The present invention relates to an iris extraction method. In the method, two searching regions are defined in a face image. A deformable template match algorithm and an energy function are used to measure the energy of each pixel with different hypothetical circular templates within the searching region. pixels with the same hypothetical radius having energies greater than a predetermined threshold are recorded as iris candidates, wherein the pixel having the maximal energy is recorded as first iris candidate. Further, it detects associated iris pairs from iris candidates in each searching region, records the lower iris candidate having the maximal energy of iris pairs as second iris candidate, and selects the best iris candidate from first iris candidate and second iris candidate. Finally, it designates the best iris candidate having the maximal energy of all best iris candidates with different hypothetical radius as the iris in the face image.
|
1. An iris extraction method comprising the steps of:
(A) defining two searching regions in a face image, wherein each searching region is a rough position of an eye for locating an iris;
(B) measuring an energy of each pixel within the searching region according to a deformable template match (DTM) algorithm and an energy function, wherein each pixel is a center of a plurality of hypothetical circular templates, each having a hypothetical radius between a maximal radius and a minimal radius, for measuring the energies of the hypothetical circular templates in the face image;
C) recording the pixels with the same hypothetical radius having energies greater than a threshold as iris candidates, and recording a pixel having the maximal energy from the iris candidates as a first iris candidate;
(D) comparing two of the iris candidates in each searching region for detecting a plurality of associated iris pairs, and recording the lower iris candidate having the maximal energy of the iris pairs as a second iris candidate;
(E) selecting the pixel corresponding to the second iris candidate as a best iris candidate if the distance between the first iris candidate and the second iris candidate is smaller than a predetermined radius; and
(F) designating the best iris candidate having the maximal energy of all best iris candidates with different hypothetical radius as an iris in the face image.
where C is a periphery of the hypothetical radius, ds is an increment of the periphery along the hypothetical circular template, φ(S) is a measurement value of a sampling point on the periphery, |C| is the perimeter of the hypothetical circular template.
3. The method as claimed in
4. The method as claimed in
5. The method as claimed in
7. The method as claimed in
8. The method as claimed in
(D1) obtaining two coordinates of the pixels of two iris candidates;
(D2) detecting a vertical distance between the y-axis coordinates of the iris candidates smaller than a predetermined vertical distance; and
(D3) detecting a horizontal distance between the x-axis coordinates of the iris candidates smaller than a predetermined horizontal distance.
9. The method as claimed in
(E1) detecting whether the energy of the first iris candidate is a predetermined multiple of the energy of the second iris candidate, and if yes, performing step (E2), otherwise designating the second iris candidate as the best iris candidate; and
(E2) designating the first iris candidate as the best iris candidate.
|
1. Field of the Invention
The present invention relates to the technical field of face recognition and, more particularly, to an iris extraction method.
2. Description of Related Art
Currently, in the technical field of face recognition used for analyzing and determining digital face images, the basic requirement is to determine the position or range of eyes in an image so as to continue subsequent processes of recognition. For example, in a full-face recognition, a rough position of eyes is required for aligning an untested image and a reference image. While with the development of information technology, the desired precision of recognition is getting stricter. For example, the conventional recognition method used for determining the direction of the user's sight needs not only the correct position of the center of eyes, but also the exact location of irises as an assistant. With reference to
Compared with skin color, irises are circular dark areas in a face image. Therefore, the most popular conventional methods used for extracting irises in the face image include the circle Hough transform (CHT) method, and the deformable template match (DTM) method.
In the conventional method, at first, two searching regions are roughly defined as a pair of eyes in an input image. Next, a predefined energy function is used for measuring the energy of each pixel in the searching region. Each pixel is taken as a center of a circle with a radius ri (i=1˜n, rn is the maximal radius, ri is the minimal radius), so as to build a circular deformable template. The energy function can be expressed as follows:
where φ(S) is an edge intensity of one of the pixels in the periphery of the circular template, ψ(a) is a gray value of the pixel of input image within the range of the circular template. Usually, an original inputted gray-value image is required to obtain an edge map with the distribution of edge intensity by performing a contract operation, such as Sobel operators. Since a pixel has n energies due to n different sizes (radiuses) of circular templates, the maximal energy of a pixel is regarded as the energy of the pixel. Then, two pixels are respectively selected from two searching regions as positions of irises so as to finish the iris-positioning procedure, where each pixel is the one with the maximal energy of a plurality of pixels in the searching region.
However, generally, irises are partially visible in an input image in reality. Even though when the eyes look forward, only two-third irises are visible. Further, in most situations, eyelids may cover upper irises, especially when the eyeball is rotating or the eyes are looking sideways. Also, the uncertainty (e.g. uneven light) of photo environment and the local circular-like dark areas of surrounding objects (e.g. eyebrows, eyeglasses, and hair) may lead to misjudge the eyebrows or glasses as best positions of irises according to conventional method. Therefore, it is desirable to provide an improved iris extraction method to mitigate and/or obviate the aforementioned problems.
An object of the present invention is to provide an iris extraction method in which a modified deformable template match (DTM) algorithm with improved energy function and measurement way is used, thereby the positions and sizes of irises in a digital face image can be precisely determined.
Another object of the present invention is to provide an iris extraction method in which the selected iris candidates in image search regions are paired with each other for determining precise positions of irises, thereby reducing the interference of other objects.
To achieve the objects, the iris extraction method of the present invention comprises the steps of: (A) defining two searching regions in a face image, wherein each searching region is a rough position of an eye for locating an iris; (B) measuring an energy of each pixel within the searching region according to a deformable template match (DTM) algorithm and an energy function, wherein each pixel is a center of a plurality of hypothetical circular templates each having a hypothetical radius between a maximal radius and a minimal radius for measuring the energies of the hypothetical circular templates in the face image; (C) recording the pixels with the same hypothetical radius having energies greater than a threshold as iris candidates, and recording a pixel having the maximal energy from the iris candidates as a first iris candidate; (D) comparing two of the iris candidates in each searching region for detecting a plurality of associated iris pairs, and recording the lower iris candidate having the maximal energy of the iris pairs as a second iris candidate; (E) selecting the pixel corresponding to the second iris candidate as a best iris candidate if the distance between the first iris candidate and the second iris candidate is smaller than a predetermined radius; and (F) designating the best iris candidate having the maximal energy of all best iris candidates with different hypothetical radius as an iris in the face image. Further, if none of the associated iris pairs is detected from the iris candidates, the first iris candidate is designated as the best iris candidate in the face image. And the center and radius of the designated best iris candidate is the desired iris.
Other objects, advantages, and novel features of the invention will become more apparent from the following detailed descriptions when taken in conjunction with the accompanying drawings.
With reference to
Due to the approximately circular-shaped iris, a deformable template match (DTM) technique is used to define a circular deformable template as shown in
where C is a periphery of the hypothetical radius rn, ds is an increment of the periphery along the hypothetical circular template Dn, φ(S) is a measurement value of a sampling point on the periphery, |C| is the perimeter of the hypothetical circular template Dn.
φ(S)=1.5φe(S)+φg(S),
where φe(S)=w(s)(go−gi) is a measurement value of a contrast between an outer intensity and an inner intensity of the periphery of the hypothetical circular template Dn, φg(S)=0.1×(255−gi) is a measurement value of the inner dark degrees of the hypothetical circular template Dn, gi is a gray-scale mean of the image inside a scanning line with the length equal to the hypothetical radius rn and the midpoint located on the periphery, go is a gray-scale mean of the image outside the scanning line, w(s) is a weighting factor of the sampling point, and φ(S) is a weighting summation of φe(S) and φg(S).
In the integration process of the energy function according to the embodiment, one sampling point on the periphery is selected every 22.5° (i.e. the increment is 22.5°) along the lower half periphery of the hypothetical circular template Dn (i.e. from 0° to 180°) in order to calculate φ(S), where Eg is an accumulative summation of the selected nine sampling points ((180÷22.5)+1=9). It is noted that w(s) is a weighting factor of the sampling point for estimating the importance of the sampling point so that the sampling points located on the same hypothetical circular template Dn would be defined with different weighting factors. Preferably, the sampling points close to the horizontal direction would be defined with higher weighting factors, otherwise, the sampling points close to the vertical direction would be defined with smaller weighting factors because irises may be covered by eyelids. With reference to
After all energies of pixels with various hypothetical circular template Dn in the searching regions R1, R2 are calculated by the image-process device, energies of pixels with each identical hypothetical radius rn would be respectively processed. That is, pixels with the same hypothetical radius having energies greater than a predetermined threshold are recorded as iris candidates (step S203). Then, the pixel having the maximal energy from the above pixels is recorded as a first iris candidate under the hypothetical radius rn (step S204).
Next, the image-process device detects a plurality of associated iris pairs from the foregoing iris candidates (step S205). In addition to irises, other similar dark regions in the face image 3, such as glasses, eyebrows, and hair, may also influence the recognition result. Therefore, the comparison between every two iris candidates is required for detecting the associated upper and lower iris candidates as the iris pairs, such as the combination of eyebrow/iris, glasses/iris, hair/eyebrow, or iris/eye socket in the face image 3. It is noted that in each iris pair, the lower iris candidate is assumed to be a possible iris in this embodiment.
With reference to
With reference to
The proceeding process is to select a best iris candidate from the first iris candidate and the second iris candidate having the same hypothetical radius rn. If the distance between the first iris candidate and the second iris candidate is larger than a predetermined distance (step S208), such as the hypothetical radius rn, and the energy of the first iris candidate is a predetermined multiple of the energy of the second iris candidate (step S209) (e.g. the energy of the first iris candidate is 1.5 times of that of the second iris candidate), the second iris candidate is the less possible location of the actual iris. Therefore, the first iris candidate is designated as the best iris candidate under its hypothetical radius rn (step S210). On the contrary, in step S208, if the distance between the first iris candidate and the second iris candidate is less than the hypothetical radius rn, the second iris candidate not only is associated with its upper iris candidate, but also much closer to the first iris candidate in the hypothetical circular template Dn. Thus, the second iris candidate is designated as the best iris candidate under its hypothetical radius rn (step S212).
In addition, in step S206, if none of the associated iris pairs is detected from the iris candidates, the first iris candidate is directly designated as the best iris candidate (step S211).
Finally, the best iris candidate having the maximal energy of all best iris candidates with different hypothetical radius between the minimal radius r1 and the maximal radius r2 is designated as the position of an iris (step S213). According to the aforesaid steps, positions of irises I1, I2 as shown in
In the present invention, the iris extraction method is improved on the basis of the circular DTM technique, and uses a redesigned energy function and the way of measurement according to conventional DTM technique so as to define a robust method. Therefore, irises are easily extracted under various kinds of face images. Besides, the process of comparison between iris candidates to detect associated iris pairs is also designed in the present invention so as to select the actual iris in imperfect face images, and thus reduce the interference of other objects.
Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Patent | Priority | Assignee | Title |
7844084, | Feb 27 2006 | FotoNation Limited | Rotation compensated iris comparison |
7970179, | Sep 25 2006 | Idemia Identity & Security USA LLC | Iris data extraction |
8014571, | May 15 2006 | Idemia Identity & Security USA LLC | Multimodal ocular biometric system |
8121356, | Sep 15 2006 | MORPHOTRUST USA, INC | Long distance multimodal biometric system and method |
8170293, | Sep 15 2006 | Idemia Identity & Security USA LLC | Multimodal ocular biometric system and methods |
8170343, | Jun 25 2007 | Intel Corporation | Method and system for searching images with figures and recording medium storing metadata of image |
8285005, | Jan 26 2005 | Gentex Corporation | Distance iris recognition |
8339506, | Apr 24 2009 | Qualcomm Incorporated | Image capture parameter adjustment using face brightness information |
8340364, | Sep 25 2006 | MORPHOTRUST USA, INC | Iris data extraction |
8391567, | May 15 2006 | MORPHOTRUST USA, INC | Multimodal ocular biometric system |
8433103, | Sep 15 2006 | MORPHOTRUST USA, INC | Long distance multimodal biometric system and method |
8436907, | May 09 2008 | Honeywell International Inc | Heterogeneous video capturing system |
8472681, | Jun 15 2009 | Honeywell International Inc. | Iris and ocular recognition system using trace transforms |
8577093, | Sep 15 2006 | Idemia Identity & Security USA LLC | Long distance multimodal biometric system and method |
8577094, | Apr 09 2010 | TOBII TECHNOLOGY LIMITED | Image template masking |
8630464, | Jun 15 2009 | Gentex Corporation | Adaptive iris matching using database indexing |
8644562, | Sep 15 2006 | Idemia Identity & Security USA LLC | Multimodal ocular biometric system and methods |
8742887, | Sep 03 2010 | Honeywell International Inc. | Biometric visitor check system |
8761458, | Mar 03 2006 | Gentex Corporation | System for iris detection, tracking and recognition at a distance |
8983146, | May 15 2006 | Idemia Identity & Security USA LLC | Multimodal ocular biometric system |
9135506, | Oct 19 2012 | Canon Kabushiki Kaisha | Method and apparatus for object detection |
9235762, | Sep 25 2006 | Idemia Identity & Security USA LLC | Iris data extraction |
9846739, | Oct 23 2006 | TOBII TECHNOLOGY LIMITED | Fast database matching |
Patent | Priority | Assignee | Title |
5291560, | Jul 15 1991 | IRISCAN INCORPORATED | Biometric personal identification system based on iris analysis |
6920237, | Dec 19 2000 | Monument Peak Ventures, LLC | Digital image processing method and computer program product for detecting human irises in an image |
20030016846, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 09 2003 | JENG, SHENG-WEN | Industrial Technology Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014238 | /0828 | |
Jun 24 2003 | Industrial Technology Research Institute | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 27 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 29 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 12 2018 | REM: Maintenance Fee Reminder Mailed. |
Apr 29 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 27 2010 | 4 years fee payment window open |
Sep 27 2010 | 6 months grace period start (w surcharge) |
Mar 27 2011 | patent expiry (for year 4) |
Mar 27 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 27 2014 | 8 years fee payment window open |
Sep 27 2014 | 6 months grace period start (w surcharge) |
Mar 27 2015 | patent expiry (for year 8) |
Mar 27 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 27 2018 | 12 years fee payment window open |
Sep 27 2018 | 6 months grace period start (w surcharge) |
Mar 27 2019 | patent expiry (for year 12) |
Mar 27 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |