In an embodiment, a switched capacitor transformer transfers a differential reference voltage at its input ports to its output ports, where a capacitor is switched so that the capacitor is coupled to the input ports during a first portion of a cycle of operation and then coupled to the output ports during a second portion of the cycle of operation, where the first and second portions of the cycle of operation are non-overlapping. Other embodiments are described and claimed.
|
15. A method comprising
generating a reference voltage,
coupling the reference voltage to a first capacitor and decoupling a functional unit from the first capacitor to develop the reference voltage across the first capacitor during a first period of a clock, and
decoupling the reference voltage from a second capacitor and coupling a functional unit to the second capacitor to provide the functional unit with the reference voltage during the first period of the clock.
8. An integrated circuit comprising
a voltage reference circuit to provide a reference voltage,
a plurality of functional units that operate based upon the reference voltage, and
a plurality of switched capacitors, each switched capacitor to receive the reference voltage from the voltage reference circuit during a first time duration of a clock and to deliver the reference voltage to at least one functional unit of the plurality of functional units during a second time duration of the clock.
1. An apparatus for distributing reference voltages, comprising
a voltage reference circuit to develop the reference voltage,
a functional unit to operate based upon the reference voltage, and
a first switched capacitor transformer comprising a first capacitor and a first plurality of switches that couple the first capacitor to the voltage reference circuit in order to receive the reference voltage during a first period and that couple the first capacitor to the functional unit in order to deliver the reference voltage to the functional unit during a second period, and
a second switched capacitor transformer comprising a second capacitor and a second plurality of switches that couple the second capacitor to the voltage reference circuit in order to receive the reference voltage during the second period and that couple the second capacitor to the functional unit in order to deliver the reference voltage to the functional unit during the first period.
2. The apparatus as set forth in
a clock generator to switch first and second switches of the first switched capacitor transformer and third and fourth switches of the second switched capacitor transformer ON during the first period and to switch third and fourth switches of the first switched capacitor transformer and first and second switches of the second switched capacitor transformer ON during the second period, wherein the first and second periods are disjoint.
3. The apparatus as set forth in
wherein the first and third switches are pMOSFETs, and the second and fourth switches are nMOSFETs.
4. The apparatus as set forth in
first and second input ports coupled to the voltage reference circuit;
first and second output ports coupled to the functional unit;
a second capacitor comprising a first terminal connected to the first input port and a second terminal connected to the second input port; and
a third capacitor comprising a first terminal connected to the first output port and a second terminal connected to the second output port.
5. The apparatus of
6. The apparatus as set forth in
switch first and second switches of the first switched capacitor circuit ON and third and fourth switches of the first switched capacitor circuit OFF to couple the first capacitor to the voltage reference circuit and to decouple the first capacitor from the functional unit during the first period, and
switch first and second switches of the second switched capacitor circuit OFF and third and fourth switches of the second switched capacitor circuit ON to decouple the second capacitor from the voltage reference circuit and to couple the second capacitor to the functional unit during the first period.
7. The apparatus as set forth in
switch first and second switches of the first switched capacitor circuit OFF and third and fourth switches of the first switched capacitor circuit ON to decouple the first capacitor from the voltage reference circuit and to couple the first capacitor to the functional unit during the second period, and
switch first and second switches of the second switched capacitor circuit ON and third and fourth switches of the second switched capacitor circuit OFF to couple the second capacitor to the voltage reference circuit and to decouple the second capacitor from the functional unit during the second period.
9. The integrated circuit of
10. The integrated circuit of
11. The integrated circuit of
12. The integrated circuit of
13. The integrated circuit of
14. The integrated circuit of
16. The method of
decoupling the reference voltage from the first capacitor and coupling the functional unit to the first capacitor to provide the functional unit with the reference voltage during a second period of the clock, and
coupling the reference voltage to the second capacitor and decoupling the functional unit from the second capacitor to develop the reference voltage across the second capacitor during the second period of the clock.
17. The method of
18. The method of
19. The method of
|
The invention relates to analog circuits, and more particularly, to switched capacitor circuits.
Integrated circuits often contain analog functional unit blocks (FUB) that require one or more reference voltages. For example, in
Bandgap circuits have been used to generate local reference voltages. However, a bandgap circuit makes use of an amplifier, which may add an offset as well as high frequency power supply noise to the reference voltage. Bandgap circuits at different locations on a die may not provide identical reference voltages due to variations in offset and noise power. A single bandgap circuit may be used to distribute a reference voltage as a single ended signal to different locations on a die. However, a single ended signal is not tolerant to noise coupled through a power supply or the substrate, for example. As a result, differential signaling is often preferred to single-ended signaling. A receiving FUB may utilize a received differential signal directly, or translate the differential voltage into a single-ended voltage referenced to a local ground or local VCC.
Ideally, common-mode noise in a differential signal may be cancelled by forming the difference of the differential signal to arrive at a single-ended signal. An example of a differencing (or subtracting) circuit is shown in
Differential signaling is employed, where the reference voltage at input ports 304 and 306 is the voltage potential difference between input ports 304 and 306, and the local reference voltage at output ports 310 and 312 is the voltage potential difference between output ports 310 and 312. With proper signal routing, noise coupled by interconnects 316 and 318 (or the substrate, not shown) appears as common mode noise and should marginally affect the differential signal (voltage potential difference) on interconnects 316 and 318. One of the interconnects may be connected to the local ground of FUB2 314, but this is not a requirement.
An embodiment of switched capacitor transformer 308 at the circuit-level is provided in
During the first portion of a cycle of operation, capacitor 414 develops a potential difference equal to (or more precisely, approximately equal to) the potential difference of input ports 416 and 418, and during the second portion of a cycle of operation capacitor 414 “transfers” this potential difference to output ports 420 and 422. In this way, the switched capacitor transformer mitigates low and high frequency power supply noise coupling by acting as a “floating power supply”, which may, for example, be referenced to a local ground at the receiving end (FUB2 314).
A circuit for generating the clock signals is provided in
The clock period and the portion of time for which all the transistors are OFF may be adjusted by varying delays T1 and T2. For there to be a portion of time for which all transistors are OFF, T2>T1+T0.
As seen in
In practice, the voltage difference between output ports 420 and 422 is not identical to the voltage difference between input ports 416 and 418. For example, if output ports 420 and 422 are loaded so that a DC current is drawn, then some of the stored charge on capacitor 414 will be drawn by the load and the output differential voltage will not be an identical to the input differential voltage. At low clock frequency, capacitor 404 may help filter out variations in the output differential voltage. Capacitor 402 may be used to reduce noise that may be injected back to the reference distribution network (FUB1 302). When a relatively large DC voltage offset is expected between output port 422 and input port 418, and output port 422 is connected to local ground, then care should be taken to minimize the parasitic capacitance between node 424 and substrate or other signal lines. The parasitic capacitance of node 426 is not as critical. Minimizing parasitic capacitance may be accomplished by using small-sized transistors and by careful layout of capacitor 414.
Further reduction in the variation in the output differential voltage due to switching capacitor 414 among the input and output ports may be realized by utilizing two switching capacitor transformers in parallel so that when the switched capacitor of one transformer is coupled to the input ports the switched capacitor of the other transformer is coupled to the output ports. For example, consider the two switched capacitor transformers in
If a reference voltage is to be distributed to more than one FUB, then more than one switched capacitor transformer may be used.
Various modifications may be made to the disclosed embodiments without departing from the scope of the invention as claimed below. For example, it is to be appreciated that the transistors in the embodiment of
Patent | Priority | Assignee | Title |
7952160, | Dec 31 2007 | Intel Corporation | Packaged voltage regulator and inductor array |
8130020, | May 13 2008 | Qualcomm Incorporated | Switched-capacitor decimator |
8866661, | Apr 30 2009 | T&W ENGINEERING A S | Input converter for an EEG monitoring system, signal conversion method and monitoring system |
Patent | Priority | Assignee | Title |
5859632, | Jul 14 1994 | BOE TECHNOLOGY GROUP CO , LTD | Power circuit, liquid crystal display device and electronic equipment |
5894284, | Dec 02 1996 | Freescale Semiconductor, Inc | Common-mode output sensing circuit |
5905404, | Mar 04 1997 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Bootstrap clock generator |
6144232, | Feb 27 1998 | Renesas Electronics Corporation | Chopper type voltage comparing circuit capable of correctly determining output polarity, and voltage comparing method |
6456123, | Aug 08 2000 | National Semiconductor Corporation | Method and apparatus for transferring a differential voltage to a ground referenced voltage using a sample/hold capacitor |
6559492, | Nov 07 2001 | Intel Corporation | On-die switching power converter with stepped switch drivers and method |
6559689, | Oct 02 2000 | Allegro MicroSystems, LLC | Circuit providing a control voltage to a switch and including a capacitor |
6621445, | Jun 24 2002 | Intel Corporation | Low power reference buffer circuit utilizing switched capacitors |
6977542, | Nov 25 2002 | Texas Instruments Incorporated | Adjusting the trans-conductance of a filter |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 15 2003 | Intel Corporation | (assignment on the face of the patent) | / | |||
Mar 16 2004 | HAZUCHA, PETER | Intel Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014525 | /0477 | |
Mar 16 2004 | KARNIK, TANAY | Intel Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014525 | /0477 |
Date | Maintenance Fee Events |
Nov 24 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 29 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 14 2019 | REM: Maintenance Fee Reminder Mailed. |
Jul 01 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 29 2010 | 4 years fee payment window open |
Nov 29 2010 | 6 months grace period start (w surcharge) |
May 29 2011 | patent expiry (for year 4) |
May 29 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 29 2014 | 8 years fee payment window open |
Nov 29 2014 | 6 months grace period start (w surcharge) |
May 29 2015 | patent expiry (for year 8) |
May 29 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 29 2018 | 12 years fee payment window open |
Nov 29 2018 | 6 months grace period start (w surcharge) |
May 29 2019 | patent expiry (for year 12) |
May 29 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |