A steering handle assembly for an outboard motor has a low speed control switch with at least one lead wire that is not twisted during control of the watercraft. The low speed control switch provides precise control of the engine speed of the outboard motor. The steering handle assembly has a handle with an elongated handle body. The handle body is connected to the outboard motor. A grip is rotatably mounted to a distal end of the handle body and is rotatable about the axis of the handle body.
|
8. A steering handle assembly for an outboard motor having an engine, the steering handle assembly comprising an elongated handle body being connected to and extending from the outboard motor, a grip being mounted to a distal end of the handle body and being rotatable about a longitudinal axis of the handle body, a shift lever connected to the handle body, and a low speed control switch configured to increase and decrease the rotational speed of the engine operating at relatively low speeds, the low speed control switch being attached to the handle body and comprising an operating face that is generally oriented horizontally and faces upwardly and generally normal to the longitudinal axis.
9. A steering handle assembly for an outboard motor having an engine, the steering handle assembly comprising an elongated handle body being connected to and extending from the outboard motor, a grip being mounted to a distal end of the handle body and being rotatable about a longitudinal axis of the handle body, a shift lever connected to the handle body, and a low speed control switch configured to increase and decrease the rotational speed of the engine while the engine is operating at relatively low speeds, the low speed control switch being attached to the handle body, a power trim and tilt switch disposed on one side of the steering handle, and the low speed control switch is disposed on an opposing side of the steering handle.
10. A steering handle assembly for an outboard motor having an engine, the steering handle assembly comprising an elongated handle body being connected to and extending from the outboard motor, a grip being mounted to a distal end of the handle body and being rotatable about a longitudinal axis of the handle body, a shift lever connected to the handle body, and a low speed control switch configured to increase and decrease the rotational speed of the engine while the engine is operating at relatively low speeds, the low speed control switch being attached to the handle body, wherein the grip is rotatable about the longitudinal axis and the low speed control switch is actuatable along an axis that lies obliquely or perpendicular with respect to the longitudinal axis.
11. A steering handle assembly for an outboard motor having an engine, the steering handle assembly comprising a handle body connected to the outboard motor, the handle body having a distal end and a proximal end, a grip being rotatably mounted to the distal end of the handle body, and a low speed control switch being configured to increase and decrease the rotational speed of the engine while the engine is operating at relatively low speeds, the low speed control switch being attached to the handle body near and proximal of the grip, and a power trim and tilt switch for adjusting a trim angle and tilt angle of the outboard motor, the power trim and tilt switch being positioned on a side of the handle body with the low speed control switch positioned on another side of the handle body.
1. A steering handle assembly for an outboard motor having an engine, the steering handle assembly comprising an elongated handle body being connected to and extending from the outboard motor, a grip being mounted to a distal end of the handle body and being rotatable about a longitudinal axis of the handle body, a shift lever connected to the handle body, a low speed control switch configured to increase and decrease the rotational speed of the engine while the engine is operating at relatively low speeds, the low speed control switch being attached to the handle body, at least a portion of the low speed control switch being disposed between the shift lever and the grip and substantially near the grip, and a power trim and tilt switch for adjusting a trim angle and tilt angle of the outboard motor, the power trim and tilt switch being positioned on a side of the handle body with the low speed control switch positioned on another side of the handle body.
20. An outboard motor comprising a steering handle assembly and an engine including an engine body, the engine body cooperating with at least one reciprocating piston to define at least one combustion chamber, an induction system configured to guide air to the combustion chamber through at least a pair of intake ports, at least one fuel injector configured to inject fuel for combustion in the combustion chamber, the steering handle assembly comprising a handle body, the handle body having a distal end and a proximal end, a grip being rotatably mounted to the distal end of the handle body, and a low speed control switch being configured to increase and decrease the rotational speed of the engine while the engine is operating at relatively low speeds, the low speed control switch being attached to the handle body proximal of the grip, and a power trim and tilt switch for adjusting a trim angle and tilt angle of the outboard motor, the power trim and tilt switch being positioned on a side of the handle body and the low speed control switch being positioned on another side of the handle body.
2. The steering handle assembly of
3. The steering handle assembly of
4. The steering handle assembly of
5. The steering handle assembly of
6. The steering handle assembly of
7. The steering handle assembly of
12. The steering handle assembly of
13. The steering handle assembly of
14. The steering handle assembly of
15. The steering handle assembly of
16. The steering handle assembly of
17. The steering handle assembly of
18. The steering handle assembly of
19. The steering handle assembly of
|
The present application is based on and claims priority under 35 U.S.C. § 119(a–d) to Japanese Patent Application No. 2004-139264, filed on May 7, 2004, the entire contents of which is expressly incorporated by reference herein.
1. Field of the Inventions
The invention relates to a steering handle assembly for operating an outboard motor of watercraft and, more particularly, to a steering handle assembly having a low speed control switch for controlling the engine speed of the outboard motor.
2. Description of the Related Art
Watercraft vehicles, such as boats, are often powered by an outboard motor having an internal combustion engine. The outboard motor can be attached to the aft end of a hull of a watercraft. A steering handle can extend from the outboard motor. The handle is used to steer and control the engine speed of the outboard motor. The steering handle can include a handle body and a rotatable grip. The grip can be rotated to control the engine output. A shift lever for changing the mode of operation of an associated watercraft can be positioned on the handle body. For example, the shift lever can be used to switch between forward, reverse, and neutral modes of operation.
Japanese Patent Application No. 2000-186653 discloses an outboard motor that has an air intake system for controlling the amount of air delivered to the internal combustion engine. The air intake system can have a flow regulating mechanism positioned along a bypass passage. The bypass passage provides air to the combustion chambers of the outboard motor to control the engine output for a low engine speed during, for example, idling, trolling and the like.
As shown in Japanese Patent Application No. HEI 2002-14235, a conventional low speed control switch can be attached to the grip of the steering handle. Unfortunately, if a speed control switch is mounted on the rotatable grip of a steering handle, the low speed control switch and the grip rotate together causing twisting of a lead wire connected to the low speed control switch. The twisting of the lead wire can cause wear.
Accordingly, one aspect of the present invention is a steering handle assembly for an outboard motor that has an engine. The steering handle assembly comprises an elongated handle body that is connected to and is extending from the outboard motor. A grip is mounted to a distal end of the handle body and is rotatable about a longitudinal axis of the handle body. A shift lever is connected to the handle body. A low speed control switch is configured to selective selectively control the rotational speed of the engine operating at relatively low speeds. The low speed control switch is attached to the handle body.
Another aspect of the present invention is a steering handle assembly for an outboard motor having an engine. The steering handle assembly comprises a handle body that is connected to the outboard motor. The handle body has a distal end and a proximal end. A grip is rotatably mounted to the distal end of the handle body. A low speed control switch is configured to selectively control the rotational speed of the engine operating at relatively low speeds. The low speed control switch is attached to the handle body near and proximal of the grip.
In yet another aspect an outboard motor comprises a steering handle assembly and an engine including an engine body. The engine body cooperates with at least one reciprocating piston to define at least one combustion chamber. An induction system is configured to guide air to the combustion chamber through at least a pair of intake ports. At least one fuel injector is configured to inject fuel for combustion in the combustion chamber. The steering handle assembly comprises a handle body. The handle body has a distal end and a proximal end. A grip is rotatably mounted to the distal end of the handle body. A low speed control switch is configured to selectively control the rotational speed of the engine operating at relatively low speeds. The low speed control switch is attached to the handle body proximal of the grip.
The above and other features, aspects and advantages of the present invention will now be described with reference to drawings that show preferred arrangements that are intended to illustrate and not to limit the present invention and in which drawings:
A watercraft 101 has a hull 9 that carries the outboard motor 2, which has a propulsion unit 3 and an internal combustion engine 24 (shown in phantom). The engine 24 of the outboard motor 2 powers the propulsion unit 3. The illustrated propulsion unit 3 is a single propeller system; however, other types of propulsion units can be used as well, such as, for example, a dual counter-rotational propeller system, a jet drive, and the like. The outboard motor 2 is supported on a transom plate 91 of the hull 9 by a clamp bracket 20 so as to place at least a portion of the propulsion unit 9 in a submerged position when the watercraft 101 rests in the water.
The outboard motor 2 is preferably steerable and/or tiltable by moving the clamp 20. The arrow FR in the drawing indicates the forward direction in which the watercraft 101 travels. The terms “proximal” and “distal” are used to describe the present outboard motor 2 and the steering handle assembly 5. The terms proximal and distal are used in reference to the engine 24 of the outboard motor 2. When the outboard motor 2 is in the illustrated position of
The engine 24 is covered by a cowling 21 that is attached to a case 22. The illustrated case 22 is attached to the transom plate 91 of the hull 9 through the clamp bracket 20 for rotation about a tilt shaft 29. The engine 24 is preferably a multi-cylinder engine, such as a four-cycle engine. Engines having a different number of cylinders, other cylinder arrangements, various cylinder orientations (e.g., upright cylinder banks, and V-type), and operating on various combustion principles (e.g., four stroke, crankcase compression two-stroke, diesel, and rotary) are all practicable for use with the steering handle assemblies disclosed herein. The engine 24 can comprise an engine body defining at least one cylinder bore therethrough. A cylinder head assembly is connected to the cylinder bore, and a piston is disposed within the cylinder bore. The cylinder bore, the cylinder head assembly, and a piston cooperate to define a variable combustion chamber.
A crankshaft (not shown in the figure) of the engine 24 is generally vertically oriented with respect to the water surface. The crankshaft is connected to the upper end of a drive shaft 25 extending vertically through the case 22. The lower end of the drive shaft 25 is connected to a gear mechanism 26. The gear mechanism 26 can comprise a bevel gear, forward/reverse switching gears, a clutch and the like housed in the lower part of the case 22. A propeller shaft 27 extends generally horizontally from the gear mechanism 26. A switching mechanism can be used to switch between forward, neutral and reverse modes by changing the direction of rotation of the propeller 28. A propeller 28 is attached to the outer end of the propeller shaft 27, which protrudes outwardly from the case 22. The watercraft 101 is propelled as the propeller 28 is rotated in the water.
The engine 24 can have an intake system that provides air to the engine's combustion chambers. Generally, the engine 24 can have an air intake system that draws air from outside the engine, preferably from within the cavity defined by the cowling 21 and the internal combustion 24, and delivers the air to the combustion chambers of the engine 24. As shown in
With continued reference to
The bypass system 135 includes a bypass passage 33 that provides fluid communication between the air intake pipes 31a, 31b around the throttle valve 32. As used herein, the term “intake pipe” is to be construed broadly to include, without limitation, runners, conduits, pipes, passages, tubes, and other structures that air can flow through.
The illustrated bypass passage 33 branches from the intake pipe 31a and is connected to the air intake pipe 31b. When the engine runs at low engine speeds, the bypass passage 33 supplies air from the intake pipe 31a to the intake pipe 31b on the downstream side of the throttle valve 32. The bypass system 135 can selectively control the air flow through the air intake system 30 and to the combustion chambers when the throttle valve 32 is partially or fully closed. For example, the bypass system 135 can selectively control the flow of intake air to the engine 24 during idling, trolling, and/or other low engine speed operating conditions.
The bypass system 135 preferably comprises one or more valves. The illustrated bypass system 135 comprises an idle speed control (“ISC”) valve 34. The ISC valve 34 can be any type of idle speed control valve or idle regulating valve suitable for controlling the air flow through the bypass passage 33. The ISC valve 34 can be mechanically or electrically operated by controller 35 and/or by the low speed control switch 14.
With continued reference to
With reference to
To run the engine at a trolling speed, the grip 12 can be rotated or released to close the throttle valve 32. When the throttle valve 32 is closed, the bypass system 135 can deliver a sufficient amount of air to the engine 24 for low engine speeds. The low speed control switch 14 can adjust the amount of air the bypass system 135 delivers to the engine, such that the engine operates at a low speed. Thus, both the grip 12 and the low speed control switch 14 can be used to control the engine speed; however, the low speed control switch 14 provides precise control of the engine at low engine speeds, whereas the grip 12 provides control of the engine speed for planing and transition engine speeds.
With reference to
A grip 12 is disposed at the distal end of the steering handle 1 and is configured to selectively control the throttle operation for the engine 24. The illustrated grip 12 is rotatable about an axis (e.g., the longitudinal axis 98 of the grip 12) to control the engine speed. The longitudinal axis 98 of the grip 12 can be somewhat parallel to the longitudinal axis of the steering handle 1. The rotation of the grip 12 is transmitted to the control mechanism of the throttle valve 32 through a shaft, which is preferably housed inside the steering handle 1, to adjust the amount of intake air delivered to the engine 24. In some embodiments, a shaft extends between the grip 12 and a pulley. The grip 12 and associated shaft can be rotated to cause rotation of the pulley. A cable connects the pulley to the throttle valve 32. The cable can drive a throttle shaft of the throttle valve 32 to cause movement of a throttle valve plate of the throttle valve 32. Thus, the grip 12 can be rotated in one direction to increase engine output and rotated in the other direction to decrease engine output.
The grip 12 can have an outer surface that provides a comfortable gripping surface. The grip 12 can be made of a synthetic or natural material. For example, the grip can comprise synthetic or natural foam, resins, polymers, plastics, and the like. The grip 12 can be textured or have irregularities on its surface to increase frictional interaction with the hand of the user. The operator can face the forward direction, such that the operator's back is facing the outboard motor 2, and can hold the grip 12 of the steering handle assembly 5 with his hand.
With continued reference to
A shift lever 15 is positioned along and attached to the steering handle 1. The steering handle 1 can be interposed between the shift lever 15 and the low speed control switch 14. The operator can use the shift lever 15 to select a forward, reverse, or neutral mode of engine operation.
The low speed control switch 14 is preferably positioned at some point along the handle body 11. In some embodiments, including the illustrated embodiment, at least a portion of the low speed control switch 14 is positioned between the grip 12 and the shift lever 15. The low speed control switch 14 extends outwardly from a side surface 102 of the handle body 11, as shown in
The low speed control switch 14 is connected to the controller 35 via the lead wires 140. The low speed control switch 14 can be operated to control the ISC valve 34. When the operator operates the low speed control switch 14, for example, the engine speed during trolling can be adjusted to obtain the desired engine output.
With reference to
The steering handle 1 of the handle assembly 5 can be pivoted about the bracket 20 to steer the watercraft 101. The steering handle 1 can be inclined upwardly in the distal direction. The low speed control switch 14 is preferably inclined downwardly in the distal direction with respect to the longitudinal axis of the steering handle 1.
With reference to
The housing 143 can includes one or more mounting holes 142 extending through the wall of the housing 143. Any number of mounting holes 142 can be positioned along the housing 143. The illustrated housing 143 has an upper mounting hole 142 and a lower mounting hole 142 through a wall of the housing. The low speed control switch 14 is attached to the handle body 11 by screws 171 (
One or more lead wires 140 connect the controller 35 (
The low speed control switch 14 is used to open and close the ISC valve 34. As shown in
In some embodiments, the low speed control switch 14 may allow ingress of water through a gap defined between operating face 141 and the housing 143. As shown in
The illustrated handle assembly 5 has a throttle resistance switch 13 for selectively adjusting the force required to rotate the grip 12. The throttle resistance switch 13 can be used determine the required force to rotate the grip 12 about its longitudinal axis 98. The handle assembly 5 also includes a main switch 17 for starting the engine 24 and a stop switch 16. The stop switch 16 can be connected to the operator's arm via a strap or lanyard 4. Should an operator fall into the water, or is otherwise moved away from the outboard motor 2 by a preset distance, the strap 4 will pull away the strap switch 16 to stop the engine 24, as is well known in the art.
With respect to
Advantageously, the power trim and tilt switch 18 can be easily actuated while the engine is operating at planing and transition speeds because the power trim and tilt switch 18 is disposed on the inner side 110. The low speed control switch 14 is disposed on the opposite side of the handle 11 and can be easily actuated when the engine runs at a low speed. When the grip 12 is rotated to increase engine speed, the operator's hand is moved towards the trim and tilt switch 18. When the grip 12 is rotated in the opposite direction, the operator's hand is moved towards the low speed control switch 14. Therefore, the operator can perform trim operations without changing his seating posture and can operate the low speed control switch 14 at low engine speeds.
During operation, the grip 12 is preferably used to control the engine output when the engine runs at planing or transition engine speeds (e.g., engine speeds higher than idle or trolling speeds). However, the operator may not be able to use the grip 12 to precisely adjust the engine speed within low engine speed ranges (e.g., engine speeds for idling or trolling). When the engine is run at a low speeds (e.g., engine speeds suitable for trolling), the low speed switch 14 is used to precisely adjust (e.g., to increase or decrease) the engine speed. Thus, the grip 12 is preferably used to control the engine speed when the engine operates at mid or high engine speeds, while the low speed switch 14 is used to adjust the engine speed when the engine operates at a low engine speed. Of course, the grip 12 can be used to control the engine at low engine speeds; however, it may be difficult to use the grip 12 to obtain a particular low engine speed.
In some embodiments, the grip 12 can be rotated to open the throttle valve 32 a desired amount. When the throttle valve 32 is opened, air flows through the intake pipe 31a, a throttle valve 32, and the intake pipe 31b. For trolling speeds, the throttle valve 32 is closed and the bypass system 135 can be used to deliver air to the engine 24. When the trolling propulsion is started, the engine 24 can run at a preset speed (e.g., 700 rotations/minute). A controller 35 can have a preset target trolling speed. In some embodiments, the operator can change the target trolling speed.
The low speed switch 14 is used to adjust the air flow rate through the bypass system 135 to increase or decrease the engine speed from the preset speed. When the operator desires to increase or decrease the engine speed, the operator engages and moves the operating face 141 of the low speed control switch 14 to achieve the desired trolling speed. At higher engine speeds, the valve 34 can be closed and the throttle valve 32 can be opened by using the grip 12.
With reference to
This handle assembly 5 can be manufactured with a steering handle 1 having the low speed control switch 14. For example, the handle assembly 5 can have an integrated mounting structure configured to house at least a portion of the low speed control switch. In some embodiments, the mounting structure can be a boss configured to surround and house the low speed control switch. The boss can be integrally formed with the handle body 11. However, the low speed control switch 14 can be mounted to the steering handle 1 after market. A bracket or mounting structure can attach the switch 14 to the steering handle 1.
With respect to
As shown in
Because the operating face 141 of the low speed control switch 14 is near the grip 12, the operator can use one hand to operate the operating face 141 while holding the grip 12. That is, the low speed control switch 14 can be positioned close enough to the grip 12 so that a user can simultaneously engage both the grip 12 and the low speed control switch 14. Additionally, the low speed control switch 14 can be highly visible to facilitate convenient operation.
With reference to
With respect to
Thus, the low speed control switch 14 is coupled to the handle body 11 with the side walls 110 of the handle body 11 captured between the corresponding lug portions 146 and the projections 145. This mounting structure is applicable also to the embodiments of
With continued reference to
In operation, the grip 12 can be rotated to open the throttle valve 32 a desired amount. When the throttle valve 32 is closed by rotating the grip 12, trolling propulsion can be started. After the engine is running at a preset target trolling or idle speed, the switches 150, 151 can be used to adjust the air flow rate to the engine to thereby achieve a desired engine speed. To increase or decrease the engine speed, the operator presses on the switches 150, 151, respectively. The operator can operate the low speed control switch 14 while holding the grip 12, or without moving his hand a significant distance from the grip.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. For example, the embodiments disclosed herein can be used with other types of engines that operate at low speeds. Additionally, the steering handle assembly can be used with other types of air induction systems, such as “throttleless” induction systems. The embodiments can also be used with watercraft (e.g., personal watercraft), land vehicles, and the like. While a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combination or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combine with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Patent | Priority | Assignee | Title |
10246173, | Sep 01 2016 | Brunswick Corporation | Tillers for outboard motors having neutral shift interlock mechanism |
10696367, | Jan 09 2019 | Brunswick Corporation | Tillers for outboard motors having reversible throttle grip direction |
10787236, | Feb 01 2018 | Brunswick Corporation | Tiller tilt lock and automatic release system |
10934928, | Jul 17 2019 | Brunswick Corporation | Lubrication apapratus configurations for marine engines having a supercharger |
10975762, | Oct 23 2019 | Brunswick Corporation | Marine engines having a supercharger and charge air coolers |
10981636, | Jul 17 2019 | Brunswick Corporation | Marine engines having a supercharger |
11046411, | Nov 28 2018 | BRP US INC | Tiller assembly for a marine outboard engine |
11073116, | Sep 25 2019 | Brunswick Corporation | Cooling systems for marine engines having a supercharger |
11084563, | Dec 18 2019 | Brunswick Corporation | Tiller for outboard motor |
11186352, | Dec 26 2019 | Brunswick Corporation | Systems and methods for incorporating tilt locking into tillers |
11459943, | Dec 20 2019 | Brunswick Corporation | Sealing configurations for marine engines having a supercharger and charge air cooler |
11511840, | Jul 17 2019 | Brunswick Corporation | Marine engines having a supercharger |
11597486, | Dec 18 2019 | Brunswick Corporation | Tiller for outboard motor |
11628919, | Dec 18 2019 | Brunswick Corporation | Tiller for outboard motor |
7976354, | Apr 17 2008 | Honda Motor Co., Ltd. | Outboard motor |
8684776, | Jul 05 2011 | Suzuki Motor Corporation | Outboard motor |
9422045, | Aug 30 2012 | Suzuki Motor Corporation | Operating device of electric outboard motor |
9533748, | May 28 2010 | Honda Motor Co., Ltd. | Outboard motor control apparatus |
9789945, | Aug 15 2016 | Brunswick Corporation | Angularly adjustable tillers for outboard motors |
D794078, | Aug 22 2016 | Brunswick Corporation | Tiller grip |
D794079, | Sep 02 2016 | Brunswick Corporation | Tiller having haptic throttle position indication |
D806752, | Sep 02 2016 | Brunswick Corporation | Tiller having haptic throttle position indication |
D807920, | Aug 22 2016 | Brunswick Corporation | Tiller grip |
D917565, | Jul 13 2017 | Brunswick Corporation | Tiller for outboard motor |
Patent | Priority | Assignee | Title |
3586810, | |||
4337053, | Sep 24 1979 | Outboard Marine Corporation | Idle adjustment control and sculptured twist grip throttle control handle for a marine propulsion device |
5180320, | Jun 18 1991 | BRP US INC | Trim switch for tiller-steered outboard |
5378178, | Jun 15 1993 | BRP US INC | Tiller arm and steering bracket assembly |
5476402, | Mar 15 1993 | Sanshin Kogyo Kabushiki Kaisha | Intake and exhaust structure for V-type engine |
6406342, | Apr 23 2001 | Brunswick Corporation | Control handle for a marine tiller |
6902450, | Dec 25 2002 | HONDA MOTOR CO, LTD. | Outboard motor and tiller handle thereof |
6918803, | Aug 06 2002 | Suzuki Motor Corporation | Outboard motor |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 06 2005 | Yamaha Marine Kabushiki Kaisha | (assignment on the face of the patent) | / | |||
May 13 2005 | KOJIMA, AKIKO | Yamaha Marine Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016625 | /0901 |
Date | Maintenance Fee Events |
Aug 29 2007 | ASPN: Payor Number Assigned. |
Aug 29 2007 | RMPN: Payer Number De-assigned. |
Sep 08 2010 | ASPN: Payor Number Assigned. |
Sep 08 2010 | RMPN: Payer Number De-assigned. |
Oct 06 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 30 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 29 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 08 2010 | 4 years fee payment window open |
Nov 08 2010 | 6 months grace period start (w surcharge) |
May 08 2011 | patent expiry (for year 4) |
May 08 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 08 2014 | 8 years fee payment window open |
Nov 08 2014 | 6 months grace period start (w surcharge) |
May 08 2015 | patent expiry (for year 8) |
May 08 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 08 2018 | 12 years fee payment window open |
Nov 08 2018 | 6 months grace period start (w surcharge) |
May 08 2019 | patent expiry (for year 12) |
May 08 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |