and non-conductive processing surface; and
at least two zones of different current permeability defined across the processing surface of the upper layer, wherein the at least two zones are defined by an attribute of the upper layer.
2. The assembly of
3. The assembly of
4. The assembly of
5. The assembly of
6. The assembly of
7. The assembly of
a first ring of permeable material; and
at least a second ring of permeable material coupled to the first ring, wherein the first and second rings of permeable material have different porosity.
8. The assembly of
9. The assembly of
10. The assembly of
11. The assembly of
12. The assembly of
a terminal disposed to the conductive layer for coupling to a power source, and a subpad coupled to the conductive layer.
13. The assembly of
15. The assembly of
16. The assembly of
17. The assembly of
18. The assembly of
|
1. Field of the Invention
Embodiments of the present invention generally relate to a processing article for electrochemical mechanical processing.
2. Description of the Related Art
Electrochemical Mechanical Polishing (ECMP) is a technique used to remove conductive materials from a substrate surface by electrochemical dissolution while concurrently polishing the substrate with reduced mechanical abrasion as compared to conventional Chemical Mechanical Polishing (CMP) processes. Electrochemical dissolution is performed by applying a bias between a cathode and a substrate surface to remove conductive materials from the substrate surface into a surrounding electrolyte. The bias may be applied to the substrate surface by a conductive contact disposed on or through a polishing material upon which the substrate is processed. A mechanical component of the polishing process is performed by providing relative motion between the substrate and the polishing material that enhances the removal of the conductive material from the substrate.
Copper is one material that may be polished using electrochemical mechanical polishing. Typically, copper is polished utilizing a two-step process. In the first step, the bulk of the copper is removed, typically leaving some copper residue projecting above the substrate's surface. The copper residue is then removed in a second, or over-polishing, step.
However, the removal of copper residue may result in dishing of copper features below the plane of a surrounding material, typically an oxide or other barrier layer. The amount of dishing typically is related to polishing chemistries and processing parameters utilized in the over polish step, along with the width of the copper features subjected to polishing. As the copper layer does not have a uniform thickness across the substrate, it is difficult to remove all the copper residue without causing dishing over some features and not removing all of the copper residue over others. Thus, it would be advantageous to selectively adjust the polishing rate profile across the width of the substrate to enhance polishing performance and minimize dishing.
Thus, there is a need for an improved apparatus for electrochemical mechanical polishing.
Embodiments of the present invention generally provide an apparatus for processing a substrate in an electrochemical mechanical processing system. In one embodiment, a processing pad assembly for processing a substrate includes an upper non-conductive polishing layer coupled to a conductive lower layer. The conductive layer is adapted for coupling to a power source and the upper layer is adapted for processing a substrate thereon. At least two zones having different impedance are defined through the upper layer. The impedance of each zone is a characteristic of the upper layer.
In another embodiment of the invention, an electrochemical mechanical processing station having a zoned processing pad assembly is provided. The zoned processing pad assembly includes a conductive layer coupled to an upper layer having a non-conductive processing surface. At least two zones having different impedance are defined through the upper layer. The impedance of each zone is a characteristic of the upper layer.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
The present invention generally relates to a processing pad assembly having multiple zones adapted to control the rate of removal of material from a substrate. The processing pad assembly includes an electrode and a non-conductive processing pad. The non-conductive processing pad includes at least two zones having different impedance defined therethrough. The impedance of each zone is a property of the non-conductive processing pad. The impedance of a zone may be measured by applying a voltage to the zone and then measuring the resulting electrical current in the zone. The impedance may then be expressed as the voltage applied to the zone divided by the current in the zone. The different impedance in the zones results in different currents in the zones at a given voltage. Therefore, because the rate of removal of material from the surface of the substrate is proportional to the current in the zone, the rate of removal may be locally controlled by controlling the impedance of the zones defined in the processing pad assembly. It is also contemplated that the processing pad assembly may be utilized for deposition of conductive material on the substrate by reversing the polarity of the of the bias applied between the substrate and the electrode.
In one embodiment, the carrier head assembly 118 is adapted to hold a substrate 120 against a platen assembly 142 disposed in an ECMP station 132. The carrier head assembly 118 is supported by an arm 164 coupled to a base 130 and which extends over the ECMP station 132. The ECMP station may be coupled to or disposed proximate the base 130.
The carrier head assembly 118 generally comprises a drive system 102 coupled to a carrier head 122. The drive system 102 generally provides at least rotational motion to the carrier head 122. The carrier head 122 additionally may be actuated toward the ECMP station 132 such that the substrate 120 retained in the carrier head 122 may be disposed against a processing surface 104 of the ECMP station 132 during processing.
In one embodiment, the carrier head 122 may be a TITAN HEAD™ or TITAN PROFILER™ wafer carrier manufactured by Applied Materials, Inc., of Santa Clara, Calif. Generally, the carrier head 122 comprises a housing 124 and retaining ring 126 that define a center recess in which the substrate 120 is retained. The retaining ring 126 circumscribes the substrate 120 disposed within the carrier head 122 to prevent the substrate from slipping out from under the carrier head 122 while processing. It is contemplated that other carrier heads may be utilized.
The ECMP station 132 generally includes a platen assembly 142 rotationally disposed on a base 158. A bearing 154 is disposed between the platen assembly 142 and the base 158 to facilitate rotation of the platen assembly 142 relative to the base 158. The platen assembly 142 is typically coupled to a motor 160 that provides the rotational motion to the platen assembly 142.
The platen assembly 142 has an upper plate 114 and a lower plate 148. The upper plate 114 may be fabricated from a rigid material, such as a metal or rigid plastic, and in one embodiment, is fabricated from or coated with a dielectric material, such as CPVC. The upper plate 114 may have a circular, rectangular or other planar form. A top surface 116 of the upper plate 114 supports the zoned processing pad assembly 106 thereon. The zoned processing pad assembly 106 may be held to the upper plate 114 of the platen assembly 142 by magnetic attraction, static attraction, vacuum, adhesives, or the like.
The lower plate 148 is generally fabricated from a rigid material, such as aluminum and may be coupled to the upper plate 114 by any conventional means, such as a plurality of fasteners (not shown). Generally, a plurality of locating pins 146 (one is shown in
A plenum 138 is defined in the platen assembly 142 and may be partially formed in at least one of the upper or lower plates 114, 148. In the embodiment depicted in
At least one contact assembly 134 is disposed on the platen assembly 142 along with the processing pad assembly 106. The at least one contact assembly 134 extends at least to or beyond the upper surface of the processing pad assembly 106 and is adapted to electrically couple the substrate 120 to a power source 166. The processing pad assembly 106 is coupled to a different terminal of the power source 166 so that an electrical potential may be established between the substrate 120 and processing pad assembly 106.
The subpad 211 is typically fabricated from a material softer, or more compliant, than the material of the upper layer 212. The difference in hardness or durometer between the upper layer 212 and the subpad 211 may be chosen to produce a desired polishing/plating performance. The subpad 211 may also be compressive. Examples of suitable subpad 211 materials include, but are not limited to, foamed polymer, elastomers, felt, impregnated felt and plastics compatible with the processing chemistries.
The conductive lower layer 210 is disposed on the top surface 116 of the upper plate 114 of the platen assembly 142 and is coupled to the power source 166 through the platen assembly 142. The lower layer 210 is typically comprised of a conductive material, such as stainless steel, copper, aluminum, gold, silver and tungsten, among others. The lower layer 210 may be solid, impermeable to electrolyte, permeable to electrolyte, perforated, or a combination thereof. In the embodiment depicted in
In one embodiment, at least one permeable passage 218 is disposed at least through the upper layer 212 and extends at least to the lower layer 210. Alternatively, the passage 218 may extend completely through the upper layer 212 and the lower layer 210 (as shown in phantom). The passage 218 allows an electrolyte to establish a conductive path between the substrate 120 and the lower layer 210. In one embodiment, the passage 218 comprises a permeable portion of the upper layer 212. In another embodiment, the passage 218 is a hole formed in the upper layer 212.
The upper layer 212 may be fabricated from polymeric materials compatible with process chemistry, examples of which include polyurethane, polycarbonate, fluoropolymers, PTFE, PTFA, polyphenylene sulfide (PPS), or combinations thereof, and other processing materials used in substrate processing surfaces. In one embodiment, a processing surface 214 of the upper layer 212 of the zoned processing pad assembly 106 is dielectric, for example, polyurethane or other polymer. Examples of processing pad assemblies that may be adapted to benefit from the invention are described in U.S. patent application Ser. No. 10/455,941, filed Jun. 6, 2003 by Y. Hu et al. (entitled “CONDUCTIVE POLISHING ARTICLE FOR ELECTROCHEMICAL MECHANICAL POLISHING”, and U.S. patent application Ser. No. 10/455,895, filed Jun. 6, 2003 by Y. Hu et al. (entitled “CONDUCTIVE POLISHING ARTICLE FOR ELECTROCHEMICAL MECHANICAL POLISHING”, both of which are hereby incorporated by reference in their entireties.
At least one aperture 220 is formed in the layers 210, 212 and optional subpad 211 of the zoned processing pad assembly 106. Each of the at least one aperture 220 is of a size and location to accommodate a contact assembly 134 disposed therethrough. In one embodiment, the at least one aperture 220 is a single aperture formed in the center of the processing pad assembly 106 to accommodate a single contact assembly 134.
A contact element 238 of the contact assembly 134 that is disposed on the upper layer 114 of the platen assembly 142 is coupled to the power source 166. Although only one contact assembly 134 is shown coupled to the upper layer 114 of the platen assembly 142 in
In one embodiment, the contact assembly 134 includes a ball assembly 204 that is generally coupled to the upper plate 114 of the platen assembly 142 and extends at least partially through the aperture 220 formed in the zoned processing pad assembly 106. The ball assembly 204 includes a housing 222 that retains a plurality of balls 224 (one shown in
The housing 222 is removably coupled to the upper layer 114 of the platen assembly 142 to facilitate replacement of the ball assembly 204 after a number of processing cycles. In one embodiment, the housing 222 is coupled to the upper layer 114 by a plurality of screws 226. The housing 222 includes an upper housing 228 coupled to a lower housing 230 that retain the balls 224 therebetween. The upper housing 228 is fabricated from a dielectric material compatible with process chemistries. In one embodiment, the upper housing 228 is made of PEEK. The lower housing 230 is fabricated from a conductive material compatible with process chemistries. In one embodiment, the lower housing 230 is made of stainless steel. The lower housing 230 is coupled to the power source 166. The housings 228, 230 may be coupled in any number of methods, including but not limited to, screwing, bolting, riveting, bonding, staking and clamping, among others. In the embodiment depicted in
The balls 224 are movably disposed in a plurality of apertures 234 formed through the housings 228, 230, and may be disposed in a first position having at least a portion of the balls 224 extending above the processing surface 214 and at least a second position (shown in
A contact element 238 is disposed in each aperture 234 to electrically couple the ball 224 to the lower housing 230. Each of the contact elements 238 are coupled to the lower housing 230 by a respective clamp bushing 240. In one embodiment, a post 242 of the clamp bushing 240 is threaded into a threaded portion 244 of the aperture 234 formed through the housing 222. The balls 224 are made of conductive material and are electrically coupled through the contact element 238 and the lower housing 230 to the power source 166 for electrically biasing the substrate 120 during processing.
An electrolyte source 248 provides electrolyte through the apertures 234 and into contact with the substrate 120 during processing. During processing, the balls 224 disposed within the housing 222 are actuated towards the processing surface 214 by at least one of spring, buoyant or flow forces. The balls 224 electrically couple the substrate 120 to the power source 166 through the contact elements 238 and lower housing 230. Electrolyte, flowing through the housing 222 provides a conductive path between the lower layer 210 and biased substrate 120 thereby driving an electrochemical polishing (or plating) process.
In the embodiment depicted in
In one embodiment, the permeable passage 218 is a plurality of holes 318 formed in and through the upper layer 212 and the optional subpad 211 to allow an electrolyte to flow therethrough and come into contact with the lower layer 210 during processing. For clarity and ease of understanding, only one hole 318 is shown extending through the upper layer 212 and optional subpad 211. Alternatively, the upper layer 212 may be formed of a permeable material which allows the electrolyte to flow therethrough to form a conductive path between the lower layer 210 and the substrate 120 during processing. The subpad 211, when present, may also be formed of a permeable material.
Optionally, an extension 322 of the permeable passage 218 may be formed in and at least partially through the lower layer 210 (shown in phantom) in order to increase the surface area of the conductive lower layer 210 in contact with the electrolyte. The extension 322 may extend completely through the lower layer 210. A terminal 302 extends from the lower layer 210 to facilitate a connection to the power source 166 (shown in
The processing pad assemblies 406, 506, 606 depicted in
It is contemplated that more than two zones may be created, each with independent impedances which may or may not be the same as the impedance of some of the other zones. Moreover, the impedance of each zone may be maintained by a combination of the embodiments depicted above. For example, different size holes with different spacing may be used, or holes in one zone and permeable processing layers in others. Furthermore, the zones do not need to be concentric, nor of any given shape.
Although the electrode zones 724, 726, 728 and conductive elements 750, 752, 754 are shown as concentric rings, the electrode zones may be alternatively configured to suit a particular polishing application. For example, the electrode zones 724, 726, 728 and/or conductive elements 750, 752, 754 may be linear, curved, concentric, involute curves or other shapes and orientations are possible for the conductive elements. The electrode zones 724, 726, 728 and/or conductive elements 750, 752, 754 may be of substantially equal sizes and shapes from one zone to the next, or the sizes and shapes may vary depending upon the particular zone of concern.
The zoned processing pad assembly has three zones 950 which are aligned with the shape of the electrodes 8101, 8102, and 8103 described in
For example,
Referring to
In one embodiment, a ball assembly 204 is disposed in a central aperture 420 of the processing pad assembly 406. The carrier head 122 maintains the substrate 120 in contact with the ball 224 of the ball assembly 204, thereby electrically coupling the substrate 120 to a power source 166. Electrolyte flows from an electrolyte source 170 through one or more apertures 234 formed in the ball assembly 204 and into contact with the substrate 120 and across the surface of the processing pad assembly 406. The electrolyte further travels downwards through the plurality of holes 420, 422 in the processing pad assembly 406 and into contact with the conductive layer 210 embedded in the processing pad assembly 406 and coupled to the power source 166.
The quantity of electrolyte filling the plurality of holes 420 is different than that filling the holes 422 due to their different diameters. This causes the impedance of the zones 450 to be different. The difference in impedance of the zones 450 may be controlled by the distribution of at least one of hole sizes, hole number, hole spacing, geometries, porosity or permeability and the like. The differing impedances of the zones causes different current flows through each of the zones 450. The different current flow through the zones 450 alters the rate of copper removal from the surface of the substrate 120 above each of the respective zones 450. Further control and flexibility over the rate of removal may be had by the combination of zones of different current permeability along with the electrode zones as described above with respect to
For example, a processing pad assembly having the electrode 810 of
The rate of removal of material from the surface of the substrate 120 is driven by the total charge, which can be controlled by increasing or reducing the current density. Current density is inversely proportional to impedance, which may be controlled, as described above, by the open area in the zone. Thus, the current density may be increased or reduced by reducing or increasing the open area, respectively. By having greater open area in zone 2 with respect to zone 1, and lesser open area in zone 3, the voltages may be brought closer to each other, e.g., V1=2.9V, V2=3.1V, V3=2.7V, while maintaining a uniform polishing profile in a given time period across all the zones. This advantageously reduces the leakage current (i.e., the current that flows from one zone to the next without contributing to the reaction), which improves the accuracy of endpoint detection by measuring charge. A further advantage is the widening of the process window. If the current density gets to high, the planarization capability is lost.
Thus, a processing station having a multi-zoned processing pad assembly creating multiple zones adapted to remove material from a substrate at a uniform rate has been provided. The multi-zoned processing pad assembly allows the rate of removal of copper from the surface of a semiconductor substrate to be uniformly controlled.
While the foregoing is directed to the illustrative embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Patent | Priority | Assignee | Title |
10618141, | Oct 30 2015 | Applied Materials, Inc | Apparatus for forming a polishing article that has a desired zeta potential |
11446788, | Oct 17 2014 | Applied Materials, Inc. | Precursor formulations for polishing pads produced by an additive manufacturing process |
11471999, | Jul 26 2017 | Applied Materials, Inc | Integrated abrasive polishing pads and manufacturing methods |
11524384, | Aug 07 2017 | Applied Materials, Inc | Abrasive delivery polishing pads and manufacturing methods thereof |
11685014, | Sep 04 2018 | Applied Materials, Inc | Formulations for advanced polishing pads |
11724362, | Oct 17 2014 | Applied Materials, Inc. | Polishing pads produced by an additive manufacturing process |
11745302, | Oct 17 2014 | Applied Materials, Inc. | Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process |
11772229, | Jan 19 2016 | Applied Materials, Inc. | Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process |
11851570, | Apr 12 2019 | Applied Materials, Inc | Anionic polishing pads formed by printing processes |
11878389, | Feb 10 2021 | Applied Materials, Inc | Structures formed using an additive manufacturing process for regenerating surface texture in situ |
7494404, | Feb 17 2006 | Kinik Company | Tools for polishing and associated methods |
7544117, | Feb 17 2006 | Kinik Company | Tools for polishing and associated methods |
Patent | Priority | Assignee | Title |
3162588, | |||
3448023, | |||
3873512, | |||
3942959, | Dec 22 1967 | Fabriksaktiebolaget EKA | Multilayered flexible abrasive containing a layer of electroconductive material |
3992178, | Apr 17 1973 | Fabrika AB EKA | Flexible coated abrasive with graphite outer layer |
4125444, | Dec 14 1976 | Inoue-Japax Research Incorporated | Electrochemical polishing method |
4713149, | Nov 26 1985 | Method and apparatus for electroplating objects | |
4793895, | Jan 25 1988 | IBM Corporation | In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection |
4839005, | May 22 1987 | Kabushiki Kaisha Kobe Seiko Sho | Electrolytic-abrasive polishing method of aluminum surface |
4839993, | Jan 28 1986 | Fujisu Limited | Polishing machine for ferrule of optical fiber connector |
4934102, | Oct 04 1988 | International Business Machines Corporation | System for mechanical planarization |
4954141, | Jan 28 1988 | Showa Denko Kabushiki Kaisha; Chiyoda Kaushiki Kaisha | Polishing pad for semiconductor wafers |
4956056, | Mar 20 1989 | EXPERIMENTALNY NAUCHNO-ISSLEDOVATELSKY INSTITUT METALLOREZHUSCHIKH STANKOV, USSR, MOSCOW | Method of abrasive electroerosion grinding |
5061294, | May 15 1989 | Minnesota Mining and Manufacturing Company | Abrasive article with conductive, doped, conjugated, polymer coat and method of making same |
5096550, | Oct 15 1990 | Lawrence Livermore National Security LLC | Method and apparatus for spatially uniform electropolishing and electrolytic etching |
5108463, | Aug 21 1989 | 3M Innovative Properties Company | Conductive coated abrasives |
5136817, | Feb 28 1990 | Nihon Dempa Kogyo Co., Ltd. | Automatic lapping apparatus for piezoelectric materials |
5217586, | Jan 09 1992 | International Business Machines Corporation | Electrochemical tool for uniform metal removal during electropolishing |
5225034, | Jun 04 1992 | Micron Technology, Inc. | Method of chemical mechanical polishing predominantly copper containing metal layers in semiconductor processing |
5257478, | Mar 22 1990 | Rohm and Haas Electronic Materials CMP Holdings, Inc | Apparatus for interlayer planarization of semiconductor material |
5478435, | Dec 16 1994 | NATIONAL SEMICONDUCTOR CORP A DELAWARE CORPORATION | Point of use slurry dispensing system |
5534106, | Jul 26 1994 | GLOBALFOUNDRIES Inc | Apparatus for processing semiconductor wafers |
5543032, | Nov 30 1994 | GLOBALFOUNDRIES Inc | Electroetching method and apparatus |
5562529, | Oct 08 1992 | Fujitsu Limited | Apparatus and method for uniformly polishing a wafer |
5567300, | Sep 02 1994 | GLOBALFOUNDRIES Inc | Electrochemical metal removal technique for planarization of surfaces |
5575706, | Jan 11 1996 | TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. | Chemical/mechanical planarization (CMP) apparatus and polish method |
5578362, | Aug 19 1992 | Rohm and Haas Electronic Materials CMP Holdings, Inc | Polymeric polishing pad containing hollow polymeric microelements |
5624300, | Oct 08 1992 | Fujitsu Limited | Apparatus and method for uniformly polishing a wafer |
5637031, | Jun 07 1996 | TRANSPACIFIC IP LTD , | Electrochemical simulator for chemical-mechanical polishing (CMP) |
5738574, | Oct 27 1995 | XSCI, INC | Continuous processing system for chemical mechanical polishing |
5804507, | Oct 27 1995 | Applied Materials, Inc | Radially oscillating carousel processing system for chemical mechanical polishing |
5807165, | Mar 26 1997 | GLOBALFOUNDRIES Inc | Method of electrochemical mechanical planarization |
5823854, | May 28 1996 | TRANSPACIFIC IP LTD , | Chemical-mechanical polish (CMP) pad conditioner |
5840629, | Dec 14 1995 | Sematech, Inc.; SEMATECH, INC | Copper chemical mechanical polishing slurry utilizing a chromate oxidant |
5846882, | Oct 03 1996 | Applied Materials, Inc. | Endpoint detector for a chemical mechanical polishing system |
5871392, | Jun 13 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Under-pad for chemical-mechanical planarization of semiconductor wafers |
5876271, | Aug 06 1993 | Intel Corporation | Slurry injection and recovery method and apparatus for chemical-mechanical polishing process |
5893796, | Feb 22 1996 | Applied Materials, Inc | Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus |
5911619, | Mar 26 1997 | GLOBALFOUNDRIES Inc | Apparatus for electrochemical mechanical planarization |
5931719, | Aug 25 1997 | Bell Semiconductor, LLC | Method and apparatus for using pressure differentials through a polishing pad to improve performance in chemical mechanical polishing |
5938801, | Feb 12 1997 | Round Rock Research, LLC | Polishing pad and a method for making a polishing pad with covalently bonded particles |
5985093, | May 28 1996 | TRANSPACIFIC IP LTD , | Chemical-mechanical polish (CMP) pad conditioner |
6001008, | Apr 22 1998 | Fujimori Technology Laboratory Inc. | Abrasive dresser for polishing disc of chemical-mechanical polisher |
6004880, | Feb 20 1998 | Bell Semiconductor, LLC | Method of single step damascene process for deposition and global planarization |
6010395, | May 28 1997 | Sony Corporation | Chemical-mechanical polishing apparatus |
6017265, | Nov 23 1994 | Rohm and Haas Electronic Materials CMP Holdings, Inc | Methods for using polishing pads |
6020264, | Jan 31 1997 | International Business Machines Corporation | Method and apparatus for in-line oxide thickness determination in chemical-mechanical polishing |
6024630, | Jun 09 1995 | Applied Materials, Inc.; Applied Materials, Inc | Fluid-pressure regulated wafer polishing head |
6033293, | Oct 08 1997 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Apparatus for performing chemical-mechanical polishing |
6056851, | Jun 24 1996 | Taiwan Semiconductor Manufacturing Company | Slurry supply system for chemical mechanical polishing |
6066030, | Mar 04 1999 | GLOBALFOUNDRIES Inc | Electroetch and chemical mechanical polishing equipment |
6074284, | Aug 25 1997 | Unique Technology International PTE. Ltd. | Combination electrolytic polishing and abrasive super-finishing method |
6077337, | Dec 01 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Chemical-mechanical polishing slurry |
6090239, | Feb 20 1998 | Bell Semiconductor, LLC | Method of single step damascene process for deposition and global planarization |
6103096, | Nov 12 1997 | GLOBALFOUNDRIES Inc | Apparatus and method for the electrochemical etching of a wafer |
6116998, | Jan 13 1997 | Struers A/S | Attachment means and use of such means for attaching a sheet-formed abrasive or polishing means to a magnetized support |
6153043, | Feb 06 1998 | Ebara Corporation | Elimination of photo-induced electrochemical dissolution in chemical mechanical polishing |
6156124, | Jun 18 1999 | Applied Materials, Inc. | Wafer transfer station for a chemical mechanical polisher |
6159079, | Sep 08 1998 | Applied Materials, Inc, | Carrier head for chemical mechanical polishing a substrate |
6171467, | Nov 25 1997 | JOHNS HOPKINS UNIVERSITY,THE | Electrochemical-control of abrasive polishing and machining rates |
6176992, | Dec 01 1998 | Novellus Systems, Inc | Method and apparatus for electro-chemical mechanical deposition |
6183354, | Nov 08 1996 | Applied Materials, Inc | Carrier head with a flexible membrane for a chemical mechanical polishing system |
6190494, | Jul 29 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for electrically endpointing a chemical-mechanical planarization process |
6210257, | May 29 1998 | Round Rock Research, LLC | Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates |
6234870, | Aug 24 1999 | GLOBALFOUNDRIES Inc | Serial intelligent electro-chemical-mechanical wafer processor |
6238271, | Apr 30 1999 | Novellus Systems, Inc | Methods and apparatus for improved polishing of workpieces |
6238592, | Mar 10 1999 | 3M Innovative Properties Company | Working liquids and methods for modifying structured wafers suited for semiconductor fabrication |
6244935, | Feb 04 1999 | Applied Materials, Inc | Apparatus and methods for chemical mechanical polishing with an advanceable polishing sheet |
6248222, | Sep 08 1998 | ACM Research, Inc.; ACM RESEARCH, INC | Methods and apparatus for holding and positioning semiconductor workpieces during electropolishing and/or electroplating of the workpieces |
6251235, | Mar 30 1999 | Novellus Systems, Inc | Apparatus for forming an electrical contact with a semiconductor substrate |
6261168, | May 21 1999 | Applied Materials, Inc | Chemical mechanical planarization or polishing pad with sections having varied groove patterns |
6261959, | Mar 31 2000 | Applied Materials, Inc | Method and apparatus for chemically-mechanically polishing semiconductor wafers |
6273798, | Apr 08 1997 | Bell Semiconductor, LLC | Pre-conditioning polishing pads for chemical-mechanical polishing |
6297159, | Jul 07 1999 | Advanced Micro Devices, Inc. | Method and apparatus for chemical polishing using field responsive materials |
6319420, | Jul 29 1998 | Micron Technology, Inc. | Method and apparatus for electrically endpointing a chemical-mechanical planarization process |
6328642, | Feb 14 1997 | Applied Materials, Inc | Integrated pad and belt for chemical mechanical polishing |
6328872, | Apr 03 1999 | Novellus Systems, Inc | Method and apparatus for plating and polishing a semiconductor substrate |
6331135, | Aug 31 1999 | Micron Technology, Inc. | Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates with metal compound abrasives |
6368184, | Jan 06 2000 | Advanced Micro Devices, Inc. | Apparatus for determining metal CMP endpoint using integrated polishing pad electrodes |
6381169, | Jul 01 1999 | Regents of the University of California, The | High density non-volatile memory device |
6386956, | Nov 05 1998 | Sony Corporation | Flattening polishing device and flattening polishing method |
6391166, | Feb 12 1998 | ACM Research, Inc. | Plating apparatus and method |
6395152, | Jul 09 1998 | ACM Research, Inc. | Methods and apparatus for electropolishing metal interconnections on semiconductor devices |
6402591, | Mar 31 2000 | Applied Materials, Inc | Planarization system for chemical-mechanical polishing |
6402925, | Nov 03 1998 | Novellus Systems, Inc | Method and apparatus for electrochemical mechanical deposition |
6406363, | Aug 31 1999 | PRAXAIR TECHNOLOGY, INC | Unsupported chemical mechanical polishing belt |
6409904, | Dec 01 1998 | Novellus Systems, Inc | Method and apparatus for depositing and controlling the texture of a thin film |
6413388, | Feb 23 2000 | Novellus Systems, Inc | Pad designs and structures for a versatile materials processing apparatus |
6413403, | Feb 23 2000 | Novellus Systems, Inc | Method and apparatus employing pad designs and structures with improved fluid distribution |
6428394, | Mar 31 2000 | Applied Materials, Inc | Method and apparatus for chemical mechanical planarization and polishing of semiconductor wafers using a continuous polishing member feed |
6431968, | Apr 22 1999 | Applied Materials, Inc. | Carrier head with a compressible film |
6440295, | Jul 09 1998 | ACM RESEARCH, INC | Method for electropolishing metal on semiconductor devices |
6447668, | Jul 09 1998 | ACM RESEARCH, INC | Methods and apparatus for end-point detection |
6464855, | Oct 04 2000 | Novellus Systems, Inc | Method and apparatus for electrochemical planarization of a workpiece |
6471847, | Mar 30 1999 | Novellus Systems, Inc | Method for forming an electrical contact with a semiconductor substrate |
6475332, | Oct 05 2000 | Applied Materials, Inc | Interlocking chemical mechanical polishing system |
6479962, | Mar 16 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | In-device charging system and method for multi-chemistry battery systems |
6482307, | May 12 2000 | Novellus Systems, Inc | Method of and apparatus for making electrical contact to wafer surface for full-face electroplating or electropolishing |
6497800, | Mar 17 2000 | Novellus Systems, Inc | Device providing electrical contact to the surface of a semiconductor workpiece during metal plating |
6517426, | Apr 05 2001 | Applied Materials, Inc | Composite polishing pad for chemical-mechanical polishing |
6537144, | Feb 17 2000 | Applied Materials, Inc. | Method and apparatus for enhanced CMP using metals having reductive properties |
6551179, | Nov 05 1999 | REVASUM, INC | Hard polishing pad for chemical mechanical planarization |
6561889, | Dec 27 2000 | Applied Materials, Inc | Methods for making reinforced wafer polishing pads and apparatuses implementing the same |
6569004, | Dec 30 1999 | Applied Materials, Inc | Polishing pad and method of manufacture |
6572463, | Dec 27 2000 | Applied Materials, Inc | Methods for making reinforced wafer polishing pads utilizing direct casting and apparatuses implementing the same |
6585579, | May 21 1999 | Lam Research Corporation | Chemical mechanical planarization or polishing pad with sections having varied groove patterns |
6630059, | Jan 14 2000 | Novellus Systems, Inc | Workpeice proximity plating apparatus |
6638863, | Apr 24 2001 | ACM Research, Inc. | Electropolishing metal layers on wafers having trenches or vias with dummy structures |
6666959, | Jan 14 2000 | Novellus Systems, Inc | Semiconductor workpiece proximity plating methods and apparatus |
6726823, | Nov 28 1998 | ACM Research, Inc. | Methods and apparatus for holding and positioning semiconductor workpieces during electropolishing and/or electroplating of the workpieces |
6736952, | Feb 12 2001 | Novellus Systems, Inc | Method and apparatus for electrochemical planarization of a workpiece |
6739951, | Nov 29 1999 | Applied Materials Inc. | Method and apparatus for electrochemical-mechanical planarization |
6802955, | Jan 11 2002 | Novellus Systems, Inc | Method and apparatus for the electrochemical deposition and planarization of a material on a workpiece surface |
20010005667, | |||
20010024878, | |||
20010027018, | |||
20010035354, | |||
20010036746, | |||
20010040100, | |||
20010042690, | |||
20020008036, | |||
20020011417, | |||
20020020621, | |||
20020025760, | |||
20020025763, | |||
20020070126, | |||
20020077037, | |||
20020088715, | |||
20020108861, | |||
20020119286, | |||
20020123300, | |||
20020130049, | |||
20020130634, | |||
20030114087, | |||
20030116445, | |||
20030116446, | |||
20030129927, | |||
20030213703, | |||
EP325753, | |||
EP455455, | |||
JP106213, | |||
JP11042554, | |||
JP2000218513, | |||
JP2001244223, | |||
JP200177117, | |||
JP2870537, | |||
WO199849723, | |||
WO199941434, | |||
WO199953119, | |||
WO200003426, | |||
WO200026443, | |||
WO200033356, | |||
WO200059682, | |||
WO200113416, | |||
WO200149452, | |||
WO200152307, | |||
WO200163018, | |||
WO200171066, | |||
WO200188229, | |||
WO200188954, | |||
WO2002064314, | |||
WO200223616, | |||
WO2003001581, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 02 2003 | MANENS, ANTOINE P | Applied Materials, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014767 | /0386 | |
Dec 03 2003 | Applied Materials, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 24 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 17 2014 | REM: Maintenance Fee Reminder Mailed. |
Mar 06 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 06 2010 | 4 years fee payment window open |
Sep 06 2010 | 6 months grace period start (w surcharge) |
Mar 06 2011 | patent expiry (for year 4) |
Mar 06 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 06 2014 | 8 years fee payment window open |
Sep 06 2014 | 6 months grace period start (w surcharge) |
Mar 06 2015 | patent expiry (for year 8) |
Mar 06 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 06 2018 | 12 years fee payment window open |
Sep 06 2018 | 6 months grace period start (w surcharge) |
Mar 06 2019 | patent expiry (for year 12) |
Mar 06 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |