A wireless information processing system has a wireless information processing apparatus and a wireless information recording medium. The apparatus has a first signal generator generating a first signal requesting the recording medium to set a command slot, a second signal generator generating a second signal requesting the recording medium to transmit a identification information, a third signal generator generating a third signal requesting the recording medium to set a time slot, and a receiver receiving a response signal from the recording medium. The recording medium has a receiver receiving the first to third signals, a command slot setup unit setting the command slot, an accumulation unit accumulating a number of receiving times of the second signal, a transmitter transmitting the response signal at a response time interval defined by the time slot, and a time slot setup unit setting the time slot.
|
21. A communication method for a wireless information processing system comprising:
a wireless information processing apparatus instructing a plurality of wireless information recording media present in a communication area to set command slots to any one of integers from 0 to N (N is 0 or an arbitrary natural number), and set time slots to any one of integers from 0 to M (M is 0 or an arbitrary natural number);
a wireless information recording medium, in which a value of the command slot matches a number of times that a response instruction transmitted by the wireless information processing apparatus has been received, transmitting unique identification information included in the wireless information recording medium at a response time interval defined by the time slots.
10. A wireless information recording medium comprising:
an identification information recorder in which unique identification information is recorded;
a receiver capable to receive a first start signal requesting a setup of a command slot, a second start signal requesting a transmission of the identification information, and a third start signal requesting a setup of a time slot, the first to third signals being transmitted by a wireless information processing apparatus;
a command slot setup unit configured to set the command slot;
an accumulation unit configured to accumulate a number of times that the second start signal has been received;
a time slot setup unit configured to set the time slot; and
a transmitter capable to transmit a response signal including the identification information to the wireless information processing apparatus at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot.
3. A wireless information recording medium comprising:
an identification information recorder in which unique identification information is recorded;
a receiver capable to receive a first start signal requesting a setup of a command slot, a second start signal requesting a transmission of the identification information, and a third start signal requesting a setup of a time slot, the first to third signals being transmitted by a wireless information processing apparatus;
a command slot setup unit configured to set the command slot;
an accumulation unit configured to accumulate a number of times that the second start signal has been received;
a transmitter capable to transmit a response signal including the identification information to the wireless information processing apparatus at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot or when the time slot is set; and
a time slot setup unit capable to set the time slot when the response signal has not been appropriately received by the wireless information processing apparatus.
15. A communication method for a wireless information processing system comprising:
a wireless information processing apparatus instructing a plurality of wireless information recording media present in a communication area to set command slots of which values are any one of integers from 0 to N (N is 0 or an arbitrary natural number);
a wireless information recording medium, in which the value of the command slot matches a number of times that a response instruction has been received from the wireless information processing apparatus, transmitting unique identification information included in the wireless information recording media;
the wireless information processing apparatus instructing the plurality of wireless information recording media to set time slots of which values are any one of integers from 0 to M (M is 0 or an arbitrary natural number); and
the wireless information recording medium, of which the identification information transmitted has not been appropriately received by the wireless information processing apparatus, transmitting the identification information at a response time interval defined by the time slot.
11. A wireless information processing apparatus comprising:
a first start signal generator configured to generate a first start signal capable to request a wireless information recording medium having unique identification information to set a command slot;
a second start signal generator configured to generate a second start signal capable to request the wireless information recording medium to transmit the identification information;
a third start signal generator configured to generate a third start signal capable to request the wireless information recording medium to set a time slot;
a transmitter capable to transmit the first to third start signals to a plurality of wireless information recording media located in a communication area; and
a receiver capable to receive a response signal including the identification information transmitted by the wireless information recording medium, in which a number of times that the second start signal has been received matches a value of the command slot, and capable to receive the response signal transmitted by the wireless information recording medium at a response time interval defined by the time slot.
16. A communication method for a wireless information processing system comprising:
a wireless information processing apparatus transmitting a first start signal requesting a setup of command slots to a plurality of wireless information recording media present in a communication area;
a wireless information recording medium, which has received the first start signal, setting the command slot;
the wireless information processing apparatus transmitting a second start signal requesting the wireless information recording medium to transmit unique identification information included in the wireless information recording medium;
the wireless information recording medium, in which a number of times that the second start signal has been received matches a value of the command slot, transmitting a response signal including the identification information;
the wireless information processing apparatus transmitting a third start signal requesting a setup of a time slot;
the wireless information recording medium, for which the response signal has not been appropriately received by the wireless information processing apparatus, setting the time slot; and
the wireless information recording medium transmitting the response signal at a response time interval defined by the time slot.
2. A wireless information processing system comprising:
a wireless information processing apparatus comprising:
a first start signal generator configured to generate a first start signal capable to request a wireless information recording medium having unique identification information to set a command slot;
a second start signal generator configured to generate a second start signal capable to request the wireless information recording medium to transmit the identification information;
a third start signal generator configured to generate a third start signal capable to request the wireless information recording medium to set a time slot;
a transmitter capable to transmit the first to third start signals to a plurality of wireless information recording media located in a communication area; and
a receiver capable to receive a response signal including the identification information transmitted by the wireless information recording medium, and
the wireless information recording medium comprising:
an identification information recorder in which the identification information is recorded;
a receiver configured to receive the first to third start signals;
a command slot setup unit configured to set the command slot;
an accumulation unit configured to accumulate a number of times that the second start signal has been received;
a time slot setup unit configured to set the time slot; and
a transmitter capable to transmit the response signal to the wireless information processing apparatus at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot.
1. A wireless information processing system comprising:
a wireless information processing apparatus comprising:
a first start signal generator configured to generate a first start signal capable to request a wireless information recording medium having unique identification information to set a command slot;
a second start signal generator configured to generate a second start signal capable to request the wireless information recording medium to transmit the identification information;
a third start signal generator configured to generate a third start signal capable to request the wireless information recording medium to set a time slot;
a transmitter capable to transmit the first to third start signals to a plurality of wireless information recording media located in a communication area; and
a receiver capable to receive a response signal including the identification information transmitted by the wireless information recording medium, and
the wireless information recording medium comprising:
an identification information recorder in which the identification information is recorded;
a receiver configured to receive the first to third start signals;
a command slot setup unit configured to set the command slot;
an accumulation unit configured to accumulate a number of times that the second start signal has been received;
a transmitter configured to transmit the response signal at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot or when a value of the time slot is set; and
a time slot setup unit capable to set the time slot when the response signal has not been appropriately received by the wireless information processing apparatus.
4. The wireless information recording medium of
5. The wireless information recording medium of
6. The wireless information recording medium of
a first random number generator configured to generate a random number; and
a command counter configured to employ the random number to set the command slot, and
wherein the time slot setup unit comprises:
a second random number generator configured to generate a random number; and
a time counter configured to employ the random number to set the time slot.
7. The wireless information recording medium of
a random number generator configured to generate a random number, and
a command counter configured to employ a part of the random number to set the command slot, and
wherein the time slot setup unit comprises a time counter configured to employ another part of the random number to set the time slot.
8. The wireless information recording medium of
a specific information recorder capable to record specific information being effective during a communication period with the wireless information processing apparatus; and
a specific information comparator configured to compare the specific information with specific information included in the first to third start signals,
wherein, when the specific information recorded in the specific information recorder matches the specific information included in the first to third start signals, the command slot setup unit, the accumulation unit and the time slot setup unit execute each request included in the first to third start signals.
9. The wireless information recording medium of
wherein the specific information controller further comprises a specific information change unit configured to change the specific information recorded in the specific information recorder when the specific information in the specific information recorder matches specific information included in the fourth start signal, and the identification information matches pre-change identification information included in the fourth start signal.
12. The wireless information processing apparatus of
13. The wireless information processing apparatus of
14. The wireless information processing apparatus of
17. The communication method of
18. The communication method of
decrementing the value of the command slot each time the second start signal is received; and
transmitting the response signals when the value of the command slots reaches 0.
19. The communication method of
20. The communication method of
22. The communication method of
the wireless information processing apparatus transmitting, to the plurality of wireless information recording media present in the communication area, a first start signal requesting a setup of command slots and a third start signal requesting a setup of time slots;
the wireless information recording medium which has received the first and third start signals setting the command slot and the time slot;
the wireless information processing apparatus transmitting the third start signal and a second start signal requesting a transmission of unique identification information included in the wireless information recording medium; and
the wireless information recording medium, in which the number of times that the second start signal has been received matches the value of the command slot, transmitting a response signal including the identification information at a response time interval defined by the time slot.
23. The communication method of
24. The communication method of
decrementing the value of the command slot each time the second start signal is received; and
transmitting the response signal at the response time interval when the value of the command slot reaches 0.
|
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. P2002-208124 filed on Jul. 17, 2002; the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a wireless information processing system, a wireless information recording medium, a wireless information processing apparatus and a communication method for the wireless information processing system. The present invention relates in particular to a wireless information processing system which exchanges signals between a plurality of wireless information recording media and a wireless information processing apparatus through wireless communication and to a communication method for the wireless information processing system.
2. Description of Related Art
Conventionally, a wireless card system which includes a wireless information processing apparatus and a plurality of wireless information recording media such as wireless cards has been available. The wireless information processing apparatus has a card reader/writer and the like which exchanges signals with these wireless cards through wireless communications. In this wireless card system, a communication method called a multi-read method is established, in which the card reader/writer receives response signals from the plurality of wireless cards simultaneously. Recently, the various improvement and relation technology on the multi-read method has been proposed, for example, at Japanese patent Laid Open (Kokai) No. H10-222622.
The multi-read method (first related art) is characterized by providing each wireless card with a time difference for the transmission of the response signals in order to accurately receive the plurality of response signals simultaneously. In other words, the number of time intervals, which corresponds to the number of the cards, is set for a response time period required to receive the response signals from the plurality of wireless cards simultaneously, and each wireless card respectively sends the response signals with respect to the response time intervals allocated by the wireless cards. Owing to this, it is possible to avoid collisions between response signals and accurately receive the response signals. Thus, it is possible to reduce the communication time.
A specific explanation will now be given for a case where a wireless information processing apparatus transmits a start signal which requests a response for card addresses from a plurality of wireless cards located in a communicable area (communication area). Together with the start signal, the wireless information processing apparatus transmits, for example, the number of response time intervals, composed of the maximum number of wireless cards that can be located in the communication area simultaneously. Upon receipt of the start signal, each of the wireless cards generates a random number to select one of the response time intervals and transmits a response signal including the card address and the like to a card reader/writer at the selected response time interval. As a result, the probability that the wireless cards will transmit response signals at different response time intervals is increased, and response signal collisions will be avoided.
The communication method according to the first related art has the following advantages and disadvantages depending on the number of wireless cards. Once the wireless information processing apparatus has transmitted a start signal, the apparatus needs to wait for responses from a plurality of wireless cards for a certain response period thereafter. When the maximum number of wireless cards that can be present in a communication area at once is small, the number of response time intervals is reduced. Accordingly, a response time as a whole can be reduced. Therefore, for start signals sent simultaneously, the wireless information processing apparatus can efficiently and accurately receive response signals from multiple wireless cards.
However, when there are a large number of wireless cards with which to communicate, the wireless information processing apparatus must set many time intervals, and after a start signal has been transmitted, must wait for responses from the wireless cards for a long response time. When smaller time intervals are set in order to reduce the response time, the probability of problems such as collisions between response signals, and the accurate reception of response signals occurring, is increased.
As described above, there is an upper limit on the number of the wireless cards for which the communication method according to the first related art can function effectively. Depending on an increase/decrease in the number of the wireless cards, it is difficult to appropriately perform the wireless communications. A multi-read method has been required, in which the advantages of the communication method according to the first related art are maintained while the disadvantages thereof are overcome.
A first aspect of the present invention provides a wireless information processing system having a wireless information processing apparatus and a wireless information recording medium. The wireless information processing apparatus has a first start signal generator configured to generate a first start signal capable to request the wireless information recording medium having unique identification information to set a command slot, a second start signal generator configured to generate a second start signal capable to request the wireless information recording medium to transmit the identification information, a third start signal generator configured to generate a third start signal capable to request the wireless information recording medium to set a time slot, a transmitter capable to transmit the first to third start signals to the plurality of wireless information recording media located in a communication area, and a receiver capable to receive a response signal including the identification information transmitted by the wireless information recording medium. The wireless information recording medium has an identification information recorder in which the identification information is recorded, a receiver configured to receive the first to third start signals, a command slot setup unit configured to set the command slot, an accumulation unit configured to accumulate a number of times that the second start signal has been received, a transmitter configured to transmit the response signal at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot or when a value of the time slot is set, and a time slot setup unit capable to set the time slot when the response signal has not been appropriately received by the wireless information processing apparatus.
A second aspect of the present invention provides a wireless information processing system having a wireless information processing apparatus and a wireless information recording medium. The wireless information processing apparatus has a first start signal generator configured to generate a first start signal capable to request a wireless information recording medium having unique identification information to set a command slot, a second start signal generator configured to generate a second start signal capable to request the wireless information recording medium to transmit the identification information, a third start signal generator configured to generate a third start signal capable to request the wireless information recording medium to set a time slot, a transmitter capable to transmit the first to third start signals to the plurality of wireless information recording media located in a communication area, and a receiver capable to receive a response signal including the identification information transmitted by the wireless information recording medium. The wireless information recording medium has an identification information recorder in which the identification information is recorded, a receiver configured to receive the first to third start signals, a command slot setup unit configured to set the command slot, an accumulation unit configured to accumulate a number of times that the second start signal has been received, a time slot setup unit configured to set the time slot, and a transmitter capable to transmit the response signal to the wireless information processing apparatus at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot.
A third aspect of the present invention provides a wireless information recording medium having an identification information recorder in which unique identification information is recorded, a receiver capable to receive a first start signal requesting a setup of a command slot, a second start signal requesting a transmission of the identification information, and a third start signal requesting a setup of a time slot, the first to third signals being transmitted by a wireless information processing apparatus, a command slot setup unit configured to set the command slot, an accumulation unit configured to accumulate a number of times that the second start signal has been received, a transmitter capable to transmit a response signal including the identification information to the wireless information processing apparatus at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot or when the time slot is set, and a time slot setup unit capable to set the time slot when the response signal has not been appropriately received by the wireless information processing apparatus.
A fourth aspect of the present invention provides a wireless information recording medium having an identification information recorder in which unique identification information is recorded, a receiver capable to receive a first start signal requesting a setup of a command slot, a second start signal requesting a transmission of the identification information, and a third start signal requesting a setup of a time slot, the first to third signals being transmitted by a wireless information processing apparatus, a command slot setup unit configured to set the command slot, an accumulation unit configured to accumulate a number of times that the second start signal has been received, a time slot setup unit configured to set the time slot, and a transmitter capable to transmit a response signal including the identification information to the wireless information processing apparatus at a response time interval defined by the time slot when the number of times that the second start signal is received matches a value of the command slot.
A fifth aspect of the present invention provides a wireless information processing apparatus having a first start signal generator configured to generate a first start signal capable to request a wireless information recording medium having unique identification information to set a command slot, a second start signal generator configured to generate a second start signal capable to request the wireless information recording medium to transmit the identification information, a third start signal generator configured to generate a third start signal capable to request the wireless information recording medium to set a time slot, a transmitter capable to transmit the first to third start signals to the plurality of wireless information recording media located in a communication area, and a receiver capable to receive a response signal including the identification information transmitted by the wireless information recording medium, in which a number of times that the second start signal has been received matches a value of the command slot, and capable to receive the response signal transmitted by the wireless information recording medium at a response time interval defined by the time slot.
A sixth aspect of the present invention provides a communication method for a wireless information processing system having: a wireless information processing apparatus instructing a plurality of wireless information recording media present in a communication area to set command slots of which values are any one of integers from 0 to N (N is 0 or an arbitrary natural number); the wireless information recording medium, in which the value of the command slot matches a number of times that a response instruction has been received from the wireless information processing apparatus, transmitting unique identification information included in the wireless information recording media; the wireless information processing apparatus instructing the plurality of wireless information recording media to set time slots of which values are any one of integers from 0 to M (M is 0 or an arbitrary natural number); and the wireless information recording medium, of which the identification information transmitted has not been appropriately received by the wireless information processing apparatus, transmitting the identification information at a response time interval defined by the time slot.
A seventh aspect of the present invention provides a communication method for a wireless information processing system having: a wireless information processing apparatus transmitting a first start signal requesting a setup of command slots to a plurality of wireless information recording media present in a communication area; the wireless information recording medium, which has received the first start signal, setting the command slot; the wireless information processing apparatus transmitting a second start signal requesting the wireless information recording medium to transmit unique identification information included in the wireless information recording medium; the wireless information recording medium, in which a number of times that the second start signal has been received matches a value of the command slot, transmitting a response signal including the identification information; the wireless information processing apparatus transmitting a third start signal requesting a setup of a time slot; the wireless information recording medium, for which the response signal has not been appropriately received by the wireless information processing apparatus, setting the time slot; and the wireless information recording medium transmitting the response signal at a response time interval defined by the time slot.
A eighth aspect of the present invention provides a communication method for a wireless information processing system having: a wireless information processing apparatus instructing a plurality of wireless information recording media present in a communication area to set command slots to any one of integers from 0 to N (N is 0 or an arbitrary natural number), and set time slots to any one of integers from 0 to M (M is 0 or an arbitrary natural number); the wireless information recording medium, in which a value of the command slot matches a number of times that a response instruction transmitted by the wireless information processing apparatus has been received, transmitting unique identification information included in the wireless information recording medium at a response time interval defined by the time slots.
Various embodiments of the present invention will be described with reference to the accompanying drawings. It is to be noted that the same or similar reference numerals are applied to the same or similar parts and elements throughout the drawings, and the description of the same or similar parts and elements will be omitted or simplified.
(First Embodiment)
<Wireless Information Processing System>
As shown in
As shown in
The operation unit 17 includes a command slot setup unit 21 which sets a command slot, a time slot setup unit 22 which sets a time slot, an accumulation unit 23 which counts the number of times a specific start signal is received, and a specific information controller (hereinafter referred to as “command ID controller”) 24 which stores and controls specific information (hereinafter referred to as “command IDs”) that are valid when the command ID controller 24 is in communication with the wireless information processing apparatus 1.
Herein, the “command slot” includes one of integers 0 to N (N is 0 or an arbitrary natural number), and the “time slot” includes one of integers 0 to M (M is 0 or an arbitrary natural number). The “various start signals” transmitted by the wireless information processing apparatus 1 include a first start signal for requesting the setup of the command slot, a second start signal for requesting an identification information response, a third start signal for requesting the setup of the time slot, and a fourth start signal for requesting a command ID change. The command slot setup unit 21 sets the command slot in accordance with the first start signal, and the time slot setup unit 22 sets the time slot in accordance with the third start signal. The command slot is set in a range from 0 to N, while the time slot is set in a range from 0 to M. The accumulation unit 23 calculates the number of times that the second start signal is received as a “specific start signal” and determines whether the number of the times that the second start signal is received coincides with the command slot.
When the number of times for the reception of the second start signal matches that for the command slot, or at a response time interval defined by the time slot, the transmitter 20 transmits a response signal that includes identification information to the wireless information processing apparatus 1. Note that, when the time slot setup unit 22 sets the time slot, the transmitter 20 transmits a response signal at the response time interval defined by the time slot.
Hereinafter, a further explanation will be given for a command slot subtractor 23 as an example of an accumulation unit. The command slot subtractor 23 decrements a value by one for the command slot each time a second start signal is received and determines whether the value of the command slot has reached 0.
In the wireless information processing apparatus 1, the card reader/writer 4 includes a transmitter 14 which transmits first to fourth start signals to the wireless card 2, a receiver 15 which receives a response signal that includes the identification information from the wireless card 2, and a transmission/reception controller 13 which controls the transmission/reception of the first to fourth start signals and the response signal.
The host computer 5 includes a first start signal generator 7 which generates a first start signal, a second start signal generator 8 which generates a second start signal, a third start signal generator 9 which generates a third start signal, and a fourth start signal generator 10 which generates a fourth start signal.
<Wireless Information Processing Apparatus>
As is shown in
The host computer 5 includes an operation unit 29 which generates and controls the first to fourth start signals, a data storage unit 30, a program storage unit 31, an input device 32, and an output device 33. The input device 32 is a keyboard, a mouse, a light pen, a flexible disk device or the like. The data storage unit 30 and the program storage unit 31 are magnetic tapes, magnetic drums, magnetic disks, optical disks, magneto-optical disks, semiconductor memories such as ROMs and RAMs, or the like. The output device 33 is a display device or a printer. The operation unit 29, the data storage unit 30 and the program storage unit 31 can be constituted by a normal computer system that includes a CPU and storage devices such as a ROM, a RAM, a magnetic disk and the like connected to the CPU. The input data for the individual processes performed by the operation unit 29 are stored in the data storage unit 30, and program instructions are stored in the program storage unit 31. These input data and the program instructions are read by the CPU as needed, and the processing is executed. Moreover, data such as numerical value information generated by the reception of the response signal from the wireless card 2 in
The operation unit 29 includes first to fourth start signal generators 7 to 10, a start signal selector 34 which selects one of the first to fourth start signals to be transmitted, and a slot setup range determination unit 35 which determines the setup ranges for the command slot and the time slot. The slot setup range determination unit 35 sets N, which represents the setup range for the command slot, and M, which represents the setup range for the time slot. Reference symbols N and M can be determined by referring to the maximum number of the wireless cards 2 that can be present in the communication area 6 at the same time.
<Start Signal>
As shown in
As shown in
As shown in
As shown in
As shown in
<Wireless Card>
The receiver 19 and the transmitter 20 of the wireless card 2 in
The command slot setup unit 21 includes a first random number generator 38 which generates a random number, and a command counter 39 which sets a command slot by employing the random number generated by the first random number generator 38. The command slot subtractor 23 decrements the command slot set by the command counter 39 by one each time the second start signal 53 in
The time slot setup unit 22 includes a second random number generator 40 which generates a random number, a time counter 41 which sets a time slot by using the random number generated by the second random number generator 40, and a timer 42 which measures a response time interval defined by the time slot. To measure the response time interval defined by the time slot, for example, the timer 42 decrements the time slot by one at a predetermined time interval and determines whether the command slot has reached 0.
The card address 46 is recorded in the identification information recording unit 18 as an example of identification information unique to each wireless card 2.
The command ID controller 24 further includes a specific information recorder (hereinafter referred to as “command ID register”) 43 which temporarily records a command ID, a specific information comparator (hereinafter referred to as “command ID comparator”) 44 which compares the command ID recorded in the command ID register 43 with the command ID 73 included in the first to third start signals 52 to 54 in
When the command ID recorded in the command ID register 43 matches the command IDs 73 included in the first to third start signals 52 and 54, the command slot setup unit 21, the command slot subtractor 23 and the time slot setup unit 22 execute the commands 59 to 64 in accordance with the first to third start signals 52 and 54.
As shown in
Similarly, the second random number generator 40 in
As shown in
<Operation of Wireless Card>
With reference to
(a) At stage S11, the transmitter/receiver 16 in
(b) At stage S13, the command slot setup unit 21 in
(c) At stage S14, the command slot subtractor 23 in
(d) At stage S15, the transmitter/receiver 16 in
Note that, when the command IDs do not match (No at stage S12) and when the value for the command slot is not 0 (No at stage S14), the operation of the wireless card 2 that received the first start signal 52 is terminated.
With reference to
(A) At stage S21, the transmitter/receiver 16 in
(B) At stage S23, the command slot subtractor 23 in
(C) At stage S25, the command slot subtractor 23 determines whether the value for the command slot is 0. When the value for the command slot is 0 (Yes at stage S25), the operation advances to stage S26.
(D) At stage S26, the transmitter/receiver 16 in
Note that, when the command IDs do not match (No at stage S22), when the value for the command slot is 0 (No at stage S23), or when the value for the command slot is not 0 (No at stage S25), the operation of the wireless card 2 that received the second start signal 53 is terminated.
As described above, the wireless card 2 decrements the value for the command slot upon each reception of the second start signal 53 and transmits the response signal when the value for the command slot has reached 0. However, the wireless card 2 does not decrement the value for the command slot when the value is already 0. The case “the value of the command slot is already 0” includes cases where the value for the command slot is set to 0 at stage S13 in
With reference to
(a) At stage S31, the transmitter/receiver 16 in
(b) At stage S33, the time slot setup unit 22 in
(c) At stage S34, the time slot setup unit 22 determines whether the value that has been set for the time slot is 0. When the value for the time slot is 0 (Yes at stage S34), the operation advances to stage S36. At stage S36, the transmitter/receiver 16 transmits the response signal to the wireless information processing apparatus 1 in
(d) After the response signal has been transmitted (after stage S36), at stage S37 the second random number generator 40 generates a random number, and the operation of the wireless card 2 is terminated.
Note that, when the two command IDs do not match (No at stage S32), the operation of the wireless card 2 that received the third start signal 54 is terminated.
With reference to
(A) At stage S41, the transmitter/receiver 16 in
(B) At stage S43, the operation unit 17 determines whether the card address 46 recorded in the identification information recorder 18 matches the card address 46 included in the fourth start signal 55. When the two card addresses 46 match (Yes at stage S43), the operation advances to stage S44.
(C) At stage S44, the command ID change unit 45 changes the card address 46 recorded in the identification information recorder 18 to the post-change command ID 78, and the operation of the wireless card 2 is terminated.
Note that, when the command ID and the pre-change command ID 74 do not match (No at stage S42), and when the two card addresses 46 do not match (No at stage S43), the operation of the wireless card 2 that received the fourth start signal 55 is terminated.
<Communication Method for Wireless Information Processing System>
A communication method for the wireless information processing system according to the first embodiment of the present invention will now be described with reference to
(a) At stage S101, the card reader/writer 4 transmits the first start signal 52 to the plurality of wireless cards 2 in the communication area 6. The command ID 73 and information regarding the command slot setup range (=N) 76 are included in the first start signal 52.
(b) At stage S102, the transmitter/receiver 16 of each wireless card 2 receives the first start signal 52, and the command slot setup unit 21 sets the command slot. Since the same initial value of all the command IDs is provided for all the wireless cards 2, all of the wireless cards 2 execute the command slot setup command 60 included in the first start signal 52.
(c) At stage S103, the command slot subtractor 23 determines whether the value for the command slot set at stage S102 is 0. When it is ascertained that the value of the command slot is 0 (Yes at stage S103), the operation is shifted to stage S106. When it is ascertained that the command slot is not 0 (No at stage S103), the operation advances to stage S104. It should be noted that stage S103 corresponds to stage S14 in
(d) At stage S104, the card reader/writer 4 transmits the second start signal 53.
(e) At stage S105, the command slot subtractor 23 determines whether the number of times that the second start signal 53 has been received matches the value for the command slot. It should be noted that stage S105 corresponds to stages S23 to S25 in
(f) At stage S106, the wireless card 2 transmits the response signal, which includes the card address 46. In other words, when it is “Yes” at stage S103, the wireless card 2 executes the address response command 59 included in the first start signal 52 in
(g) At stage S107, when the card reader/writer 4 has appropriately received the response signal from the wireless card 2, the fourth start signal generator 10 in
(h) At stage S108, among the wireless cards 2 that have received the fourth start signal 55, only a wireless card 2 in which the command ID and the card address 46 match those included in the fourth start signal 55 changes the command ID to the post-change command ID 78. As a result, since the command ID of the wireless card 2 for which a response signal has been appropriately received by the card reader/writer 4 is changed, this wireless card 2 can be distinguished from others which have not appropriately received response signals.
(i) At stage S109, the host computer 5 determines whether the second start signal 53 has been transmitted for N times. When the second start signal 53 has not yet been transmitted for N times (No at stage S109), the operation returns to stage S104, and the loop at stages S104 to S109 is repeated for N times. When the second start signal 53 has been transmitted N times (Yes at stage S109), the operation advances to stage S110.
(j) At stage S110, the card reader/writer 4 transmits the third start signal 54 to the wireless cards 2.
(k) At stage S111, among the wireless cards 2 that have received the third start signal 54, a time slot is set by a wireless card 2 from which a response signal has not been appropriately received by the card reader/writer 4. In this case, because the command ID of the wireless card 2 from which a response signal was appropriately received by the card reader/writer 4 was changed at stage S108, the command ID of the wireless card 2 does not match the command ID included in the third start signal 54. Therefore, this wireless card 2 does not execute the time slot (0 to M) setup command 64 included in the third start signal 54.
(l) Finally, at stage S112, the wireless card 2 that has set the time slot transmits the response signal to the card reader/writer 4 at a response time interval defined by the time slot. It should be noted that stage S112 corresponds to stages S34 to S36 in
Note that, the communication method that includes stages S101 to S109 is called a “command response method,” and the communication method that includes stages S110 to S112 is called a “time response method.” Further, the communication method that includes stages S101 to S112 is called a “shift communication method,” and provides control for the shift from the command response method to the time response method. An invention related to the command response method is described in Japanese Patent Laid Open (Kokai) No. 2003-168091, the entire contents (all pages) of this reference being incorporated herein by reference.
Next, with reference to
(A) First, the card reader/writer 4 transmits the first start signal 52. Upon the reception of this first start signal 52, the wireless cards A to J set each command slot in a range of 0 to 6 (=N), as shown in
(B) Second, the card reader/writer 4 transmits the second start signal 53 for the first time. Among the wireless cards A to J that received the second start signal 53, only the wireless cards F and H have the values for command slots, which are the same as the number of the times that the second start signal 53 is received (=1). Accordingly, the wireless cards F and H simultaneously transmit response signals. Thus, the card reader/writer 4 cannot appropriately receive the response signals from the wireless cards F and H. Therefore, the command IDs of the wireless cards F and H are not changed.
(C) Third, among the wireless cards A to J that received the second start signal 53 for the second time, only the wireless card B has a command slot set to have the same value as the number of times (=2) that the second start signal 53 has been received. Therefore, only the wireless card B transmits the response signal from the wireless card B. Thus, the command ID of the wireless card B is changed after the transmission of the response signal.
(D) Next, among the wireless cards 2 that receive the second start signal 53 for the third time, the wireless cards E and J have command slots set to have the same value as the number of times (=3) that the second start signal 53 has been received. Accordingly, since response signals are transmitted simultaneously by the wireless cards E and J, the card reader/writer 4 cannot appropriately receive these response signals from the wireless cards E and J. Thus, the command IDs of the wireless cards E and J are not changed.
(E) In the same manner, the second start signal 53 is transmitted by the card reader/writer 4 for the fourth, fifth and sixth time. Specifically, for the fourth transmission of the second start signal 53, a response signal is transmitted by only the wireless card A. For the fifth transmission of the second start signal 53, a response signal is transmitted by only the wireless card D. For the sixth transmission of the second start signal 53, response signals are transmitted by the wireless cards G and I. Therefore, the command IDs of the wireless cards A to D are changed while the command IDs of the wireless cards G and I are not changed.
(F) After the second start signal has been transmitted six times, the third start signal 54 is transmitted by the card reader/writer 4. Among the wireless cards A to J that receive the third start signal 54, the wireless cards E to J, from which response signals have not been appropriately received, set time slots in a range from 0 to 5 (=M), respectively. Since the command IDs have been changed for the wireless cards A to D, from which response signals were appropriately received, these wireless cards A to D do not execute the time slot (0 to 5) setup command 64 included in the third start signal 54.
(G) Among the wireless cards E to J, only the wireless card E has set a time slot=0. Accordingly, the wireless card E transmits a response signal without repeating the loop at stages S34 and S35 in
(H) The wireless cards F to J that set the time slots=1 to 5 repeat the loop at stages S34 to S35 in
As described above, a wireless card 2 which serves as a wireless information recording medium transmits a response signal at a response time interval defined by the time slot when the number of times that the second start signal 53 has been received matches the value of a command slot or when the value of the time slot is set. Specifically, a wireless card 2 returns a card address 46 serving as identification information when a response condition defined by a command slot has been established or when a response condition defined by a time slot has been established. When comparatively many wireless cards 2 are present in the communication area 6, first, the transmission/reception of response signals is performed in accordance with the command slots. Thereafter, when the number of wireless cards 2 has been satisfactorily reduced, the transmission/reception of response signals is performed in accordance with the time slots.
When comparatively many wireless cards 2 are present in the communication area 6, first, the command slots are set and the card reader/writer 4 transmits the second start signal 53 to the wireless cards 2 for the required number of times. Accordingly, the card reader/writer 4 can appropriately receive response signals from the plurality of wireless cards 2. In addition, the card reader/writer does not have to wait for a long time to receive the response signals from the plurality of wireless cards 2, and the response signals can be efficiently received within a short period of time. After employing the command response method, the number of the wireless cards 2 from which the response signals are not appropriately received is relatively small. Thereupon, the wireless cards 2, from which the response signals are not appropriately received in the command response method, transmit response signals at a predetermined time interval by setting the value of the time slot. As a result, the number of time intervals of the response time is reduced, and the overall response time period is made shorter. Therefore, for one transmission of the third start signal, the response signals from the plurality of wireless cards 2 can be efficiently and accurately received.
As shown in
(Second Embodiment)
<Wireless Information Processing Apparatus>
As shown in
The operation unit 29 includes a fifth start signal generator 11, a sixth start signal generator 12, a start signal selector 34 which selects the fifth or the sixth start signal to be transmitted, and a slot setup range determination unit 35. The fifth start signal generator 11 generates the fifth start signal to request the setup of a command slot and a time slot, and the sixth start signal generator 12 generates the sixth start signal to request the setup of a time slot.
<Start Signal>
As shown in
As shown in
<Operation of Wireless Card>
First, with reference to
(a) At stage S51, the transmitter/receiver 16 in
(b) At stage S53, the command slot setup unit 21 in
(c) At stage S54, the time slot setup unit 22 determines whether the value for the time slot that was set is 0. When the value for the time slot is 0 (Yes at stage S54), the operation advances to stage S56. When the value for the time slot is not 0 (No at stage S54), the operation is shifted to stage S55, and the timer 42 decrements the value for the time slot by one. Thereafter, the operation returns to stage S54 and decrements the value by one until the value for the time slot reaches 0.
(d) At stage S56, the command slot subtractor 23 determines whether the value for the command slot that was set is 0. When the value for the command slot is 0 (Yes at stage S56), the operation advances to stage S57. At stage S57, the wireless card 2 transmits a response signal which includes the card address 46 to the wireless information processing apparatus 1. At stage S58, the first random number generator 38 generates a random number, and the operation of the wireless card 2 is terminated.
Note that, when the two command IDs do not match (No at stage S52) and when the value for the command slot is not 0 (No at stage S56), the operation of the wireless card 2 that received the fifth start signal 56 is terminated.
Next, with reference to
(A) First, at stage S61, the transmitter/receiver 16 in
(B) At stage S64, the time slot setup unit 22 determines whether the value for the time slot that was set is 0. When the value of the time slot is 0 (Yes at stage S64), the operation advances to stage S66. When the value of the time slot is not 0 (No at stage S64), the operation is shifted to stage S65, and the timer 42 decrements the value of the time slot by one. Thereafter, the operation returns to stage S54 and decrements the value of the time slot by one until the value reaches 0.
(C) At stage S66, the command slot subtractor 23 determines whether the value for the command slot is greater than 0. When the value for the command slot is greater than 0 (Yes at stage S66), the operation advances to stage S67. At stage S67, the command slot subtractor 23 decrements the value of the command slot by one. At stage S68, the command slot subtractor 23 determines whether the value for the command slot is 0. When the value for the command slot is 0 (Yes at stage S68), the operation advances to stage 69.
(D) At stage S69, the wireless card 2 transmits a response signal to the wireless information processing apparatus 1. Thereafter, at stage S70, the first and second random number generators 38 and 40 generate random numbers, and the operation of the wireless card 2 is terminated.
Note that, when the two command IDs do not match (No at stage S62), when the value for the command slot is 0 at stage S66 (No at stage S66), or when the value for the command slot is not 0 at stage S68 (No at stage S68), the operation of the wireless card 2 that received the sixth start signal 57 is terminated. Thus, the wireless card 2 decrements the value for the command slot each time the sixth start signal 57 is received, and transmits a response signal when the values for both the command slot and the time slot reach 0.
<Communication Method for Wireless Information Processing System>
With reference to
(A) First, at stage S201, the card reader/writer 4 in
(B) Next, at stage S202, the transmitter/receiver 16 in
(C) At stage S203, the command slot subtractor 23 determines whether the value of the command slot set at stage S202 is greater than 0. When the value of the command slot is greater than 0 (Yes at stage S203), the operation advances to stage S204. When the value of the command slot is 0 (No at stage S203), the operation is shifted to stage S207. It should be noted that stage S203 corresponds to stage S56 in
(D) At stage S204, the card reader/writer 4 transmits the sixth start signal 57.
(E) Next, at stage S205, the transmitter/receiver 16 of the wireless card 2 receives the sixth start signal 57 in
(F) At stage S206, the command slot subtractor 23 determines whether the number of times that the sixth start signal 57 has been received matches the value of the command slot. It should be noted that stage S206 corresponds to stages S66 to S68 in
(G) At stage S207, the transmitter/receiver 16 of the wireless card 2 transmits a response signal which includes the card address 46 at a response time interval that is defined by the time slot set at stage S202 or S205. In other words, when the decision at stage S203 is “No” at stage S203, the wireless card 2 executes the address response command 66 included in the fifth start signal 56. When the decision at stage S206 is “Yes”, the wireless card 2 executes the address response command 69 included in the sixth start signal 57.
(H) Finally, at stage S208, the host computer 5 determines whether the sixth start signal 57 was transmitted for N times. When the sixth start signal 57 has not yet been transmitted for N times (No at stage S208), the operation returns to stage S204, and the loop at stages S204 to S208 is repeated for N times. When the sixth start signal 57 has been transmitted for N times (Yes at stage S208), the operation is terminated.
Note that the communication method constituted of stages S201 to S208 is called a “mixed communication method”, in which the command response method and the time response method coexist.
Next, with reference to
(a) First, the fifth start signal 56 is transmitted by the card reader/writer 4 for the first time. It should be noted that the fifth start signal 56 transmitted for the first time includes information regarding the command slot setup range (N=0) 76 and the time slot setup range (M=0) 77. Upon receiving the fifth start signal 56 for the first time, the wireless cards A to I set the command slots=0 and the time slots=0, respectively. Therefore, as shown in
(b) Next, the fifth start signal 56 is transmitted by the card reader/writer 2 for the second time. It should be noted that the fifth start signal 56 transmitted for the second time includes information regarding the command slot setup range (N=4) 76 and the time slot setup range (M=2) 77. Upon the second reception of the fifth start signal 56, the wireless cards A to I set the command slots within a range from 0 to 4 and the time slots within a range from 0 to 2.
(c) As shown in
(d) Next, the sixth start signal is transmitted by the card reader/writer 4 for the first time. It should be noted that the sixth start signal 57 transmitted for the first time includes information on the time slot setup range (M=2) 77.
(e) Among the wireless cards that have received the sixth start signal 57 for the first time, the wireless cards A to C, E, F, H and I, which have not yet transmitted response signals, respectively set time slots in a range from 0 to 2 (=M) and decrement the values of the command slots by one. Since the command IDs have already been changed, the wireless cards D and G for which response signals have been appropriately received do not execute the time slot (0 to 2) setup command 71 or the command slot subtraction command 70 included in the sixth start signal 57.
(f) The wireless cards C and I have the command slots set to 1 upon the second reception of the fifth start signal 56. Accordingly, since the number of times (=1) of the reception of the sixth start signal 57 matches the value of the command slot, the wireless cards C and I transmit response signals at the response time intervals defined by the time slots. In this case, since the wireless card C sets the time slot=0 and the wireless card I sets the time slot=2, the wireless cards C and I transmit response signals at different response time intervals. Therefore, the simultaneous transmission of response signals by the wireless cards C and I can be avoided, and the response signals from the wireless cards C and I can be appropriately received by the card reader/writer 4. Thus, after the transmission of the response signals, the command IDs of the wireless cards C and I are changed.
(g) In the same manner, the sixth start signal 57 is transmitted for the second, third and fourth time by the card reader/writer 4. Thereafter, at response time intervals defined by the time slots, response signals are transmitted by the wireless cards B and F for the second reception of the sixth start signal 57, by the wireless card E after the third reception of the sixth start signal 57, and by the wireless cards A and H after the fourth reception of the sixth start signal 57.
In the processing shown in
As described above, according to the second embodiment of the present invention, when the number of times that the sixth start signal 57 has been received matches the value for a command slot, a wireless card 2 transmits a response signal at a response time interval defined by the time slot. Even when two or more wireless cards 2 have set the same value for the command slots, as long as different values have been set for the time slots, a time difference can be obtained for the response timings, and response signal conflicts can be avoided. In other words, when the “mixed communication method” is employed, only a wireless card 2 in which the two response conditions designated for the command slot and the time slot have been established can transmit a response signal. Therefore, the probability of response signal conflicts occuring will be lessened, and communication time will be reduced.
(Modification of Second Embodiment)
According to the “mixed communication method” shown in
For example, assume that, as is shown in
Further, assume that, as is shown in
As described above, when the command slot setup range (=N) and the command slot setup range (=M) are adjusted for the fifth and the sixth start signals 56 and 57, switching among the command response method, the time response method, the shift communication method and the mixed communication method can be freely performed.
As described above, according to the first and the second embodiment of the present invention and the modification of the second embodiment, it is possible to provide the wireless information processing system, the wireless information recording medium, the wireless information processing apparatus, and the communication method employed for the wireless information processing system that can avoid response signal conflicts and reduce the period of time required for communication, regardless of the number of wireless cards 2 serving as communication objects.
(Other Embodiments)
As mentioned above, the present invention has been described through the first and second embodiments and modification thereof, however, the descriptions and drawings that constitute a portion of this disclosure should not be perceived as those limiting the present invention. Various alternative embodiments and operational techniques will become clear to persons skilled in the art from this disclosure.
For the first and the second embodiments of the present invention and the modification of the second embodiment, each wireless card 2 has employed the two random number generators 38 and 40. The present invention is not limited to this arrangement, however, and one or three or more random number generators may be employed. For example, instead of the first and the second random number generators 38 and 40 in
According to the first and the second embodiments of the present invention and the modification of the second embodiment, the command IDs have been employed to identify a plurality of wireless cards 2. However, the present invention is not limited to this method. For example, when a “protocol method” is employed, a response by a wireless card 2 to the various commands 58 in
To obtain the card address 46, the card reader/writer 4 employs various communication methods, such as the command response method, the time response method, the shift communication method and the mixed communication method. Then, based on the obtained card address 46, the card reader/writer 4 transmits to a specific wireless card 2 a command (an ATQ cancel command) that nonresponds to the various commands 58, and this command is received by all the wireless cards 2 located in the communication area for the card reader/writer 4. However, only a wireless card 2 having a card address that matches the card address 46 transmits nonresponds to the various commands 58 included in the start signal 51 received hereafter. When the command ID is employed, so long as the command ID, even after being changed, matches the post-changed command ID 78 in
Therefore, the present invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Sakamoto, Hiroyuki, Watanabe, Naoyoshi, Noguchi, Akiko, Korekoda, Hideaki
Patent | Priority | Assignee | Title |
8422973, | Jun 16 2009 | B & PLUS K K | Bidirectional transmission coil and bidirectional transmission system using the same |
Patent | Priority | Assignee | Title |
3755781, | |||
4940974, | Nov 01 1988 | Intermec IP CORP | Multiterminal communication system and method |
5103445, | Aug 25 1989 | Telefonaktiebolaget L M Ericsson | Method of adapting a mobile radio communication system to traffic and performance requirements |
5973609, | Apr 25 1990 | Symbol Technologies, LLC | Communication system with adaptive media access control |
JP10222622, | |||
JP2000148934, | |||
JP2000298712, | |||
JP2001126037, | |||
JP2001516487, | |||
JP2003168091, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 15 2003 | Kabushiki Kaisha Toshiba | (assignment on the face of the patent) | / | |||
Sep 07 2003 | SAKAMOTO, HIROYUKI | Kabushiki Kaisha Toshiba | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014700 | /0955 | |
Sep 07 2003 | NOGUCHI, AKIKO | Kabushiki Kaisha Toshiba | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014700 | /0955 | |
Sep 07 2003 | WATANABE, NAOYOSHI | Kabushiki Kaisha Toshiba | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014700 | /0955 | |
Sep 07 2003 | KOREKODA, HIDEAKI | Kabushiki Kaisha Toshiba | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014700 | /0955 |
Date | Maintenance Fee Events |
Nov 10 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 23 2015 | REM: Maintenance Fee Reminder Mailed. |
Jun 12 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 12 2010 | 4 years fee payment window open |
Dec 12 2010 | 6 months grace period start (w surcharge) |
Jun 12 2011 | patent expiry (for year 4) |
Jun 12 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 12 2014 | 8 years fee payment window open |
Dec 12 2014 | 6 months grace period start (w surcharge) |
Jun 12 2015 | patent expiry (for year 8) |
Jun 12 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 12 2018 | 12 years fee payment window open |
Dec 12 2018 | 6 months grace period start (w surcharge) |
Jun 12 2019 | patent expiry (for year 12) |
Jun 12 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |