Apparatus, and an associated method, for a radio communication system. Asymmetrically positioned downlink data transmitting stations and uplink data receiving stations are positioned defining downlink service areas and uplink service areas. A mobile terminal, when positioned in the downlink service area, is able to receive high speed downlink data. And, when the mobile terminal is stationed within an uplink service area, the mobile terminal is capable of sending data at high data rates to an uplink receiving station.
|
15. A method for communicating data between a radio network and a data terminal, said method comprising:
selectably transmitting downlink data at a downlink transmitting station to the data terminal from a downlink transmitting station, the downlink transmitting station forming part of the radio network and defining a downlink service area;
selectably transmitting uplink data from the data terminal to a first uplink receiving station being separate from the downlink transmitting station, the first uplink receiving station forming part of the radio network and defining a first uplink service area, the first uplink service area of a size smaller than the downlink service area defined by the downlink transmitting station from which the downlink data is selectably transmitted during said operation of selectably transmitting the downlink data, and the uplink service area at least partially overlapping the downlink service area.
1. In a radio communication system in which downlink data is selectably communicated upon a downlink by a radio network at a first power level to a data terminal and in which uplink data is selectably communicated by the data terminal at a second power level to the radio network, the first power level greater than the second power level, an improvement of apparatus for the radio network for facilitating communications in the radio communication system, said apparatus comprising:
a downlink transmitting station defining a downlink service area, said downlink transmitting station selectably for transmitting the downlink data to the data terminal when the data terminal is positioned within the downlink service area; and
at least a first uplink receiving station separate from the downlink transmitting station and defining at least a first uplink service area, said uplink receiving station for receiving the uplink data transmitted by the data terminal when the data terminal is positioned within the first uplink service area, the first uplink service area of a size smaller than the downlink service area defined by said downlink transmitting station and at least partially overlapping therewith.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
|
The present invention relates generally to the communication of data at high data rates in a radio communication system. More particularly, the present invention relates to apparatus, and an associated method, by which to provide for the communication of high-speed, uplink data from a mobile, or other data, terminal, to the network of a radio communication system at high data rates.
Communication of the data at high data rates is provided without necessitating a corresponding increase in power levels at which the uplink data would conventionally otherwise need to be communicated. Radio network infrastructure is provided that utilizes separate downlink transmitting stations and uplink receiving stations through which asymmetrically to communicate the downlink and uplink data. Uplink receiving stations define uplink service areas and are positioned at locations to permit detection of uplink data transmitted at power levels less than the power levels at which downlink data is communicated and the power levels at which uplink data is communicated in the conventional symmetric communication link configuration of uplink and downlink. The uplink receiving stations are positioned to permit their detection of the uplink data generated at a data terminal when the data terminal is positioned within an uplink service area associated therewith. And, the data terminal is capable of receiving downlink data when positioned within a downlink service area associated therewith. Two-way communication of data at high data rates is thereby permitted by way of a data terminal.
A communication system permits data to be communicated between separate communication stations, formed, at a minimum, of a sending station and a receiving station. The use of a communication system by which to communicate data is, and shall likely continue increasingly to be, a necessary aspect of modern society. A wide variety of communication systems have been developed and are utilized regularly through which to effectuate many different types of communication services.
Technological advancements, such as advancements in communication technologies, have been implemented in communication systems. Improvements to existing types of communication systems as well as the implementation of new types of communication systems have been made possible as a result of such advancements in technologies.
Radio communication systems are exemplary of communication systems in which technological advancements have been implemented. In a radio communication system, communication channels are defined upon radio links formed between the communication stations thereof. The need otherwise to utilize wirelines to interconnect the communication stations is obviated. Radio communication systems are therefore amenable for implementation as mobile communication systems.
A cellular communication system is a type of radio communication system. Voice, as well as data, communication services are effectuable through the use of a cellular communication system. Access to use of a cellular communication system is generally provided pursuant to a subscription for service therein. In some areas, use of cellular communication systems is increasingly becoming a primary manner by which to communicate telephonically. And, as cellular communication systems increasingly are constructed to permit the communication of increased amounts of data at increasingly high data rates, data-intensive communication services are also increasingly effectuated through the use of a cellular communication system.
Successive generations of cellular communication systems have been developed and implemented. And, successor-generation communication systems are undergoing development that takes advantage of technological advancements in communication technologies. While initial-generation, cellular communication systems provide for limited data services, third-generation and successor-generation communication systems are anticipated to be used, in significant part, to perform data communication services. Various standard-setting bodies are promulgating operational specifications that define the parameters of operation of such successor-generation systems. When data is communicated at high data rates with high user penetration levels, carrier frequencies of higher frequency levels or wider-spectrum bandwidths are required to permit the data to be communicated at the high data rates.
Various problems must, however, be overcome when the higher carrier frequencies and wider-spectrum bandwidths are utilized. Amongst the problems associated with communications at the higher-carrier frequencies and wider-spectrum bandwidths is that transmitted signals exhibit higher levels of propagation loss as well as higher levels of residual noise. Conventionally, compensation is made for the higher propagation loss and higher noise level by increasing the output power of the transmitted signal.
Increase in the output power level of the transmit signal is, however, practically limited. For instance, when the communication station from which the data is to be communicated is powered by a portable power supply, of limited energy storage capacity, increased power output requirements increase the speed at which the battery power supply becomes depleted of stored energy.
While communication services that are communicated at high data rates are conventionally contemplated to be originated at a network part of a communication system, proposed, communication services of successor-generation systems shall likely also be originated at mobile, or data, terminals that are powered by the portable battery power supplies of the limited energy storage capacities. Problems associated with originating data at a mobile, or other data, terminal, powered by a portable power supply, and transmitting the data as uplink data from the data terminal to the network part of the communication system remain to be considered and overcome.
More particularly, a manner is required by which to provide for the communication of uplink data, at high data rates, from a data terminal at power levels that are less than a selected, maximum power level. Communication of the data at the high data rates without a corresponding increase in the power levels at which the data is communicated permits communication services that must be performed at high data rates to be effectuated without a corresponding quick depletion of the stored energy of a battery power supply that powers the data terminal.
It is in light of this background information related to communication of data at high data rates in a radio communication system that the significant improvements of the present invention have evolved.
The present invention, accordingly, advantageously provides apparatus, and an associated method, by which to communicate data at high data rates in a radio communication system, such as a mobile communication system that utilizes mobile terminals powered by battery power supplies.
Through operation of an embodiment of the present invention, a manner is provided by which to provide for the communication of uplink data, at high data rates, from a mobile, or other data terminal to the network of a radio communication system.
In one aspect of the present invention, communication of the uplink data, at high data rates, is provided without necessitating a corresponding increase in the power levels at which the data is communicated. Because the power levels are not substantially increased, the rates at which stored energy, stored at a battery power supply that powers a data terminal at which the uplink data originates is not depleted at a rate significantly greater than the depletion rate at which the battery power supply would otherwise be depleted during conventional operation of the data terminal.
A radio network infrastructure architecture is provided to permit the communication of the uplink data at the high data rates without significant increase in the power levels at which the data must be communicated. The radio network infrastructure architecture utilizes separate downlink transmitting stations and uplink receiving stations. A downlink transmitting station defines a downlink service area, or cell. And, an uplink receiving stations defines an uplink service area, or cell. A downlink transmitting station operates to transit downlink data to effectuate a communication service to a mobile, or other data, terminal when the data terminal is positioned at a location encompassed by the downlink service area of the downlink transmitting station. And, the uplink receiving station operates to detect uplink data sent by a mobile, or other data, terminal when the data terminal is positioned in an uplink service area encompassed by the uplink receiving station. Because the separate downlink transmitting and uplink receiving stations are utilized, such stations need not be co-located or be of the same number. That is to say, the downlink transmitting and uplink receiving stations are positionable, as needed, to perform their respective functions to transmit, and to receive, data, communicated at high data rates, with a mobile, or other data, terminal.
In another aspect of the present invention, greater numbers of uplink receiving stations than downlink transmitting stations are utilized to form the radio network infrastructure of the communication system. Downlink transmitting stations are positioned in manners analogous to the positioning of base transceiver stations of a conventional cellular communication system. The downlink service area is defined by the downlink transmitting stations are of configurations generally analogous to the configurations cells defined by the base transceiver stations configured in a conventional cellular communication system. Uplink receiving stations are positioned at locations encompassed by the downlink service areas defined by the downlink transmitting stations. The uplink receiving stations are positioned, for example, to define uplink service areas that encompass areas at which uplink data is expected to be communicated at the high data rates pursuant to high data rate communication services. Multiple numbers of uplink receiving stations are, for instance, within a single downlink service area defined by a single downlink transmitting station. And, the uplink service areas at least partially overlap with the downlink service area within which the uplink receiving stations are positioned.
In another aspect of the present invention, directional antenna assemblies are utilized by the downlink transmitting stations to facilitate communication downlink data to a data terminal to which downlink data is communicated. Additionally, control information is communicated by the downlink transmitting station to each of the one or more uplink receiving stations positioned within the downlink service area defined by the downlink transmitting station. The directional antenna assembly also operates to form an antenna beam configuration to facilitate the communication of the control information to the uplink receiving station.
The data terminal also includes a directional antenna assembly to facilitate reception of downlink data transmitted thereto by the transmitting station and also to transmit uplink data to an uplink receiving station. As the position of the data terminal changes, the antenna beam pattern configuration caused to be exhibited by the antenna beam pattern of the antenna assembly correspondingly changes. Thereby, detection of downlink data transmitted to the data terminal is facilitated. And, communication of uplink data by the data terminal to an uplink data receiving station is also facilitated.
In another aspect of the present invention, a time-division duplexing (TDD) communication scheme is utilized by which to transmit the downlink data to a data terminal and to send uplink data from the data terminal to the uplink data receiving station. Timing synchronization is effectuated between the downlink transmitting station and the data terminal, and between the downlink transmitting station and the uplink receiving station, thereby to synchronize the communication stations of the radio communication system, permitting the time-duplexed communication of downlink and uplink data.
A radio communication architecture is provided thereby that facilitates very high speed, uplink rate services at mobile, or other data, terminal output power levels in a cellular-based communication system utilizing constituent sub-systems, receiving sub-systems, and mobile terminals utilizing time division duplexing or frequency division duplexing.
In these and other aspects, therefore, apparatus, and an associated method, is provided for a radio communication system. Downlink data is selectably communicated upon a downlink by a radio network at a first power level to a data terminal. And, uplink data is selectably communicated by the data terminal at a second power level to the radio network. The first power level is greater than the second power level. Communications in the radio communication system are facilitated. A downlink transmitting station defines a downlink service area. The downlink transmitting station selectably transmits the downlink data to the data terminal when the data terminal is positioned within the downlink service area. At least a first uplink receiving station defines at least a first uplink service area. The uplink receiving station receives the uplink data transmitted by the data terminal when the data terminal is positioned within the first uplink service area. The first uplink service area is of a size smaller than the downlink service area defined by the downlink transmitting station. And, the first uplink service area at least partially overlaps with the downlink service area.
A more complete appreciation of the present invention and the scope thereof can be obtained from the accompanying drawings that are briefly summarized below, the following descriptions of the presently preferred embodiments of the invention, and the appended claims.
Referring first to
While the following description of the exemplary implementation of the radio communication system is described to be a mobile communication system, such as a cellular communication system, the radio communication system is also representative of other types of radio communication systems in which data is to be communicated at high data rates. Therefore, while the following description of exemplary operation of the radio communication system shall be described with respect to its implementation as a cellular communication system, it should be understood that the teachings of the present invention are applicable to other types of radio communication systems, mobile systems as well as fixed-radio-access radio systems.
Communication of data is effectuated with a mobile data terminal. The mobile terminal forms a two-way radio transceiver capable of both receiving downlink data communicated thereto and transmitting uplink data sourced thereat.
The radio communication system includes a network part, here including a downlink transmitting station 14. The downlink transmitting station operates to send downlink data upon downlink channels defined upon a downlink formed between the downlink transmitting station and the mobile terminal. The transmission of the downlink data is indicated in the Figure by the segment 16. The downlink transmitting station defines a downlink service area 18. The dimensions of the downlink service area are dependent, in part, upon the power levels at which the downlink data is transmitted by the downlink transmitting station 14. In the exemplary implementation, the downlink transmitting station forms a fixed-site communication station, analogous to, or forming a, base transceiver station of a cellular communication system. A single downlink transmitting station is shown for purposes of illustration. In an actual radio communication system, a plurality of downlink transmitting stations are positioned to encompass a geographical area, each downlink transmitting station defining a separate downlink service area.
The network part of the radio communication system also includes uplink receiving stations, of which the uplink receiving station 22 is representative. The uplink receiving station operates to receive uplink data generated by a data terminal, such as the mobile terminal 12, when the data terminal is positioned within an uplink service area defined by the uplink receiving station. When the mobile terminal 12 is positioned within the uplink service area 26, uplink data, originated at the mobile terminal and transmitted upon uplink channels defined upon an uplink formed between the mobile terminal and the uplink receiving station is detected at the receiving station 22. The segment 28 is representative of the transmission of the uplink data by the mobile terminal to the uplink receiving station. For purposes of illustration, a single uplink receiving station is shown in the Figure. In an actual implementation, additional uplink receiving stations are utilized. For instance, several uplink receiving stations are positionable within the downlink service area 18 defined by a single downlink transmitting station. Each of the uplink receiving stations defines a separate uplink service area 26, permitting detection, and operation upon, uplink data communicated by the mobile terminal when the mobile terminal is positioned in an area encompassed by the respective uplink service areas. The asymmetric arrangement of the downlink transmitting and uplink receiving stations permits the uplink data to be communicated at power levels that are less than the power levels at which the downlink data is transmitted by the downlink transmitting stations and also, that are less than the power levels at which the uplink data is transmitted by the mobile terminal in the conventional symmetric communication link configuration of uplink and downlink. Through appropriate positioning of the uplink receiving stations, a manner is thereby provided by which to permit the communication of uplink data to effectuate high data rate communication services from the mobile terminal.
Additional communications are effectuated during operation of the radio communication system. A controller 32 further forms a portion of the radio communication system. The controller 32 controls operations of the downlink transmitting station and uplink receiving station, e.g., to place, and maintain, the respective stations in time synchronization with one another. The controller 32 is here coupled to the downlink transmitting station and, for example, is embodied therewith.
The control information is sent to the uplink receiving station in any of various manners. For instance, the transmitting station, in one implementation, sends the control information to the uplink receiving station upon downlink channels defined upon a downlink formed therebetween. Communication of the control information in this manner is represented by the segment 34. Or, in another implementation, a dedicated radio link is formed between the communication stations 14 and 22. The dedicated radio link is represented in the Figure by the segment 36. Or, in another implementation, the control information is communicated to the uplink receiving station by way of wireline connections formed therebetween. Wireline connections are effectuated, for instance, by way of a packet-switched network 38 to which the uplink receiving station is coupled, here indicated by the line 42. And, control information is also communicated by the uplink receiving station to the downlink transmitting station in a similar manner. That is to say, control information is communicated, in various implementations, by way of the wireline connection, the radio link, or an uplink channel defined upon an uplink formed between the receiving and transmitting stations. The segment 44 is here representative of the communication of control information upon an uplink channel defined upon an uplink formed between the communication stations. And, when the transmitting station operates analogous to, or forms, a base transceiver station, uplink information, at conventional data rates, such as control information, is communicated by the mobile terminal to the downlink transmitting station. Such communication is indicated in the Figure by the segment 46.
A correspondent entity 48 is also shown in the Figure. The correspondent entity is representative of a data source, or data destination, at which the high speed data is ultimately sourced or terminated. The correspondent entity is representative of any of a variety of devices, such as a data server.
Analysis of
The antenna 78 is of configuration and properties that facilitates detection of signals generated by the downlink transmitting station, such as control information, sent by the transmitting station to synchronize the uplink data receiving station. And, the antenna 82 is of dimensions and configuration to facilitate detection of uplink signals generated by a data terminal containing uplink data, communicated at high data rates, to the uplink data receiving station. Operation of the antenna switch 84 connects one, or the other, of the antennas to the receive circuitry 86, with switching performed according to the timing scheme that is utilized, such as the time division duplex scheme shown in
The third frame 74, designated F3 in the Figure, illustrates an implementation in which the uplink control signals, transmitted during the time slot 98, are transmitted simultaneous to the transmission of the downlink data during the time slot 75. In such an implementation, a downlink receiving antenna assembly, positioned at the uplink receiving station, is directed towards the downlink transmitting station. When separate sub-assemblies are used to send data and to receive data, the isolation between such sub-assemblies is again great enough to ensure adequate communication of both communications.
Additionally, at the downlink transmitting station, receive paths between the downlink transmit signals sent to data terminals and to the uplink receiving stations and receiving paths for receiving uplink controls transmitted by the uplink data receiving station are installed to ensure that the downlink data transmitting station exhibits sufficient isolation to communicate both types of data.
Additionally, the antenna assembly of the uplink data receiving station is installed in a manner to avoid, or otherwise minimize, interference of uplink signals communicated by the uplink data receiving station with uplink data received by the mobile terminals. Antenna assemblies capable of forming pencil beams, i.e., narrow lobe antenna patterns, are advantageously used for the communication of downlink signals by the downlink transmitting station to the uplink data receiving station and also for the communication of uplink signals to the downlink data transmitting station. Use of such antenna beam configurations better ensures isolation between the separate links, as both of the separate links are, for instance, point-to-point radio links in a stable transmission environment.
The frame 74 designated at F2 in
The downlink transmitting station 14, shown in
Formation of a fan beam by the antenna assembly 106 permits downlink data to be communicated, not only to the mobile data terminals, but also to the uplink data receiving station. Downlink signals are provided to the uplink receiving station to facilitate the efficiency by which the uplink data, originated at the mobile terminal, is communicated to the uplink data receiving station. Control information is also extracted from data communicated by the downlink transmitting station, existing in the service area of the uplink data receiving station. When the corresponding fan beam assembly 106 is used by the downlink transmitting station, the uplink data receiving station receives the same downlink signal that the mobile terminals receive.
A downlink transmitting station 14 of another implementation is shown in
Dedicated signals to a mobile terminal comprising information data (I) and control (I) data are supplied to a multiplexer/modulator 112 and to a dedicated pencil beam, antenna assembly 114. At the same time, control data control(I) to be communicated to the mobile terminal (I) is supplied to a combiner/multiplexer 116. Other control data (1) through (K) is also multiplexed and combined thereat. Mobile terminals 1-K are presumed to reside in the service area of the uplink service area associated with the uplink receiving station.
The multiplexer/combiner 116 generates multiplexed and combined signals that are supplied to a modulator 118 and then to a pencil beam antenna assembly 122 that directs the modulated signal to the uplink data receiving station by way of a power amplifier (not separately shown). In this implementation, the carrier for the signals is selected amongst the carriers allocated for communications with the mobile terminals, i.e., downlink carriers. Accordingly, the uplink data receiving station is able to monitor the downlink control signals for each mobile terminal and extract the information therefrom. The uplink data receiving station is able to use the control information to facilitate reception of the uplink data communicated by individual ones of the mobile terminals.
In another implementation, a combination of a fan beam/sector beam and pencil beams is used. If an uplink data receiving station is not covered by a fan beam service area formed by a fan exhibited by the antenna pattern of a fan beam antenna assembly of a downlink transmitting station, dedicated pencil beams are formed by which to communicate information with the uplink data receiving station. Thereby, an uplink receiving station is able to receive uplink data communicated by data terminals thereto and also to interface with a transmitting station, or other external network.
Here, a downlink receive antenna assembly 124 operates to detect downlink signals transmitted by a downlink transmitting station thereto. A signal distributor 126 is coupled to the antenna assembly and operates to divide the received signals into K signals. And, the K signals are applied to individual receivers 128-1 through 128-K. The receivers correspond to the K multiplexed downlink signals. The received and de-modulated K signals are provided to a control processor 132. Or, in another implementation, a common receiver is used instead of the separate receivers 128-1 through 128-K. The uplink receiving station further includes elements permitting the receiving station to receive and operate upon uplink data communicated thereto by mobile terminals. The uplink data is detected by antennas of an antenna assembly 134. The antenna beam characteristics exhibited by the antenna assembly is selectable, formed, for instance, of an omnidirectional configuration or sectorized configuration. The configurations are fixed or adaptable, as desired. Detected uplink data, detected by the antenna assembly, is provided to a distributor 136. The distributor 136 distributes the detected data K receivers 138-1 through 138-K.
Reception of the uplink data at the individual ones of the receivers 138 is controlled by control signals generated by the processor 132. The control signals include information dealing with the individual ones of the K uplink data signals obtained from the downlink signals generated by a downlink transmitting station and communicated to the uplink receiving station.
In
Information data that is to be forwarded to recipient stations are forwarded by way of an interface circuit 166. Required processing functions are performed at the interface circuit, controlled by the downlink data transmitting station by way of downlinks, or dedicated links, such as wireline or wireless links. The information data that is to be forwarded to the outside recipients are processed and interfaced to the external network by way of the interface circuit. In the course of processing for the forwarding information data, a scheme such as a cell site diversity scheme is, for instance, implemented, as well as third-generation (3G) as well as existing systems. Control information regarding control processing is forwarded to the downlink data transmitting station as control information from the uplink data receiving station.
The application processor generates demand to use very high speed data uplink services, then the application processor 184 transmits the request for such service demand to a downlink transmitting station by way of a conventional radio link, e.g., a downlink signal or an uplink signal, by way of the baseband processor 182, the transceiver 176, and the antenna assembly 174.
If the mobile terminal resides within an uplink service area defined by an uplink data receiving station, then the downlink data transmitting station sends control data to establish very high speed data communication services for the mobile terminal as well as to the uplink data receiving station to which the mobile terminal is positioned. Thereby, the mobile terminal establishes a communication service link by which to communicate the data at the high data rates by way of the uplink transmitter 178 for communication to the uplink data receiving station.
The previous descriptions are of preferred examples for implementing the invention, and the scope of the invention should not necessarily be limited by this description. The scope of the present invention is defined by the following claims:
Patent | Priority | Assignee | Title |
7990904, | Dec 16 2002 | Qualcomm Incorporated | Wireless network repeater |
8023885, | May 13 2004 | Qualcomm Incorporated | Non-frequency translating repeater with downlink detection for uplink and downlink synchronization |
8027642, | Apr 06 2004 | Qualcomm Incorporated | Transmission canceller for wireless local area network |
8059727, | Jan 28 2005 | Qualcomm Incorporated | Physical layer repeater configuration for increasing MIMO performance |
8060009, | Oct 15 2002 | Qualcomm Incorporated | Wireless local area network repeater with automatic gain control for extending network coverage |
8078100, | Nov 15 2002 | Qualcomm Incorporated | Physical layer repeater with discrete time filter for all-digital detection and delay generation |
8089913, | Oct 24 2002 | Qualcomm Incorporated | Physical layer repeater with selective use of higher layer functions based on network operating conditions |
8095067, | Jun 03 2004 | Qualcomm Incorporated | Frequency translating repeater with low cost high performance local oscillator architecture |
8111645, | Nov 15 2002 | Qualcomm Incorporated | Wireless local area network repeater with detection |
8122134, | Oct 11 2002 | Qualcomm Incorporated | Reducing loop effects in a wireless local area network repeater |
8498234, | Jun 21 2002 | Qualcomm Incorporated | Wireless local area network repeater |
8559379, | Sep 21 2006 | Qualcomm Incorporated | Method and apparatus for mitigating oscillation between repeaters |
8774079, | Oct 26 2006 | Qualcomm Incorporated | Repeater techniques for multiple input multiple output utilizing beam formers |
8885688, | Oct 01 2002 | Qualcomm Incorporated | Control message management in physical layer repeater |
Patent | Priority | Assignee | Title |
4819227, | Aug 14 1986 | Hughes Electronics Corporation | Satellite communications system employing frequency reuse |
5708972, | Feb 17 1995 | Nippondenso Co., Ltd. | Vehicle communication system and method providing high responsivity to multiple polling units |
5774795, | Jul 20 1994 | Nippondenso Co., Ltd. | Mobile object identification device |
6272117, | Feb 20 1998 | GWcom, Inc. | Digital sensing multi access protocol |
6278883, | Aug 20 1997 | GWcom, Inc. | Communication protocol for a wireless data system |
6574338, | Nov 15 1996 | WorldSpace, Inc. | Information delivery system and method |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 06 2003 | Nokia Corporation | (assignment on the face of the patent) | / | |||
Aug 20 2003 | MIYAKE, MASAYASU | Nokia Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014469 | /0305 | |
Sep 13 2007 | Nokia Corporation | Nokia Siemens Networks Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020550 | /0001 | |
Aug 19 2013 | Nokia Siemens Networks Oy | NOKIA SOLUTIONS AND NETWORKS OY | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 034294 | /0603 |
Date | Maintenance Fee Events |
Mar 14 2008 | ASPN: Payor Number Assigned. |
Nov 04 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 30 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 24 2018 | REM: Maintenance Fee Reminder Mailed. |
Jun 10 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 08 2010 | 4 years fee payment window open |
Nov 08 2010 | 6 months grace period start (w surcharge) |
May 08 2011 | patent expiry (for year 4) |
May 08 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 08 2014 | 8 years fee payment window open |
Nov 08 2014 | 6 months grace period start (w surcharge) |
May 08 2015 | patent expiry (for year 8) |
May 08 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 08 2018 | 12 years fee payment window open |
Nov 08 2018 | 6 months grace period start (w surcharge) |
May 08 2019 | patent expiry (for year 12) |
May 08 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |