The use of two separate ensemble averagers for processing a detected waveform for use in calculating oxygen saturation and a pulse rate. The ensemble averager used for calculating oxygen saturation operates on a signal which has been normalized, while the ensemble averager for the pulse rate calculation operates on a signal which has not been normalized. The metrics chosen for the two paths through the two ensemble averagers can be varied to optimize the ensemble averaging for oxygen saturation or pulse rate calculations.

Patent
   7209774
Priority
Mar 08 2004
Filed
Apr 27 2006
Issued
Apr 24 2007
Expiry
Mar 08 2024

TERM.DISCL.
Assg.orig
Entity
Large
28
20
all paid
1. A method for processing signals in a pulse oximeter to determine oxygen saturation and pulse rate, comprising:
receiving waveforms corresponding to two different wavelengths of light from a patient;
low pass filtering the waveforms in a first low pass filter;
calculating a pulse rate based on an output of the first low pass filter;
normalizing the waveforms to produce normalized waveforms;
low pass filtering the normalized waveforms in a second low pass filter; and
calculating an oxygen saturation based on an output of the second low pass filter.
2. A pulse oximeter for determining oxygen saturation and pulse rate, comprising:
a detector which receives waveforms corresponding to two different wavelengths of light from a patient;
a first low pass filter configured to filter the waveforms;
a pulse rate calculator configured to calculate a pulse rate based on an output of the first low pass filter;
a normalizer configured to normalize the waveforms to produce normalized waveforms;
a second low pass filter configured to filter the normalized waveforms; and
an oxygen saturation calculator configured to calculate an oxygen saturation based on an output of the second low pass filter.

This application is a Continuation of U.S. application Ser. No. 10/796,578, filed Mar. 8, 2004, which will be issued on May 2, 2006 as U.S. Pat. No. 7,039,538, the disclosure of which is hereby incorporated by reference.

NOT APPLICABLE

NOT APPLICABLE

The present invention relates to oximeters, and in particular to ensemble averaging of pulses in a detected waveform from a pulse oximeter.

Pulse oximetry is typically used to measure various blood chemistry characteristics including, but not limited to, the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and the rate of blood pulsations corresponding to each heartbeat of a patient. Measurement of these characteristics has been accomplished by use of a non-invasive sensor which scatters light through a portion of the patient's tissue where blood perfuses the tissue, and photoelectrically senses the absorption of light in such tissue. The amount of light absorbed at various wavelengths is then used to calculate the amount of blood constituent being measured.

The light scattered through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of transmitted light scattered through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption. For measuring blood oxygen level, such sensors have typically been provided with a light source that is adapted to generate light of at least two different wavelengths, and with photodetectors sensitive to both of those wavelengths, in accordance with known techniques for measuring blood oxygen saturation.

Known non-invasive sensors include devices that are secured to a portion of the body, such as a finger, an ear or the scalp. In animals and humans, the tissue of these body portions is perfused with blood and the tissue surface is readily accessible to the sensor.

N-100. The N-100 technology, dating to around 1985, accepted or rejected pulses based on pulse history of the size of pulses, pulse shape, expected time to occur (frequency) and ratio of R/IR.

In particular, the N-100 found pulses by looking for a signal maximum, followed by a point of maximum negative slope, then a minimum. The processing was done in a state machine referred to as “munch.” Each maximum was not qualified until the signal passed below a noise threshold, referred to as a noise gate. This acted as an adaptive filter since the noise gate level was set by feedback from a subsequent processing step to adapt to different expected signal amplitudes. The pulses are then accepted or rejected in a “Level3” process which was a filter which adapts to changing signals by comparing the amplitude, period and ratio-of-ratios (ratio of Red to IR, with Red and IR being expressed as a ratio of AC to DC) of a new pulse to the mean of values in a history buffer, then determining if the difference is within a confidence level. If the new pulse was accepted, the history buffer was updated with the values for the new pulse. The level3 process acted as an adaptive bandpass filter with center-frequency and bandwidth (confidence limits) being adapted by feedback from the output of the filter.

N-200. The N-200 improved on the N-100 since it could be synchronized with an ECG, and included ECG filtering. The N-200 also added interpolation to compensate for baseline shift between the time of measuring the pulse maximum and minimum. The N-200 included other filtering features as well, such as a “boxcar” filter which computed the mean of a varying number of signal samples.

The N-200, after various filtering and scaling steps, applies the digitized signals to a “boxcar” filter, which computes the mean of N samples, where N is set by feedback from a subsequent processing step according to the filtered heart rate. New samples are averaged into the boxcar filter, while the oldest samples are dropped. The boxcar length (N) is used to set three parameters: a pulse threshold, absolute minimum pulse and small pulse. An ensemble-averaging (a.k.a “slider”) filter then produces a weighted average of the new samples and the previous ensemble-averaged sample from one pulse-period earlier. The samples are then passed to a “munch” state machine and a noise gate, like the N-100. An interpolation feature is added to the N-100 process, to compensate for changes in the baseline level. Since the minimum and maximum occur at different times, a changing baseline may increase or decrease the minimum and not the maximum, or vice-versa.

“Ensemble averaging” is an integral part of C-Lock, which is NELLCOR's trademark for the process of averaging samples from multiple pulses together to form a composite pulse. This process is also known as “cardiac-gated averaging.” It requires a “trigger” event to mark the start of each pulse.

Conlon U.S. Pat. No. 4,690,126 discloses ensemble averaging where different weights are assigned to different pulses and a composite, averaged pulse waveform is used to calculate oxygen saturation. The N-100 described above is described in U.S. Pat. No. 4,802,486. Aspects of the N-200 are described in U.S. Pat. No. 4,911,167 (Corenman) and U.S. Pat. No. 5,078,136 (Stone).

The present invention is directed to the use of two separate ensemble averagers for processing a detected waveform for use in calculating oxygen saturation and a pulse rate. The ensemble averager used for calculating oxygen saturation operates on a signal which has been normalized, while the ensemble averager for the pulse rate calculation operates on a signal which has not been normalized. Note that the waveforms corresponding to both wavelengths must be normalized by the same quantity, such as the IR pulse amplitude, so as to preserve the ratio-of-ratios for oxygen saturation computation.

The use of a signal without normalization for the pulse rate improves the software's ability to disqualify artifacts that are substantially larger than physiological pulses, such as motion artifact. The use of a signal without normalization for the pulse rate avoids a pulse being missed due to normalization.

The metrics chosen for the two paths through the two ensemble averagers can be varied to optimize the ensemble averaging for oxygen saturation or pulse rate calculations. For example, a lower threshold is used for a metric to detect arrhythmic pulses when used to calculate pulse rate, as compared to calculating oxygen saturation. Also, a metric for a short term pulse amplitude ratio will be small when motion artifact has just subsided, and this is given more weight in the pulse rate calculation than in the oxygen saturation calculation (the short-term pulse amplitude ratio is current pulse amplitude/previous pulse amplitude).

FIG. 1 is a block diagram of an oximetry system incorporating an embodiment of the invention.

FIG. 2 is a diagram of the software processing blocks of an oximeter including an embodiment of the present invention.

FIG. 3 is a diagram showing the creation of a composite pulse.

FIG. 4 is a chart of the ensemble averaging performance.

FIGS. 5–7 are diagrams of state machines for updating certain variables in a composite pulse buffer.

FIG. 1 illustrates an embodiment of an oximetry system incorporating the present invention. A sensor 10 includes red and infrared LEDs and a photodetector. These are connected by a cable 12 to a board 14. LED drive current is provided by an LED drive interface 16. The received photocurrent from the sensor is provided to an I-V interface 18. The IR and red voltages are then provided to a sigma-delta interface 20 incorporating the present invention. The output of sigma-delta interface 20 is provided to a microcontroller 22 which includes a 10-bit A/D converter. Controller 22 includes flash memory for a program, and EEPROM memory for data. The processor also includes a controller chip 24 connected to a flash memory 26. Finally, a clock 28 is used and an interface 30 to a digital calibration in the sensor 10 is provided. A separate host 32 receives the processed information, as well as receiving an analog signal on a line 34 for providing an analog display.

Design Summary The design of the present invention is intended to deal with unwanted noise. Signal metrics are measured and used to determine filter weighting. Signal metrics are things that indicate if a pulse is likely a plethysmograph or noise, such as frequency (is it in the range of a human heart rate), shape (is it shaped like a heart pulse), rise time, etc. A similar technique was used in the Nellcor N200, described in the background of this application. The new design adds a number of different features and variations, such as the use of two ensemble averagers as claimed in the present invention.

Details of the architecture are shown in the diagram of FIG. 2. This design calculates both the oxygen saturation, and the pulse rate, which are described separately below.

I. Oxygen Saturation Calculation.

A. Signal Conditioning—The digitized red and IR signals are received and are conditioned in this block by (1) taking the 1st derivative to get rid of baseline shift, (2) low pass filtering with fixed coefficients, and (3) dividing by a DC value to preserve the ratio. The function of the Signal Conditioning subsystem is to emphasize the higher frequencies that occur in the human plethysmograph and to attenuate low frequencies in which motion artifact is usually concentrated. The Signal Conditioning subsystem selects its filter coefficients (wide or narrow band) based on hardware characteristics identified during initialization.

B. Pulse Identification and Qualification—The low pass filtered and digitized red and IR signals are provided to this block to identify pulses, and qualify them as likely arterial pulses. This is done using a pre-trained neural network, and is primarily done on the IR signal. The pulse is identified by examining its amplitude, shape and frequency, just as was done in the Nellcor N-100. An input to this block is the average pulse period from block D. This function is similar to the N-100, which changed the upfront qualification using the pulse rate. The output indicates the degree of arrhythmia and individual pulse quality.

C. Compute Signal Quality Metrics—This block determines the pulse shape (derivative skew), period variability, pulse amplitude and variability, Ratio of Ratios variability, and frequency content relative to pulse rate.

D. Average Pulse Periods. This block calculates the average pulse period from the pulses received.

E1. Lowpass Filter and Ensemble Averaging—Block E1 low pass filters and ensemble averages the signal conditioned by block A, and normalized by block C, for the pulse rate identification. The weights for the low pass filter are determined by the Signal Metrics block C. The signal is also ensemble averaged (this attenuates frequencies other than those of interest near the pulse rate and its harmonics), with the ensemble averaging filter weights also determined by Signal Metrics block C. Less weight is assigned if the signal is flagged as degraded. More weight is assigned if the signal is flagged as arrhythmic because ensemble-averaging is not appropriate during arrhythmia. Red and IR are processed separately, but with the same filtering weights. The filtering is delayed approximately one second to allow the signal metrics to be calculated first.

The filters use continuously variable weights. If samples are not to be ensemble-averaged, then the weighting for the previous filtered samples is set to zero in the weighted average, and the new samples are still processed through the code. This block tracks the age of the signal—the accumulated amount of filtering (sum of response times and delays in processing). Too old a result will be flagged (if good pulses haven't been detected for awhile).

F. Estimate Filtered Waveform Correlation and Calculate Averaging Weight—this uses a noise metric similar to that used in the N100 and N200 described above, and doesn't use feedback. The variable weighting for the filter is controlled by the ratio-of-ratios variance. The effect of this variable-weight filtering is that the ratio-of-ratios changes slowly as artifact increases and changes quickly as artifact decreases. The subsystem has two response modes. Filtering in the Fast Mode targets an age metric of 3 seconds. The target age is 5 seconds in Normal Mode. In Fast Mode, the minimum weighting of the current value is clipped at a higher level. In other words, a low weight is assigned to the newest ratio-of-ratios calculation if there is noise present, and a high weight if no noise is present.

H. Calculate Saturation—Saturation is calculated using an algorithm with the calibration coefficients and averaged ratio of ratios.

II. Pulse Rate Calculation.

E2. Lowpass Filter and Ensemble Averaging—Block E2 low pass filters and ensemble averages the signal conditioned by block A, for the pulse rate identification. The weights for the low pass filter are determined by the Signal Metrics block C. The signal is also ensemble averaged (this attenuates frequencies other than those of interest near the pulse rate and its harmonics), with the ensemble averaging filter weights also determined by Signal Metrics block C. Less weight is assigned if the signal is flagged as degraded. More weight is assigned if the signal is flagged as arrhythmic since filtering is not appropriate during arrhythmia. Red and IR are processed separately. The process of this block is delayed approximately one second to allow the signal metrics to be calculated first.

The filters use continuously variable weights. If samples are not to be ensemble-averaged, then the weighting for the previous filtered samples is set to zero in the weighted average, and the new samples are still processed through the code. This block tracks the age of the signal—the accumulated amount of filtering (sum of response times and delays in processing). Too old a result will be flagged (if good pulses haven't been detected for awhile).

I. Filtered Pulse Identification and Qualification—This block identifies and qualifies pulse periods from the filtered waveforms, and its results are used only when a pulse is disqualified by block B.

J. Average Pulse Periods and Calculate Pulse Rate—This block calculates the pulse rate and average pulse period.

III. Venous Pulsation

K. Detect Venous Pulsation—Block K receives as inputs the pre-processed red and IR signal and age from Block A, and pulse rate and provides an indication of venous pulsation as an output. This subsystem produces an IR fundamental waveform in the time domain using a single-tooth comb filter which is output to the Ensemble Averaging filters.

IV. Sensor Off

L. Detect Sensor-Off and Loss of Pulse Amplitude—The Pulse Lost and Sensor Off Detection subsystem uses a pre-trained neural net to determine whether the sensor is off the patient. The inputs to the neural net are metrics that quantify several aspects of the behavior of the IR and Red values over the last several seconds. Samples are ignored by many of the algorithm's subsystems while the Signal State is not either Pulse Present or Sensor Maybe Off. The values of the Signal State variable are: “Pulse Present, Disconnect, Pulse Lost, Sensor Maybe Off, and Sensor Off.”

Ensemble Averaging subsystem. The function of the Ensemble Averaging subsystem is to filter its input streams with a variable weighting, and output waveforms that are less distorted by noise or motion artifact. Reducing the degree of artifact in the filtered waveforms enables a more robust saturation or rate estimate during motion or noise.

The Ensemble Averaging subsystem requires IR and Red inputs every sample that are zero-mean over the span of several pulses.

Input samples are first IIR lowpass filtered with a weight received from the Signal Metrics subsystem (LPF_Weight) and then stored in a one-second-delay buffer.

It averages the ith IR and Red samples of the current one-second delayed input pulse with the ith samples of the previous composite pulse to form the ith samples of the current composite pulse. The trigger to start the beginning of a pulse period is derived from (in order of priority) the RWave_Occurred input and the average period input (Optical_Period). The weight given to the current sample versus the corresponding sample of the previous pulse is determined by the value of Ensemble_Averaging_Weight value received from the Signal Metrics subsystem.

This composite pulse is less distorted by noise or motion artifact than the filter's input pulses. FIG. 3 is a conceptual illustration of how pulses are averaged together to form the composite pulse.

The subsystem receives and qualifies triggers, which should be synchronous with the heartbeat. The triggers are qualified R-Wave triggers from the R-wave Qualification subsystem when available. When R-Wave triggers are unavailable, the triggers are generated internally from the average period input from the Pulse Rate Calculation subsystem (Optical_Period). A “pulse” is considered to start at each qualified trigger and end at the next qualified trigger. In this way, consecutive triggers are used to define the ensemble averaging period.

FIG. 4 shows a representation of the subsystem's response to a series of pulses corrupted by motion artifact. The vertical lines are R-Wave triggers. The filtered output restores the approximate shape and size of the input pulses. The amount of averaging increases as the motion artifact increases as determined by the Ensemble_Averaging_Weight received from Signal Metrics subsystem.

FIG. 4 is an example of the Ensemble Averaging subsystem's variable weighting. R-Wave triggers mark the start of each pulse. The IR Input line shows pulses corrupted by motion artifact. The Filtered IR line is a composite of multiple pulses that largely restores the original pulse size and shape. Filtered IR is delayed by one second from the IR input.

Lowpass Filter—The IR and Red input waveforms are IIR filtered using a weight (LPF_Weight) received from the Signal Metrics subsystem as follows:
Lowpass_Waveformst=Lowpass_Waveformst−1+LPF_Weight*(Input_Waveformst+Lowpass_Waveformst−1)

During subsystem initialization, the weight is set to a default of 1.0.

One-Second Delay Buffer—The IR and Red Lowpass_Waveforms (along with their associated age and status) and the RWave_Occurred input are stored in one-second long buffers (IR_Inputs, Red_Inputs, Input_Valid, Age_Inputs, RWave_Inputs).

Timestamp—The timestamp (Current_Time_ctr) is simply a 32-bit counter that is initialized to 0 and then incremented every sample period. Several received values are stored along with their timestamps in order to reconstruct their age.

Ensemble Weight Buffer—The last four Ensemble_Averaging_Weights received and their timestamps are stored in the Ensemble_Average_Buffer and the Ensemble_Weight_Timestamp. This allows every entry in the one-second delay buffers to be associated with its correct weight. Whenever delayed inputs are retrieved from the one-second delay buffers, the associated ensemble weight is set to the oldest weight in this buffer that is at least as recent as the delayed sample (weight timestamp+one second≧Current_Time_ctr).

Trigger Qualification—The subsystem selects its trigger from one of two inputs: RWave_Occurred or Optical_Period. RWave_Occurred is the default trigger. Before RWave_Occurred is used as a trigger, it passes through the one-second-delay buffer mentioned earlier in order to be synchronous with the delayed IR and red samples. Triggers based on Optical_Period input from the Pulse Rate Calculation subsystem are only qualified when R-Wave triggers have not been received for at least five seconds. This waiting period is deemed sufficient to determine that R-Wave triggers are unavailable. Then, the first trigger from the Optical_Period is delayed until the first zero-crossing of the subsystem's Optical_Trigger_WF input waveform. Subsequently, the trigger is derived solely from Optical_Period.

Ensemble Averaging Model—The subsystem receives IR and Red input samples and a trigger to indicate the start of each pulse. Note that the IR and Red inputs have already been lowpass filtered and passed through the one-second-delay buffer. It estimates the pulsatile component of its current input sample by averaging the ith sample of the current pulse with the ith sample of the previous estimated pulse.

The filter output is therefore a composite of multiple pulses, calculated as each sample is received. The filter has the frequency response of a comb filter that only passes frequencies at or near the pulse rate and its harmonics. The amount of averaging determines the width of the comb filter's “teeth”.

The filter assumes that the ith sample value of the current pulse is roughly equal to the ith sample of the previous pulse. Note that i is a ramp function of time, t, that has a value of zero at each qualified trigger and increments at each subsequent sample.

Ensemble Averaging Filter Equations and Intermediate Variables—The Ensemble Averaging filter uses the Ensemble_Averaging_Weight, w, which is supplied by the Signal Metrics subsystem. The following equation shows the basic steps that must be performed at the ith sample of every pulse:
zi=z′i+wt(xt−z′i)  (1)
where z′i denotes the value of zi from one pulse ago. zi is the ensemble-filtered output of the subsystem. All zis are stored in the Composite Pulse Buffer. xt is the most recent output sample from the one-second-delay buffer. All the variables in equation 1 are scalars.

Composite Pulse Buffers—The composite IR and Red pulses are stored in separate Composite Pulse Buffers. The index, i, is reset to the start of the buffers when a trigger is received and then incremented for each sample.

The buffers must be long enough to store one 20 BPM pulse plus a 10 percent margin to allow for pulse-rate variability. Therefore, the buffers are updated with at least 1.1 consecutive composite pulses at 20 BPM and two composite pulses at most pulse rates. If i should go past the end of the buffer, normal processing must be suspended until the next trigger, during which time the filter's outputs will be set identical to its inputs.

When the interval between triggers gets longer, the Composite Pulse Buffers may not contain recent samples to average at the end of a pulse.

The jth sample of the composite pulse is calculated each sample, where j=i+m and m is the number of samples between the current and previous qualified triggers, i.e the pulse period. Note that j, like i, is a ramp function of t.

For j, equation (1) is modified to read:
zjz′j+wt(xt−z′j)  (1b)

The same value of w is used to calculate zi and zj. When j reaches the end of the buffer, calculation of zj must be suspended until j becomes valid again.

Changing pulse periods might cause small discontinuities in the subsystem output after each trigger is received. Special processing during the first four samples after a trigger reduces this effect. The filtered output sample is interpolated between the standard output (equation 1) and the second composite pulse (equation 1b), so that the filtered output is respectively 80%, 60%, 40%, and 20% of zj on these samples. If the second composite pulse is not available, the input waveform is used in its place.

Initialization, Reinitialization, Clearing and Ignored Samples—Until two triggers plus one second samples have been received, j is meaningless and zj is not calculated.

The subsystem contains two methods to recover from an interruption in processing. When more than five seconds elapse between triggers, the subsystem is “cleared” at the next qualified trigger. The clearing operation sets all of the subsystem's persistent variables to their initial values, with the exception of the following variables that are essential to trigger qualification and maintaining the one-second-delay buffers:

This “clearing” operation is performed because this condition should be rare and may indicate a lengthy interruption in processing. The filter outputs are also identical to the filter inputs whenever i overflows the end of the Composite Pulse buffer.

When a sample is ignored (not processed) due to lack of valid input for periods under five seconds, the Composite Pulse Buffer is left unchanged and the subsystem's outputs are marked Invalid. When processing resumes and if Optical_Period is non-zero, the buffer's indices are reset to what they should have been an integral number of pulse periods ago and the one-second-delay buffers are reset. This is done because the Composite Pulse Buffer should still contain an accurate representation of current pulses after a brief interruption in processing. The subsystem is “cleared” if the Optical_Period estimate is zero (invalid) or samples are ignored for at least five seconds. Most “ignored samples” are expected to be due to the adjustments in the oximeter's LED brightness or amplifier gain, which generally take less than two seconds. The equations for resetting the indices are as follows:
Elapsed_Periods=int(Interruption_Duration/Optical_Period)
Samples_In_Fractional_Period=Interruption_Duration−Elapsed_Periods* Optical_Period
NewIdx=round(iIdx+Samples_In_Fractional_Period) or if NewIdx≧Optical_Period)
NewIdx=round(iIdx+Samples_In_Fractional_Period—Optical_Period)
j=NewIdx+j−iIdx, provided j has not already overflowed, and would not overflow, the Composite Pulse Buffer.
i_Idx=New_Idx, provided i_Idx has not already overflowed, and would not overflow, the Composite Pulse Buffer.

The Ensemble Averaging subsystem is reinitialized when the Pulse Lost and Sensor Off Detection subsystem determines that a pulse has been re-acquired after being absent for a prolonged period of time, or when a sensor is connected. “Reinitialization” means that ALL of the subsystem's persistent variables are set to their initial values. This is done because both of the events that invoke reinitialization make it likely that the Ensemble Averaging subsystem's previous pulse representation is no longer current.

The elapsed time intervals since the last R-wave and the last qualified trigger are incremented on ignored samples. R-Waves or zero-crossings that occur during ignored samples are not used to qualify triggers.

The state transition diagrams of FIGS. 5–7 show the state machines for updating each of the two pulses maintained in the Composite Pulse Buffers and their indices.

Age Metric—The subsystem receives the age in samples, Age_Inputst, of its IR and Red inputs and outputs the age, Age_Outi, of its composite pulse outputs. For each sample, Age_Outi, is incremented by the elapsed time since it was last updated and then averaged with Age_Inputst, using the filter weight (Ensemble_Averaging_Weight), w, used to update the composite waveforms. The formula for Age_Outt is:
age_outi=age_out′i+m+wt((age_int+N)−(age_out′i+m))
where m is the number of samples since Age_Outi was last updated and N is the number of samples in one second. The timestamp at which each Age_Outj is updated must be stored in order to calculate m.

The subsystem must also update Age_Outj. The formula for Age_Outj is as above, except that j is substituted for i.

The subsystem must increment a current timestamp (Current_Time_Ctr) every sample, including ignored samples.

When the subsystem is cleared or reinitialized, all entries in the Age_Out buffer are reinitialized to Age_Inputst. Furthermore, all entries in the buffer for the timestamps at which the Age_Out entries were updated are set to the current timestamp minus 1. These steps are taken to assure that the Age_Out values are no older than the elapsed time since the subsystem was cleared or reinitialized.

The Ensemble Averaging instance whose waveforms are used for pulse qualification and pulse rate uses Rate_LPF_Weight, which depends solely on frequency content. The Ensemble Averaging instance whose waveforms are used to calculate ratio-of-ratios and saturation uses Sat_LPF_Weight, which also depends on whether the RoR_Variance metric would be better (lower) with the addition of lowpass filtering. These weights will range between 0.1 and 1.0, and will not increase more than 0.05 in any single step.

Ensemble Averaging Weights

When the subsystem is notified that the Pulse Identification and Qualification subsystem has just completed evaluation of a potential pulse, the subsystem updates ensemble-averaging weights, used by the instances of the Ensemble Averaging subsystem. Separate weights are computed for the two Ensemble Averaging instances whose outputs are used in computing saturation and pulse rate. These weights are based in part on metrics provided by the instance of the Pulse Identification and Qualification subsystem whose input waveforms have NOT been ensemble averaged.

The equations for Sat_Ensemble_Averaging_Filter_Weight are as follows:
x=max(Short_RoR_Variance, Pulse_Qual_RoR_Variance/1.5)*max(Long_Term_Pulse_Amp_Ratio, 1.0)
RoR_Variance_BasedFiltWt=0.5*0.05/max(0.05, x)
ArrProb=(PeriodVar−0.1*ShortRoR_Variance−0.09)/(0.25−0.09);
ArrMinFiltWt_ForSat=0.05+0.5*bound(ArrProb, 0, 1.0)
Sat_Ensemble_Averaging_Filter_Weight=max(RoR_Variance_BasedFiltWt, ArrMinFiltWt_ForSat)*(1.0+PulseQual_Score)
Sat_Ensemble_Averaging_Filter_Weight=min(Sat_Ensemble_Averaging_Filter_Weight, 1.0)
where bound (a, b, c) denotes min(max(a, b), c).

The above equations result in a default weight of 0.5 for low values of the Ratio-of-Ratios variances. Short_RoR_Variance and Pulse_Qual_RoR_Variance are both computed over a three-second interval. The interval for Pulse_Qual_RoR_Variance ends with the qualification or rejection of the most recent pulse, which would usually include the most recent samples. The weight is reduced by high Ratio-of-Ratios variances, and by high values of Long_Term_Pulse_Amp_Ratio that would typically indicate motion artifact. Arr_Min_Filt_Wt_For_Sat imposes a minimum value on the ensemble-averaging weight (range 0.05–0.55) based primarily on Period_Var, which quantifies the degree of arrhythmia. This is done because ensemble-averaging is not effective for pulses having dissimilar periods. If the most recent pulse received a good Pulse_Qual_Score, this can increase the maximum value of Sat_Ensemble_Averaging_Filter_Weight from 0.5 to 1.0.

The equations for Rate_Ensemble_Averaging_Filter_Weight are as follows:
ArrProb=(PeriodVar−0.07)/(0.20−0.07)
ArrMinFiltWt_For_Rate=0.05+0.5*bound(ArrProb, 0, 1.0)
x=max(RoR_Variance_BasedFiltWt, Arr_MinFiltWt_For_Rate)*(1.0+PulseQual_Score)
if Short_Term_Pulse_Amp_Ratio*Long_Term_Pulse_Amp_Ratio<
x=x/Short_Term_Pulse_Amp_Ratio
if Avg_Period>0
x=x*bound(PulseQual_Score *Qualfied_Pulse_Period/Avg_Period, 1.0, 3.0)
Rate_Ensemble_Averaging_Filter_Weight=min(x, 1.0)

These equations differ from the ones for Sat_Ensemble_Averaging_Filter_Weight as follows:

Avg_Period—Average pulse period reported by Pulse Rate Calculation subsystem

Long_Term_Pulse_Amp Ratio—Quantifies last pulse amplitude compared to historic pulse amplitude. Provided by the Pulse Identification and Qualification subsystem. Values substantially larger than 1.0 are typically indicative of motion artifact, and result in lower Ensemble_Averaging_Filter Weights.

Period_Var—Period-variability metric from the Pulse Identification and Qualification subsystem. Used to gauge the extent of arrhythmia.

Pulse_Qual_RoR_Variance—RoR_Variance metric from the Pulse Identification and Qualification subsystem. For instance, a value of 0.10 would indicate that the average difference between consecutive pulse periods is 10% of Avg_Period.

Pulse_Qual_Score—Score computed by the pulse qualification neural net in the Pulse Identification and Qualification subsystem. Zero is extremely poor and 1.0 is excellent.

Qualified_Pulse_Period—Most recent pulse period qualified by the Pulse Identification and Qualification subsystem.

Short_Term_Pulse_Amp Ratio—Quantifies last pulse amplitude compared to previous pulse amplitude.

Outputs

Frequency_Ratio—Ratio of Mean_IR_Frequency_Content to pulse rate.

LPF_RoR_Variance—Quantifies variability of ratio-of-ratios. Computed over a 9-second window from LPF_Scaled_Waveforms.

Rate_LPF_Weight—Lowpass filter weight to be used by the instance of the Ensemble Averaging subsystem that preprocesses waveforms used for pulse qualification and pulse rate calculation.

RoR_Variance—Quantifies variability of ratio-of-ratios. Computed over a 9-second window from Scaled_Waveforms. A value of 0.10 would indicate that sample-to-sample ratio-of-ratios values differ from the mean ratio-of-ratios value by an average of 10% of the mean ratio-of-ratios value.

Sat_Ensemble_Averaging_Filter_Weight—Ensemble-averaging weight to be used by the instance of the Ensemble Averaging subsystem that preprocesses waveforms used for pulse qualification and pulse rate calculation.

Sat_LPF_Weight—Lowpass filter weight to be used by the instance of the Ensemble Averaging subsystem that preprocesses waveforms used for pulse qualification and pulse rate calculation.

Scaled_Waveforms—Scaled versions of IR and Red Pre_Processed_Waveforms.

Short_RoR_Variance—Quantifies variability of ratio-of-ratios. Computed over a 3-second window from Scaled_Waveforms.

Internal Variables

Arr_Prob—Likelihood of arrhythmia that would limit the amount of ensemble averaging. Based on Period_Var, with threshold that are specific to each of the two Ensemble_Averaging_Fiter_Weights.

Arr_Min_Filt_Wt_For_Rate, Arr_Min_Filt_Wt_For_Sat—Minimum values for the two Ensemble_Averaging_Filter_Weights, based on their respective Arr_Prob values.

LPF_Scaled_Waveforms—Lowpass-filtered version of Scaled_Waveforms, used to compute LPF_RoR_Variance.

Mean_IR_Frequency_Content—Estimate of the mean frequency content of the IR input waveform.

RoR_Variance_Based_Filt_Wt—Component for Ensemble_Averaging_Filter_Weights based on RoR_Variance metrics and Long_Term_Pulse_Amp_Ratio.

Baker, Jr., Clark R.

Patent Priority Assignee Title
10342466, Mar 24 2015 Covidien LP Regional saturation system with ensemble averaging
10405804, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
10478078, Dec 12 2013 KONINKLIJKE PHILIPS N V Device and method for determining vital signs of a subject
11399774, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
11529079, Mar 24 2015 Covidien LP Regional saturation system with ensemble averaging
7680522, Sep 29 2006 Covidien LP Method and apparatus for detecting misapplied sensors
7890154, Mar 08 2004 Covidien LP Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
8109882, Mar 09 2007 Covidien LP System and method for venous pulsation detection using near infrared wavelengths
8123695, Sep 27 2006 Covidien LP Method and apparatus for detection of venous pulsation
8175670, Mar 09 2004 Covidien LP Pulse oximetry signal correction using near infrared absorption by water
8195263, Mar 09 2004 Covidien LP Pulse oximetry motion artifact rejection using near infrared absorption by water
8221326, Mar 09 2007 Covidien LP Detection of oximetry sensor sites based on waveform characteristics
8229530, Mar 09 2007 Covidien LP System and method for detection of venous pulsation
8265724, Mar 09 2007 Covidien LP Cancellation of light shunting
8280469, Mar 09 2007 Covidien LP Method for detection of aberrant tissue spectra
8346328, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8352004, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8423109, Mar 03 2005 Covidien LP Method for enhancing pulse oximery calculations in the presence of correlated artifacts
8560036, Mar 08 2004 Covidien LP Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
8571623, Mar 09 2007 Covidien LP System and method for detection of venous pulsation
8818475, Mar 03 2005 Covidien LP Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
8818476, Jun 30 2009 Covidien LP Reflectance and/or transmissive pulse oximeter
8862194, Jun 30 2008 Covidien LP Method for improved oxygen saturation estimation in the presence of noise
9131878, Oct 28 2005 Covidien LP Adjusting parameters used in pulse oximetry analysis
9131879, Oct 28 2005 Covidien LP Adjusting parameters used in pulse oximetry analysis
9211095, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
9241670, Sep 11 2012 Covidien LP Methods and systems for conditioning physiological information using a normalization technique
9351674, Mar 03 2005 Covidien LP Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
Patent Priority Assignee Title
4407290, Apr 01 1981 BOC GROUP, INC THE, 100 MOUNTAIN AVENUE, MURRAY HILL, NEW PROVIDENCE, NEW JERSEY, 07974, A CORP OF DE Blood constituent measuring device and method
4700708, Sep 02 1982 LIONHEART TECHNOLOGIES, INC Calibrated optical oximeter probe
4802486, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4911167, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4928692, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4960126, Jan 15 1988 INDUSIND BANK LIMITED ECG synchronized pulse oximeter
5078136, Mar 30 1988 Nellcor Puritan Bennett Incorporated Method and apparatus for calculating arterial oxygen saturation based plethysmographs including transients
5743263, Oct 08 1993 Nellcor Puritan Bennett Incorporated Pulse Oximeter using a virtual trigger for heart rate synchronization
6035223, Nov 19 1997 Covidien LP Method and apparatus for determining the state of an oximetry sensor
6293915, Nov 20 1997 Seiko Epson Corporation Pulse wave examination apparatus, blood pressure monitor, pulse waveform monitor, and pharmacological action monitor
6339715, Sep 30 1999 PROTHIA Method and apparatus for processing a physiological signal
6647280, Sep 30 1999 PROTHIA Method and apparatus for processing a physiological signal
6711425, May 28 2002 PROTHIA Pulse oximeter with calibration stabilization
7039538, Mar 08 2004 Covidien LP Pulse oximeter with separate ensemble averaging for oxygen saturation and heart rate
20020045806,
20020099281,
20020151812,
20030109776,
20030144584,
20040034293,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 27 2006Nellcor Puritan Bennett Incorporated(assignment on the face of the patent)
Dec 20 2006Nellcor Puritan Bennett IncorporatedNellcor Puritan Bennett LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0292470329 pdf
Sep 29 2012Nellcor Puritan Bennett LLCCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0293300561 pdf
Date Maintenance Fee Events
Oct 25 2010M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 29 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 21 2018M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Apr 24 20104 years fee payment window open
Oct 24 20106 months grace period start (w surcharge)
Apr 24 2011patent expiry (for year 4)
Apr 24 20132 years to revive unintentionally abandoned end. (for year 4)
Apr 24 20148 years fee payment window open
Oct 24 20146 months grace period start (w surcharge)
Apr 24 2015patent expiry (for year 8)
Apr 24 20172 years to revive unintentionally abandoned end. (for year 8)
Apr 24 201812 years fee payment window open
Oct 24 20186 months grace period start (w surcharge)
Apr 24 2019patent expiry (for year 12)
Apr 24 20212 years to revive unintentionally abandoned end. (for year 12)