water containing dissolved salts, such as calcium sulfate, calcium chloride, magnesium sulfate, magnesium chloride, sodium carbonate, sodium chloride, sodium sulfate, calcium bicarbonate, and mixtures thereof, is treated to reduce the concentration of those salts. About 0.1 to about 60 g/L of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, calcium hydroxide, calcium carbonate, aluminum hydroxide, aluminum sulfate, aluminum potassium sulfate, and mixtures thereof is added to the water, whereby a precipitate forms in the water. The precipitate is separated from said water and the water is desalinated using reverse osmosis, flash evaporation, or another method. The process is preferably performed by first adding calcium oxide or calcium hydroxide, separating the precipitate that forms, then adding sodium hydroxide and sodium carbonate to form a second precipitate.
|
1. A process for treating sea water comprising
(A) adding to said sea water about 0.1 to about 60 g/L of a compound selected from the group consisting of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, calcium oxide, calcium hydroxide, calcium carbonate, aluminum hydroxide, aluminum sulfate, aluminum potassium sulfate, and mixtures thereof, whereby a precipitate of a calcium compound forms in said water;
(B) separating said precipitate from said water; and
(C) desalinating said water to a first stream that has lower concentration of dissolved solids and an second stream that has a higher concentration of dissolved solids, and
(1) a mixture is formed of said second stream and said sea water;
(2) a sufficient amount of said compound is added to said mixture to bring its concentration within a range of about 0.1 to about 60 wt %; and
(3) said mixture is recycled to step (B).
12. A process for treating sea water to reduce the concentration of salts therein comprising
(A) adding to said sea water about 0.04 to about 40 g/L of a compound selected from the group consisting of calcium hydroxide, calcium oxide, and mixtures thereof, whereby a first precipitate that comprises calcium hydroxide is formed;
(B) separating said first precipitate from said water;
(C) adding to said water about 0.01 to about 60 g/L sodium carbonate and about 0.04 to about 40 g/L sodium hydroxide, whereby a second precipitate that comprises magnesium hydroxide is formed;
(D) separating said second precipitate from said water; and
(E) desalinating said water using reverse osmosis to produce a first stream that has a lower concentration of dissolved solids and a second stream that has a higher concentration of dissolved solids, and
(1) a mixture is formed of said second stream and said sea water;
(2) a sufficient amount of said compound is added to said mixture to bring its concentration within a range of about 0.4 to about 40 g/L; and
(3) said mixture is recycled to step (C).
15. A process for treating sea water to reduce the concentration of dissolved salts therein comprising
(A) adding to said sea water about 0.4 to about 40 g/L of a compound selected from the group consisting of calcium hydroxide, calcium oxide, and mixtures thereof, whereby a first precipitate that comprises calcium hydroxide is formed;
(B) separating said first precipitate from said water;
(C) adding to said water about 0.1 to about 60 g/L sodium carbonate and about 0.04 to about 40 g/L sodium hydroxide , whereby a second precipitate that comprises magnesium hydroxide is formed;
(D) separating said second precipitate from said water; and
(E) desalinating said water using flash evaporation to produce a first stream that has a lower concentration of dissolved solids and a second stream that has a higher concentration of dissolved solids, and
(1) a mixture is formed of said second stream and said sea water;
(2) a sufficient amount of said compound is added to said mixture to bring its concentration within a range of about 0.4 to about 40 g/L; and
(3) said mixture is recycled to step (C).
6. A process according to
8. A process according to
10. A process according to
11. A process according to
14. A process according to
17. A process according to
|
This invention relates to a process for pre-treating sea water so that it can be more effectively desalinated. In particular, it relates to a process in which certain compounds are added to sea water, which results in the precipitation of salts from the sea water, followed by desalination of the treated water.
As populations increase across the world, the supply of fresh water is not increasing as rapidly. This has resulted in local and national conflicts over water rights.
About 70 percent of the world's population lives within 50 miles of the sea and the sea could provide an almost inexhaustible source of fresh water if it could be inexpensively desalinated. The two principal processes for desalinating sea water are reverse osmosis and flash evaporation.
In reverse osmosis, the sea water is forced through membranes, which prevent most of the salts in the sea water from passing. In flash evaporation, the sea water is heated in special coils and evaporated water is condensed, leaving behind the salts. In both processes, only about 30 to 40% of the water is recovered and the remaining water, in which the salts are more highly concentrated, is dumped back into the sea, which can adverse affect marine life.
I have invented a process in which water containing dissolved salts is treated so that when the treated water is desalinated a higher percentage of fresh water can be recovered from it. In the process of this invention, certain compounds are added to the sea water, which results in the precipitation of some of the salts. The treated sea water has a lower salt concentration than did the original sea water and different salts are present in it. As a result, when the treated sea water is desalinated using reverse osmosis, flash evaporation, or another process, more fresh water is recovered.
Because salts such as calcium and magnesium bicarbonates and sulfates are removed in the pre-treatment process of this invention, the water can be heated to higher temperatures when it is desalinated in a flash evaporation process. Currently, temperatures above about 70° C. may result in the precipitation of salts in these processes, but since the pre-treatment process removes some of these salts, temperatures in excess of 70° C. can now be used, which reduces maintenance and extends the life of the equipment. When the water is desalinated using reverse osmosis after the pre-treatment process of this invention, there is less maintenance of the membranes and the life of the equipment is extended.
The compounds used in the process of this invention are safe and biodegradable and the sea water rejected in the desalination process causes less ecological damage when disposed of.
The solids that are precipitated from the sea water in the process of this invention are valuable minerals and can be used in industrial and agricultural processes or they can be added to distilled water to make it suitable for drinking.
The pre-treatment process of this invention is applicable to any aqueous solution of salts, such as sea water (including ocean water), brackish water (i.e., water containing a lower concentration of salts than sea water), or industrial brine solutions (such as from oil or gas drilling or from underground wells). It is particularly applicable to solutions containing dissolved calcium sulfate, calcium chloride, magnesium sulfate, magnesium chloride, sodium carbonate, sodium chloride, sodium sulfate, and calcium carbonate. For example, the process may be used to treat water containing about 0.1 to about 60 g/L calcium, about 0.1 to about 60 g/L magnesium, about 0.1 to about 60 g/L potassium, about 0.1 to about 60 g/L sodium, about 0.1 to about 60 g/L bicarbonate, about 0.1 to about 60 g/L carbonate, about 0.1 to about 60 g/L chlorine, and about 0.1 to about 60 g/L sulfate. The composition of sea water differs somewhat depending on its location. In the major ocean basins, 3.5% of the weight of sea water is, on average, dissolved salts and 96.5% is water, so that typically 1 kg sample of sea water contains 35 grams of salt. Thus, the average ocean salinity is approximately 35 parts per thousand. The salinity of ocean surface water is associated with latitude. Salinity can range from 15 parts per thousand in some coastal areas with high precipitation and river inflow, to well above 42 parts per thousand in some landlocked seas with high evaporation and low freshwater input. For example, the typical sea water international standard from Wormly, England contains about 0.4 g/L calcium, about 1.3 g/L magnesium, about 0.38 g/L potassium, about 10.7 g/L sodium, about 0.12 g/L bicarbonate, less than 0.002 g/L carbonate, about 19.4 g/L chloride, and about 2.7 g/L sulfate.
The water to be treated may be filtered first to remove sediment, marine life, and other solids. A compound selected from sodium hydroxide, sodium carbonate, sodium silicate, potassium hydroxide, potassium carbonate, calcium oxide, calcium hydroxide, calcium carbonate, aluminum hydroxide, aluminum sulfate, aluminum potassium sulfate, or a mixture thereof is mixed into the water. The preferred compounds are sodium hydroxide, sodium carbonate, calcium oxide, calcium hydroxide, and mixtures thereof. These compounds may be added as solids or, if it is more convenient, an aqueous solution of the compounds can be prepared and the solution can be added. The total amount of the compounds used may be about 0.1 to about 60% by weight (or by volume); less may not be effective and more may not dissolve. The preferred amount is about 0.2 to about 40% by weight (or by volume).
Shortly after the compounds are mixed into the water a white or brownish white precipitate will form and settle out. Depending upon the compound(s) added, the composition of the water, and other factors, the precipitate may consist of mixtures of calcium sulfate, calcium chloride, magnesium sulfate, magnesium chloride, sodium bicarbonate, sodium chloride, and other salts. The precipitate can be separated from the water by decantation followed by filtration, or any other suitable means.
The remaining treated water typically has a lower concentration of divalent cations, such as calcium and magnesium, and certain anions, such as bicarbonate, chloride, and sulfate, but a has a higher concentration of monovalent cations, such as sodium and potassium, and the carbonate anion. Thus, the pre-treatment not only removes salts from the water and reduces its salinity, it also substitutes monovalent cations for divalent cations. At this stage, the salinity of the original water may be reduced by about 20 to about 80% and its pH may be between about 8 and about 14.
For treating sea water, it is preferable to perform the pre-treatment using two separate additions of the compounds because that procedure removes more of the dissolved salts than does a single addition. In the first addition, about 0.04 to about 40 g/L of calcium oxide (quick lime) is added to the water. The calcium oxide reacts exothermically with the water to form calcium hydroxide. Alternatively, calcium hydroxide (slaked lime) can be added directly to the water, but it is preferably to use calcium oxide as more of the calcium hydroxide dissolves when it is formed by the reaction of calcium oxide with water. The preferred amount of calcium oxide is about 0.07 to about 30 g/L. This first addition results in the formation of a precipitate which is primarily calcium sulfate. It also raises the pH of the sea water from about 7.0 to about 8.5. The precipitate may be removed by decantation and/or filtration and the clear water is used in the second addition.
In the second addition, of about 0.1 to about 60 g/L of sodium carbonate and about 0.04 to about 40 g/L of sodium hydroxide are added. The preferred amount is about 0.12 to about 50 g/L of sodium carbonate and about 0.9 to about 34 g/L of sodium hydroxide. The compounds may be added either as a mixture or sequentially but it is preferably to add them as a mixture or simultaneously. The compounds may be added as dry solids or as concentrated liquids. Both sodium hydroxide and sodium carbonate are needed to increase the precipitation of calcium, magnesium, and iron (ferrous or ferric) as hydroxides and carbonates. The addition results in the formation of a white gelatinous precipitate which is primarily magnesium hydroxide, but may also contain some chlorides and other salts. The precipitate may be separated from the water by decantation and/or filtration.
The resulting clear water may have a mineral content less than 14,000 ppm (parts per million by weight), which is close to that of brackish seawater.
The pre-treatment can be performed as a continuous process or as a batch process. In a continuous process, the compounds are metered into the water, either in solution or as solids. In a batch process, the water is placed in a large container and the appropriate amounts of the compounds are added, usually as solids.
The pH of the pre-treated water may be in the range of about 8 to about 14. In order to reduce damage to the desalinating equipment, it may be preferable to reduce the pH of the water before desalinating it, though the pH reduction may also be performed after desalination. The pH can be lowered by the addition of an acid and the pH can be monitored during the addition of the acid to arrive at the desired pH, which is typically between about 6.5 and about 8.5. Acids suitable for this purpose include hydrochloric acid, sulfuric acid, acetic acid, and citric acid, though other acids may be used as well. The preferred acid is hydrochloric acid because the components of this acid exist in sea water.
After the pre-treatment, the water is desalinated to further remove salts therefrom. This can be accomplished by a variety of different methods, but the preferred methods are reverse osmosis, flash evaporation, or combinations thereof because these methods are effective and less expensive than other desalination methods. After desalination, the water should have a dissolved mineral (salt) content of less than about 500 ppm. The process of this invention may recover about 30 to about 80% of the water treated. The remaining water can be used in the synthesis of alkaline sodium-based compounds or it can be returned to the ocean.
Some of the compounds added in the pretreatment may remain in the water after it has been desalinated, especially if an excess amount of the compounds was added. As a result, the water remaining after desalination may still contain compounds that were added during the our pre-treatment process. It is advantageous to recycle this water to make use of those compounds. Also, returning the water to the ocean may damage marine life. And, it the water was desalinated using flash evaporation, its heat can be recovered during recycling.
The following example further illustrates this invention.
A 2000 ml beaker was filled with 1000 ml of sea water at room temperature (28° C.). To the sea water was added 2.8 g calcium oxide. After stirring for 1 to 5 minutes, the mixture was permitted to settle overnight. A white precipitate of calcium sulfate and calcium hydroxide formed. The clear water was decanted and filtered through 100 micron filter paper into a second clean 2000 ml beaker. The pH of this water was 7.5.
To the filtered water was added 21.5 g dry sodium carbonate and 12.5 g dry sodium hydroxide. The water was agitated to dissolve the added compounds. A gelatinous white precipitate formed, which was permitted to settle overnight. This precipitate is believed to consist of magnesium carbonate, magnesium hydroxide, sodium bicarbonate, and sodium chloride. The clear water was decanted through 100 micron filter paper into a third 2000 ml beaker. About 85 vol % of the original water was recovered. The pH of this water was about 10. This pre-treated sea water can now be used in a desalination process. The following table gives the results of this experiment:
Reporting
Original
Treated
Limit
Seawater
Seawater
Removed
Added
Ion
(mg/L)*
(mg/L)
(mg/L)
(mg/L)
(mg/L)
Wt %
Calcium
0.05
372
7.65
364.35
−97.94
Magnesium
0.10
1030
1.73
1028.27
−99.83
Potassium
0.10
315
336
21
+6.67
Sodium
0.10
8410
23,200
14,790
+175.86
Bicarbonate
2.00
114
<2.00
112
−98.25
Carbonate
2.00
<2.00
8440
8438
+421,900
Chloride
2.00
14,200
6200
8000
−56.34
Sulfate
1.00
2280
995
1285
−56.36
*precision of measurements
The table shows that if the chloride ion is used as a measurement of salinity, the salinity was reduced 56.34% as the following calculations show:
1.80655 × 14,2000
= 25,654
100%
1.80655 × 6,200
= 11,201
43.66%
Salinity reduction
14,453
56.35%
The flocculant produced was also analyzed. The following tables give the results of that analysis:
Reporting limit
Results
(mg/Kg)
(mg/Kg)
Ion
Calcium
10
79,100
Magnesium
10
228,000
Potassium
10
500
Sodium
10
36,000
Parameter
Chloride
2.00
90,000
Sulfate
485
<485
Patent | Priority | Assignee | Title |
10155175, | Jul 09 2013 | System and method of desalinating sea water | |
10501680, | Jan 23 2018 | Saudi Arabian Oil Company | Treating seawater for hydrocarbon production |
11028312, | Jan 23 2018 | Saudi Arabian Oil Company | Treating seawater for hydrocarbon production |
11230661, | Sep 05 2019 | Saudi Arabian Oil Company | Propping open hydraulic fractures |
11326092, | Aug 24 2020 | Saudi Arabian Oil Company | High temperature cross-linked fracturing fluids with reduced friction |
11661541, | Nov 11 2021 | Saudi Arabian Oil Company | Wellbore abandonment using recycled tire rubber |
11746280, | Jun 14 2021 | Saudi Arabian Oil Company | Production of barium sulfate and fracturing fluid via mixing of produced water and seawater |
7595001, | Nov 05 2002 | GEO-PROCESSORS USA, INC | Process for the treatment of saline water |
7744761, | Jun 28 2007 | ARELAC, INC | Desalination methods and systems that include carbonate compound precipitation |
7749476, | Dec 28 2007 | ARELAC, INC | Production of carbonate-containing compositions from material comprising metal silicates |
7753618, | Jun 28 2007 | ARELAC, INC | Rocks and aggregate, and methods of making and using the same |
7754169, | Dec 28 2007 | ARELAC, INC | Methods and systems for utilizing waste sources of metal oxides |
7771684, | Sep 30 2008 | ARELAC, INC | CO2-sequestering formed building materials |
7790012, | Dec 23 2008 | ELERYC, INC | Low energy electrochemical hydroxide system and method |
7815880, | Sep 30 2008 | ARELAC, INC | Reduced-carbon footprint concrete compositions |
7829053, | Oct 31 2008 | ARELAC, INC | Non-cementitious compositions comprising CO2 sequestering additives |
7875163, | Jul 16 2008 | ELERYC, INC | Low energy 4-cell electrochemical system with carbon dioxide gas |
7887694, | Dec 28 2007 | ARELAC, INC | Methods of sequestering CO2 |
7914685, | Jun 28 2007 | ARELAC, INC | Rocks and aggregate, and methods of making and using the same |
7931809, | Jun 28 2007 | ARELAC, INC | Desalination methods and systems that include carbonate compound precipitation |
7939336, | Sep 30 2008 | ARELAC, INC | Compositions and methods using substances containing carbon |
7966250, | Sep 11 2008 | ARELAC, INC | CO2 commodity trading system and method |
7993500, | Jul 16 2008 | ELERYC, INC | Gas diffusion anode and CO2 cathode electrolyte system |
7993511, | Jul 15 2009 | ELERYC, INC | Electrochemical production of an alkaline solution using CO2 |
8006446, | Sep 30 2008 | ARELAC, INC | CO2-sequestering formed building materials |
8137444, | Mar 10 2009 | ARELAC, INC | Systems and methods for processing CO2 |
8333944, | Dec 28 2007 | ARELAC, INC | Methods of sequestering CO2 |
8357270, | Jul 16 2008 | ELERYC, INC | CO2 utilization in electrochemical systems |
8431100, | Sep 30 2008 | ARELAC, INC | CO2-sequestering formed building materials |
8470275, | Sep 30 2008 | ARELAC, INC | Reduced-carbon footprint concrete compositions |
8491858, | Mar 02 2009 | ARELAC, INC | Gas stream multi-pollutants control systems and methods |
8603424, | Sep 30 2008 | ARELAC, INC | CO2-sequestering formed building materials |
8647509, | Jun 15 2010 | BL TECHNOLOGIES, INC | Seawater desalination plant and production of high purity salt |
8834688, | Feb 10 2009 | ELERYC, INC | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
8869477, | Sep 30 2008 | ARELAC, INC | Formed building materials |
8883104, | Mar 02 2009 | ARELAC, INC | Gas stream multi-pollutants control systems and methods |
8894830, | Jul 16 2008 | ELERYC, INC | CO2 utilization in electrochemical systems |
9096447, | Aug 29 2012 | LUMMUS TECHNOLOGY LLC | Water treatment system with carbon regeneration circuit |
9133581, | Oct 31 2008 | ARELAC, INC | Non-cementitious compositions comprising vaterite and methods thereof |
9260314, | Dec 28 2007 | ARELAC, INC | Methods and systems for utilizing waste sources of metal oxides |
9267211, | Feb 10 2009 | ELERYC, INC | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
9382135, | Oct 06 2011 | BL TECHNOLOGIES, INC | Seawater desalination process |
9468863, | Jul 09 2013 | System and method of desalinating seawater | |
9802845, | Sep 09 2011 | SYLVAN SOURCE, INC | Industrial water purification and desalination |
9862643, | May 26 2016 | X Development LLC | Building materials from an aqueous solution |
9873650, | May 26 2016 | X Development LLC | Method for efficient CO2 degasification |
9914644, | Jun 11 2015 | X Development LLC | Energy efficient method for stripping CO2 from seawater |
9914683, | May 26 2016 | X Development LLC | Fuel synthesis from an aqueous solution |
9915136, | May 26 2016 | X Development LLC | Hydrocarbon extraction through carbon dioxide production and injection into a hydrocarbon well |
ER3355, | |||
ER9295, |
Patent | Priority | Assignee | Title |
2395743, | |||
2415074, | |||
2796395, | |||
3128248, | |||
3350292, | |||
3740330, | |||
4036749, | Apr 30 1975 | Purification of saline water | |
4083781, | Jul 12 1976 | Stone & Webster Engineering Corporation | Desalination process system and by-product recovery |
4170328, | Feb 02 1978 | Desalination by the inverse function of the known (salting-out) effect within an improved centrifuge | |
4462713, | Jun 01 1982 | Method for mining and reclaiming land | |
4634533, | Apr 26 1985 | HAGAN, JOHN W , P O BOX 336, THORNVILLE, OH , 43076 | Method of converting brines to useful products |
4670150, | May 27 1983 | USFilter Corporation | Cross-flow microfiltration lime softener |
5626825, | Jul 21 1994 | V.B.C. S.r.l. | Process for the purification of magnesium hydroxide |
6113797, | Oct 01 1996 | Cummins Engine Company, Inc | High water recovery membrane purification process |
6126834, | Mar 03 1997 | Zenon Environmental Inc | High resistivity water production with controlled water temperatures |
6187200, | Oct 12 1994 | TORAY INDUSTRIES, INC | Apparatus and method for multistage reverse osmosis separation |
6402956, | Jan 22 1999 | Nitto Denko Corporation | Treatment system and treatment method employing spiral wound type membrane module |
6428705, | Nov 26 1996 | Ionics, Incorporated | Process and apparatus for high flow and low pressure impurity removal |
6461514, | Oct 01 1996 | High water recovery single stage membrane process | |
6508936, | Oct 01 1997 | Saline Water Conversion Corporation | Process for desalination of saline water, especially water, having increased product yield and quality |
6679988, | Jan 09 2002 | Mechanical Equipment Company, Inc. | Apparatus for producing USP or WFI purified water |
6758977, | Oct 25 2001 | The Mosaic Company | Purification of phosphoric acid plant pond water |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Apr 12 2010 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 26 2014 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
May 15 2018 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Apr 03 2010 | 4 years fee payment window open |
Oct 03 2010 | 6 months grace period start (w surcharge) |
Apr 03 2011 | patent expiry (for year 4) |
Apr 03 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 03 2014 | 8 years fee payment window open |
Oct 03 2014 | 6 months grace period start (w surcharge) |
Apr 03 2015 | patent expiry (for year 8) |
Apr 03 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 03 2018 | 12 years fee payment window open |
Oct 03 2018 | 6 months grace period start (w surcharge) |
Apr 03 2019 | patent expiry (for year 12) |
Apr 03 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |