A module is electrically connectable to a computer system. The module includes a frame having an edge connector with a plurality of electrical contacts which are electrically connectable to the computer system. The module further includes a first printed circuit board coupled to the frame. The first printed circuit board has a first surface and a first plurality of components mounted on the first surface. The first plurality of components is electrically coupled to the electrical contacts of the edge connector. The module further includes a second printed circuit board coupled to the frame. The second printed circuit board has a second surface and a second plurality of components mounted on the second surface. The second plurality of components is electrically coupled to the electrical contacts of the edge connector. The second surface of the second printed circuit board faces the first surface of the first printed circuit board. The module further includes at least one thermally conductive layer positioned between the first plurality of components and the second plurality of components. The at least one thermally conductive layer is thermally coupled to the first plurality of components, to the second plurality of components, and to the electrical contacts of the edge connector.
|
11. A module connectable to a computer system, the module comprising:
a frame comprising an edge connector connectable to the computer system;
a first printed circuit board coupled to the frame, the first printed circuit board having a first surface and a first plurality of components mounted on the first surface, the first plurality of components electrically coupled to the edge connector;
a second printed circuit board coupled to the frame, the second printed circuit board having a second surface and a second plurality of components mounted on the second surface, the second plurality of components electrically coupled to the edge connector, the second surface facing the first surface; and
a heat spreader comprising at least one sheet of thermally conductive material, the heat spreader positioned between and thermally coupled to the first plurality of components and the second plurality of components, the heat spreader thermally coupled to the edge connector.
20. A method of conducting heat away from a first plurality of components mounted on a first surface of a first printed circuit board and from a second plurality of components mounted on a second surface of a second printed circuit board, the method comprising:
coupling the first printed circuit board and the second printed circuit board to a frame comprising an edge connector, the first surface facing the second surface;
positioning a thermally conductive layer between the first plurality of components and the second plurality of components;
thermally coupling the thermally conductive layer to the first plurality of components, to the second plurality of components, and to the edge connector; and
electrically and thermally coupling the edge connector to a computer system, thereby providing a thermal pathway for heat to be removed from the first plurality of components and from the second plurality of components to the computer system through the edge connector.
21. A method of fabricating a module electrically connectable to a computer system, the method comprising:
providing a frame comprising an edge connector electrically connectable to the computer system, the frame further comprising at least one layer of thermally conductive material which is thermally coupled to the edge connector;
mounting a first printed circuit board to the frame, the first printed circuit board having a first surface and a first plurality of components mounted on the first surface, the first plurality of components electrically coupled to the edge connector and thermally coupled to the at least one layer of thermally conductive material; and
mounting a second printed circuit board to the frame, the second printed circuit board having a second surface and a second plurality of components mounted on the second surface, the second plurality of components electrically coupled to the edge connector and thermally coupled to the at least one layer of thermally conductive material.
1. A module electrically connectable to a computer system, the module comprising:
a frame having an edge connector with a plurality of electrical contacts which are electrically connectable to the computer system;
a first printed circuit board coupled to the frame, the first printed circuit board having a first surface and a first plurality of components mounted on the first surface, the first plurality of components electrically coupled to the electrical contacts of the edge connector;
a second printed circuit board coupled to the frame, the second printed circuit board having a second surface and a second plurality of components mounted on the second surface, the second plurality of components electrically coupled to the electrical contacts of the edge connector, the second surface of the second printed circuit board facing the first surface of the first printed circuit board; and
at least one thermally conductive layer positioned between the first plurality of components and the second plurality of components, the at least one thermally conductive layer thermally coupled to the first plurality of components, to the second plurality of components, and to the electrical contacts of the edge connector.
4. The module of
5. The module of
6. The module of
7. The module of
9. The module of
15. The module of
16. The module of
18. The module of
|
The present application claims the benefit of U.S. Provisional Application No. 60/561,009, filed Apr. 9, 2004, and U.S. Provisional Application No. 60/589,777, filed Jul. 21, 2004, each of which is incorporated in its entirety by reference herein.
1. Field of the Invention
The present invention relates generally to computer modules having a plurality of components mounted on two or more stacked printed circuit boards, and more specifically to high density memory modules using stacked printed circuit boards with heat dissipation structures.
2. Description of the Related Art
Computer systems often utilize modules comprising one or more printed circuit boards (PCBs). Each PCB has one or more components (e.g., integrated circuits or ICs) mounted thereon, and the components can be mounted on one side or on both sides of the PCB. In certain computer systems, the PCBs of the module are stacked next to one another to increase the functionality of the module. For example, board stacking is a method used to increase the memory density in memory subsystems. The technique is also used to increase the device density of other components, such as logic. Stacking enhances the capability of the module, particularly if components are assembled on each of the two sides of each of the stacked PCBs. In such configurations, the components mounted on one side of one PCB are positioned in close proximity to the components mounted on a neighboring side of a neighboring PCB.
Stacking configurations can cause problems due to power dissipation in the components which are in close proximity. Some or all of the components can generate significant amounts of heat, which can raise the temperature of the component itself or of the surrounding components of the module. The narrow air gap between the components on either side of the stacked PCBs prevents air flow which would otherwise keep the components within their specified operating temperature ranges. The raised temperature of these components can have harmful effects on the performance of the components, causing them to malfunction.
Prior art systems utilize heat spreaders to radiate the heat away from the heat-generating component and away from the surrounding components of the module. Such prior art heat spreaders are mounted over the heat-generating components. In stacked configurations, the prior art heat spreaders are typically mounted over components on an outside surface of the PCB (i.e., a surface away from a neighboring PCB). While these prior art heat spreaders can dissipate heat generated by the components on the outside surface of the PCB, components on the inside surfaces would remain hot. In addition, the components on the outside surface of the PCB are effectively cooled by air flowing across the components from a ventilation fan. However, the narrow air gap between the stacked PCBs would allow very little cool air from the ventilation fan to cool the components on the inside surfaces to within the specified operating temperatures.
In certain embodiments, a module is electrically connectable to a computer system. The module comprises a frame having an edge connector with a plurality of electrical contacts which are electrically connectable to the computer system. The module further comprises a first printed circuit board coupled to the frame. The first printed circuit board has a first surface and a first plurality of components mounted on the first surface. The first plurality of components is electrically coupled to the electrical contacts of the edge connector. The module further comprises a second printed circuit board coupled to the frame. The second printed circuit board has a second surface and a second plurality of components mounted on the second surface. The second plurality of components is electrically coupled to the electrical contacts of the edge connector. The second surface of the second printed circuit board faces the first surface of the first printed circuit board. The module further comprises at least one thermally conductive layer positioned between the first plurality of components and the second plurality of components. The at least one thermally conductive layer is thermally coupled to the first plurality of components, to the second plurality of components, and to the electrical contacts of the edge connector.
In certain embodiments, a module is connectable to a computer system. The module comprises a frame comprising an edge connector connectable to the computer system. The module further comprises a first printed circuit board coupled to the frame. The first printed circuit board has a first surface and a first plurality of components mounted on the first surface. The first plurality of components is electrically coupled to the edge connector. The module further comprises a second printed circuit board coupled to the frame. The second printed circuit board has a second surface and a second plurality of components mounted on the second surface. The second plurality of components is electrically coupled to the edge connector. The second surface faces the first surface. The module further comprises a heat spreader comprising at least one sheet of thermally conductive material. The heat spreader is positioned between and thermally coupled to the first plurality of components and the second plurality of components. The heat spreader is thermally coupled to the edge connector.
In certain embodiments, a method conducts heat away from a first plurality of components mounted on a first surface of a first printed circuit board and from a second plurality of components mounted on a second surface of a second printed circuit board. The method comprises coupling the first printed circuit board and the second printed circuit board to a frame comprising an edge connector. The first surface faces the second surface. The method further comprises positioning a thermally conductive layer between the first plurality of components and the second plurality of components. The method further comprises thermally coupling the thermally conductive layer to the first plurality of components, to the second plurality of components, and to the edge connector. The method further comprises electrically and thermally coupling the edge connector to a computer system. A thermal pathway is provided for heat to be removed from the first plurality of components and from the second plurality of components to the computer system through the edge connector.
In certain embodiments, a method fabricates a module electrically connectable to a computer system. The method comprises providing a frame comprising an edge connector electrically connectable to the computer system and at least one layer of thermally conductive material which is thermally coupled to the edge connector. The method further comprises mounting a first printed circuit board to the frame. The first printed circuit board has a first surface and a first plurality of components mounted on the first surface. The first plurality of components is electrically coupled to the edge connector and is thermally coupled to the at least one layer of thermally conductive material. The method further comprises mounting a second printed circuit board to the frame. The second printed circuit board has a second surface and a second plurality of components mounted on the second surface. The second plurality of components is electrically coupled to the edge connector and is thermally coupled to the at least one layer of thermally conductive material.
The frame 20 of certain embodiments comprises the edge connector 22 with the plurality of electrical contacts 24, and further comprises a plurality of electrical contacts 26 (e.g., pads or solder balls) which are electrically connectable to the first PCB 30 and the second PCB 40. In addition, the frame 20 of certain embodiments provides electrical conduits 28 from the electrical contacts 26 to the electrical contacts 24 of the edge connector 22. In certain embodiments, the electrical contacts 24 of the edge connector 22 are configured to be electrically connected to a corresponding socket of a PCB (e.g., motherboard) of the computer system. In certain embodiments, the electrical contacts 24 are on a single side of the frame 20, while in other embodiments, the electrical contacts 24 are on both sides of the frame 20, as schematically illustrated by
In certain embodiments, the frame 20 further comprises the at least one thermally conductive layer 50 which is thermally coupled to the edge connector 22. In certain embodiments, the at least one thermally conductive layer 50 comprises copper (e.g., “two-ounce” copper sheet corresponding to an areal density of two ounces per square foot), aluminum, carbon, or another sufficiently thermally conductive material. In certain embodiments, the at least one thermally conductive layer 50 is substantially electrically conductive, while in other embodiments, the at least one thermally conductive layer 50 is substantially electrically insulative. While the embodiment schematically illustrated by
In certain embodiments, the frame 20 comprises one or more PCBs which provide electrical conductivity from the edge connector 22 to the first PCB 30 and to the second PCB 40. One or more of the PCBs of the frame 20 of certain embodiments are multilayer structures formed by epoxy lamination of layers of electrically insulative materials and electrically conductive materials which form conductive traces, ground planes, voltage planes, embedded passive components, and vias. Examples of electrically insulative materials compatible with embodiments described herein include, but are not limited to, plastic, polyimide, fiberglass (e.g., FR4 material), and other dielectric materials. Examples of electrically conductive materials compatible with embodiments described herein include, but are not limited to, conductive polymers, conductive inks, copper, aluminum, and other metals and alloys. In certain embodiments, the electrically conductive material is deposited onto a dielectric layer (e.g., by copper clad processes as are known to persons skilled in the art). Persons skilled in the art can select appropriate materials and techniques to fabricate PCBs compatible with embodiments described herein.
As schematically illustrated by
The base PCB 60 of certain embodiments further comprises a first plurality of electrical contacts 62 at a first surface 63 of the base PCB 60 which are electrically coupled to the edge connector 22 by electrical conduits 68. The base PCB 60 of certain embodiments also comprises a second plurality of electrical contacts 64 at a second surface 65 of the base PCB 60 which are electrically coupled to the edge connector 22 by electrical conduits 69.
The first riser PCB 70 of certain embodiments comprises a third plurality of electrical contacts 72 which are electrically coupled to the first plurality of electrical contacts 62 of the base PCB 60 and which are electrically connectable to the first PCB 30. As described more fully below, the first riser PCB 70 has a thickness selected to space the first surface 32 of the first PCB 30 at a sufficient distance away from the base PCB 60 so that the first plurality of components 34 fit between the first surface 32 of the first PCB 30 and the at least one thermally conductive layer 50 of the base PCB 60. Similarly, the second riser PCB 80 of certain embodiments comprises a fourth plurality of electrical contacts 82 which are electrically coupled to the second plurality of electrical contacts 64 of the base PCB 60 and which are electrically connectable to the second PCB 40. As described more fully below, the second riser PCB 80 has a thickness selected to space the second surface 42 of the second PCB 40 at a sufficient distance away from the base PCB 60 so that the second plurality of components 44 fit between the second surface 42 of the second PCB 40 and the at least one thermally conductive layer 50 of the base PCB 60.
In certain embodiments, the first riser PCB 70 is formed by a process schematically illustrated by
Similarly, as schematically illustrated by
In certain embodiments, the first plurality of components 34 and/or the second plurality of components 44 comprises integrated circuits having packaging which include but are not limited to, thin small-outline package (TSOP), ball-grid-array (BGA), fine-pitch BGA (FBGA), micro-BGA (μBGA), mini-BGA (mBGA), and chip-scale packaging (CSP). Memory components 34, 44 compatible with embodiments described herein, including but not limited to, random-access memory (RAM), dynamic random-access memory (DRAM), synchronous DRAM (SDRAM), and double-data-rate DRAM (e.g., DDR-1, DDR-2, DDR-3). In certain such embodiments, as schematically illustrated by
The first PCB 30 of
In the embodiment schematically illustrated by
In certain embodiments, at least some of the components 34, 44 are in contact with the least one thermally conductive layer 50, while in other embodiments, at least some of the components 34, 44 are spaced away from the at least one thermally conductive layer 50. In certain embodiments, the thickness of the first riser PCB 70 is selected to position the first surface 32 of the first PCB 30 at a desired distance from the thermally conductive layer 50a. Similarly, in certain embodiments, the thickness of the second riser PCB 80 is selected to position the second surface 42 of the second PCB 40 at a desired distance from the thermally conductive layer 50b. These distances between the at least one thermally conductive layer 50 and the first surface 32 and the second surface 42 are selected to provide sufficient thermal conductivity between the components 34, 44 and the at least one thermally conductive layer 50.
In certain embodiments, the at least one thermally conductive layer 50 comprises a layer of a thermally conductive grease 50c which contacts at least some of the components 34, 44 and a corresponding one of the at least one thermally conductive layers 50a, 50b. In certain such embodiments, the thermally conductive grease provides an improved thermal connection with the components 34, 44, thereby improving the heat transfer away from the components 34, 44. Persons skilled in the art can select an appropriate thermally conductive grease 50c in accordance with embodiments described herein.
Upon connection of the exemplary module 10 schematically illustrated by
Certain embodiments described herein advantageously provide stacked PCBs with improved thermal dissipation properties. Certain embodiments described herein advantageously provide memory modules with increased memory capacity while keeping the thickness of the memory module below a predetermined value. For example, for certain embodiments with components 34, 44 comprising DDR2 DRAM integrated circuits with BGA packaging on both sides of each of the first PCB 30 and the second PCB 40, the module 10 has a thickness of less than approximately 5.6 millimeters. Thus, certain embodiments advantageously allow use of the module 10 in cramped spaces. Certain embodiments advantageously reduce the cost of ventilation of the module 10. Certain embodiments advantageously maintain temperatures of the components 34, 44 within a desired operational temperature range.
In certain embodiments, each PCB used to fabricate the module 10 (e.g., the first PCB 30, the second PCB 40, the base PCB 60, the first riser PCB 70, and the second riser PCB 80) has fiducial marks or structures which fit into a jig or other framework to facilitate orienting the PCBs relative to one another during fabrication. Examples of structures compatible with embodiments described herein include, but are not limited to, notches, ridges, pins, and holes.
In an operational block 240, the second riser PCB 80 is placed on the jig with the pins extending through the holes 150 of the second riser PCB 80. The electrical contacts 82 of the second riser PCB 80 are proximal to the electrical contacts 64 of the base PCB 60. In an operational block 250, the second PCB 40 is placed on the jig with the pins extending through the holes 150 of the second PCB 40. The electrical contacts 46 of the second PCB 40 are proximal to the electrical contacts 82 of the second riser PCB 80. The second PCB 40 is placed on the jig with the second surface 42 facing downwards. The at least one thermally conductive layer 50 is thermally coupled to the components 44 of the second PCB 40. In certain embodiments, a thermally conductive grease is applied between the top components 44 of the second PCB 40 and the at least one thermally conductive layer 50 prior to placing the base PCB 60 and the second PCB 40 together. The thermally conductive grease of certain embodiments advantageously facilitates thermal coupling between the components 44 and the at least one thermally conductive layer 50 of the frame 20.
In an operational block 260, the electrical contacts of the various PCBs are electrically coupled together to provide electrical conductivity between the edge connector 22 and the components 34, 44. In an operational block 262, the electrical contacts 36 of the first PCB 30 are electrically coupled to the electrical contacts 72 of the first riser PCB 70. In an operational block 264, the electrical contacts 72 of the first riser PCB 70 are electrically coupled to the electrical contacts 62 of the base PCB 60. In an operational block 266, the electrical contacts 64 of the base PCB 60 are electrically coupled to the electrical contacts 82 of the second riser PCB 80. In an operational block 268, the electrical contacts 82 of the second riser PCB 80 are electrically coupled to the electrical contacts 46 of the second PCB 40.
Examples of methods of electrically coupling the respective electrical contacts include, but are not limited to, edge-bonded interconnects (as described more fully below), through-hole interconnects, male-female connections, J-clips, and flex circuitry. Persons skilled in the art can select appropriate methods of electrically coupling the respective electrical contacts in accordance with embodiments described herein.
In particular, through-hole interconnects suffer from various problems. For example, solder joints used to provide the interconnection are located between the two PCBs, so the solder joints are not visible and are not accessible for visual inspection. In addition, the through-hole interconnects add to the cost of manufacturing the module 10. In addition, the through-hole interconnects do not provide reliable electrical interconnections between the two PCBs.
In certain embodiments utilizing edge-bonded interconnects, each of the first riser PCB 70 and the second riser PCB 80 has plated contacts in proximity to an edge of the PCB (e.g., either on the edge or cut into the edge, as schematically illustrated by
As described above, in certain embodiments, the at least one thermally conductive layer 50 comprises two thermally conductive layers 50a, 50b on either side of a dielectric layer 61.
In certain embodiments, one thermally conductive layer 50a is thermally and electrically coupled to the electrical contacts 22 corresponding to a ground plane while the other thermally conductive layer 50b is thermally and electrically coupled to the electrical contacts 22 corresponding to a voltage plane. In certain embodiments, the frame 20 comprises between approximately twenty to thirty electrical contacts 22 to ground and between approximately twenty to thirty electrical contacts 22 to a power voltage. Thus, the number of electrical contacts 22 used to provide the thermal path is advantageously increased by connecting the thermally conductive layers 50a, 50b to different sets of electrical contacts 22. Certain such embodiments advantageously provide a degree of electromagnetic interference (EMI) shielding of the components 34, 44 of the module 10. Certain other such embodiments advantageously provide capacitance between the two thermally conductive layers 50a, 50b which facilitates noise reduction of the voltage applied to the voltage plane.
In certain embodiments, the module 10 further comprises a thermally conductive piece 170 which is positioned on the module 10 along a portion of the opposite edge away from the edge connector 22, as schematically illustrated by
Various specific embodiments have been described above. Although the present invention has been described with reference to these specific embodiments, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined in the appended claims.
Bhakta, Jayesh R., Gervasi, William M., Chen, Chi She, Pauley, Robert S., Delvalle, Jose
Patent | Priority | Assignee | Title |
10013371, | Jun 24 2005 | GOOGLE LLC | Configurable memory circuit system and method |
10025731, | Apr 14 2008 | Netlist, Inc. | Memory module and circuit providing load isolation and noise reduction |
10031607, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | System, method, and computer program product for a multi-pressure selection touch screen |
10120480, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Application-specific pressure-sensitive touch screen system, method, and computer program product |
10146353, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Touch screen system, method, and computer program product |
10156921, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Tri-state gesture-equipped touch screen system, method, and computer program product |
10162448, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | System, method, and computer program product for a pressure-sensitive touch screen for messages |
10199904, | Feb 23 2017 | GOOGLE LLC | Cooling a heat-generating electronic device |
10203794, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Pressure-sensitive home interface system, method, and computer program product |
10209806, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Tri-state gesture-equipped touch screen system, method, and computer program product |
10209807, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Pressure sensitive touch screen system, method, and computer program product for hyperlinks |
10209808, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Pressure-based interface system, method, and computer program product with virtual display layers |
10209809, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Pressure-sensitive touch screen system, method, and computer program product for objects |
10222891, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Setting interface system, method, and computer program product for a multi-pressure selection touch screen |
10222892, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | System, method, and computer program product for a multi-pressure selection touch screen |
10222893, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Pressure-based touch screen system, method, and computer program product with virtual display layers |
10222894, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | System, method, and computer program product for a multi-pressure selection touch screen |
10222895, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Pressure-based touch screen system, method, and computer program product with virtual display layers |
10268608, | Jul 27 2012 | Netlist, Inc. | Memory module with timing-controlled data paths in distributed data buffers |
10275086, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10275087, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10290328, | Nov 03 2010 | Netlist, Inc. | Memory module with packages of stacked memory chips |
10324841, | Jul 27 2013 | NETLIST, INC | Memory module with local synchronization |
10338736, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10345961, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices and methods for navigating between user interfaces |
10365758, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10386960, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10489314, | Mar 05 2004 | Netlist, Inc. | Memory module with data buffering |
10521047, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10534474, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10540039, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices and methods for navigating between user interface |
10551966, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10592039, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product for displaying multiple active applications |
10606396, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen methods for duration-based functions |
10642413, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10649571, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10649578, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10649579, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10649580, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical use interfaces for manipulating user interface objects with visual and/or haptic feedback |
10649581, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10656752, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10656753, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10656754, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices and methods for navigating between user interfaces |
10656755, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10656756, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10656757, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10656758, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10656759, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10664097, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10671212, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10671213, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10679722, | Aug 26 2016 | SanDisk Technologies, Inc | Storage system with several integrated components and method for use therewith |
10725581, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10782819, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10788931, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
10838542, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10860506, | Jul 27 2012 | Netlist, Inc. | Memory module with timing-controlled data buffering |
10884923, | Jul 27 2013 | Netlist, Inc. | Memory module with local synchronization and method of operation |
10902886, | Nov 03 2010 | Netlist, Inc. | Memory module with buffered memory packages |
10936114, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
10996787, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Gesture-equipped touch screen system, method, and computer program product |
11061503, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
11093417, | Mar 05 2004 | Netlist, Inc. | Memory module with data buffering |
11121504, | Feb 03 2020 | Rockwell Collins, Inc. | Circuit board separation mechanism |
11211141, | Aug 26 2016 | SanDisk Technologies, Inc | Storage system with multiple components and method for use therewith |
11610642, | Aug 26 2016 | SanDisk Technologies, Inc | Storage system with multiple components and method for use therewith |
11740727, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback |
11762788, | Jul 27 2012 | Netlist, Inc. | Memory module with timing-controlled data buffering |
7606049, | Sep 03 2004 | TAMIRAS PER PTE LTD , LLC | Module thermal management system and method |
7616452, | Sep 03 2004 | TAMIRAS PER PTE LTD , LLC | Flex circuit constructions for high capacity circuit module systems and methods |
7626259, | Sep 03 2004 | TAMIRAS PER PTE LTD , LLC | Heat sink for a high capacity thin module system |
7724589, | Jul 31 2006 | GOOGLE LLC | System and method for delaying a signal communicated from a system to at least one of a plurality of memory circuits |
7730338, | Jul 31 2006 | GOOGLE LLC | Interface circuit system and method for autonomously performing power management operations in conjunction with a plurality of memory circuits |
7761724, | Jul 31 2006 | GOOGLE LLC | Interface circuit system and method for performing power management operations in conjunction with only a portion of a memory circuit |
7811097, | Aug 29 2005 | Netlist, Inc. | Circuit with flexible portion |
7839643, | Feb 17 2006 | Netlist, Inc. | Heat spreader for memory modules |
7839645, | Apr 09 2004 | Netlist, Inc. | Module having at least two surfaces and at least one thermally conductive layer therebetween |
8018723, | Apr 30 2008 | NETLIST, INC | Heat dissipation for electronic modules |
8019589, | Jul 31 2006 | GOOGLE LLC | Memory apparatus operable to perform a power-saving operation |
8033836, | Aug 29 2005 | Netlist, Inc. | Circuit with flexible portion |
8041881, | Jul 31 2006 | GOOGLE LLC | Memory device with emulated characteristics |
8055833, | Oct 05 2006 | GOOGLE LLC | System and method for increasing capacity, performance, and flexibility of flash storage |
8060774, | Jun 24 2005 | GOOGLE LLC | Memory systems and memory modules |
8064204, | Dec 28 2007 | Sony Corporation | Electronic apparatus |
8077535, | Jul 31 2006 | GOOGLE LLC | Memory refresh apparatus and method |
8080874, | Sep 14 2007 | GOOGLE LLC | Providing additional space between an integrated circuit and a circuit board for positioning a component therebetween |
8081474, | Dec 18 2007 | GOOGLE LLC | Embossed heat spreader |
8089795, | Feb 09 2006 | GOOGLE LLC | Memory module with memory stack and interface with enhanced capabilities |
8090897, | Jul 31 2006 | GOOGLE LLC | System and method for simulating an aspect of a memory circuit |
8111566, | Nov 16 2007 | GOOGLE LLC | Optimal channel design for memory devices for providing a high-speed memory interface |
8112266, | Jul 31 2006 | GOOGLE LLC | Apparatus for simulating an aspect of a memory circuit |
8130560, | Nov 13 2006 | GOOGLE LLC | Multi-rank partial width memory modules |
8154935, | Jul 31 2006 | GOOGLE LLC | Delaying a signal communicated from a system to at least one of a plurality of memory circuits |
8169233, | Jun 09 2009 | GOOGLE LLC | Programming of DIMM termination resistance values |
8209479, | Jul 18 2007 | GOOGLE LLC | Memory circuit system and method |
8213205, | Sep 02 2005 | GOOGLE LLC | Memory system including multiple memory stacks |
8244971, | Jul 31 2006 | GOOGLE LLC | Memory circuit system and method |
8280714, | Jul 31 2006 | GOOGLE LLC | Memory circuit simulation system and method with refresh capabilities |
8327104, | Jul 31 2006 | GOOGLE LLC | Adjusting the timing of signals associated with a memory system |
8335894, | Jul 25 2008 | GOOGLE LLC | Configurable memory system with interface circuit |
8340953, | Jul 31 2006 | GOOGLE LLC | Memory circuit simulation with power saving capabilities |
8345427, | Apr 09 2004 | Netlist, Inc. | Module having at least two surfaces and at least one thermally conductive layer therebetween |
8359187, | Jun 24 2005 | GOOGLE LLC | Simulating a different number of memory circuit devices |
8370566, | Oct 05 2006 | GOOGLE LLC | System and method for increasing capacity, performance, and flexibility of flash storage |
8386722, | Jun 23 2008 | GOOGLE LLC | Stacked DIMM memory interface |
8386833, | Jun 24 2005 | GOOGLE LLC | Memory systems and memory modules |
8397013, | Oct 05 2006 | GOOGLE LLC | Hybrid memory module |
8438328, | Feb 21 2008 | GOOGLE LLC | Emulation of abstracted DIMMs using abstracted DRAMs |
8446781, | Nov 13 2006 | GOOGLE LLC | Multi-rank partial width memory modules |
8488325, | Feb 17 2006 | Netlist, Inc. | Memory module having thermal conduits |
8566516, | Jul 31 2006 | GOOGLE LLC | Refresh management of memory modules |
8566556, | Feb 09 2006 | GOOGLE LLC | Memory module with memory stack and interface with enhanced capabilities |
8582339, | Sep 01 2005 | GOOGLE LLC | System including memory stacks |
8595419, | Jul 31 2006 | GOOGLE LLC | Memory apparatus operable to perform a power-saving operation |
8601204, | Jul 31 2006 | GOOGLE LLC | Simulating a refresh operation latency |
8615679, | Jun 24 2005 | GOOGLE LLC | Memory modules with reliability and serviceability functions |
8619452, | Sep 02 2005 | GOOGLE LLC | Methods and apparatus of stacking DRAMs |
8631193, | Feb 21 2008 | GOOGLE LLC | Emulation of abstracted DIMMS using abstracted DRAMS |
8631220, | Jul 31 2006 | GOOGLE LLC | Adjusting the timing of signals associated with a memory system |
8671244, | Jul 31 2006 | GOOGLE LLC | Simulating a memory standard |
8675429, | Nov 16 2007 | GOOGLE LLC | Optimal channel design for memory devices for providing a high-speed memory interface |
8705239, | Apr 30 2008 | Netlist, Inc. | Heat dissipation for electronic modules |
8705240, | Dec 18 2007 | GOOGLE LLC | Embossed heat spreader |
8730670, | Dec 18 2007 | GOOGLE LLC | Embossed heat spreader |
8745321, | Jul 31 2006 | GOOGLE LLC | Simulating a memory standard |
8751732, | Oct 05 2006 | GOOGLE LLC | System and method for increasing capacity, performance, and flexibility of flash storage |
8760936, | Nov 13 2006 | GOOGLE LLC | Multi-rank partial width memory modules |
8762675, | Jun 23 2008 | GOOGLE LLC | Memory system for synchronous data transmission |
8773937, | Jun 24 2005 | GOOGLE LLC | Memory refresh apparatus and method |
8787060, | Nov 03 2010 | NETLIST, INC | Method and apparatus for optimizing driver load in a memory package |
8796830, | Sep 01 2006 | GOOGLE LLC | Stackable low-profile lead frame package |
8797779, | Feb 09 2006 | GOOGLE LLC | Memory module with memory stack and interface with enhanced capabilites |
8811065, | Sep 02 2005 | GOOGLE LLC | Performing error detection on DRAMs |
8819356, | Jul 25 2008 | GOOGLE LLC | Configurable multirank memory system with interface circuit |
8864500, | Aug 29 2005 | Netlist, Inc. | Electronic module with flexible portion |
8868829, | Jul 31 2006 | GOOGLE LLC | Memory circuit system and method |
8930647, | Apr 06 2011 | P4TENTS1, LLC | Multiple class memory systems |
8949519, | Jun 24 2005 | GOOGLE LLC | Simulating a memory circuit |
8972673, | Jul 31 2006 | GOOGLE LLC | Power management of memory circuits by virtual memory simulation |
8977806, | Oct 15 2006 | GOOGLE LLC | Hybrid memory module |
9047976, | Jul 31 2006 | GOOGLE LLC | Combined signal delay and power saving for use with a plurality of memory circuits |
9158546, | Apr 06 2011 | P4TENTS1, LLC | Computer program product for fetching from a first physical memory between an execution of a plurality of threads associated with a second physical memory |
9164679, | Apr 06 2011 | PATENTS1, LLC | System, method and computer program product for multi-thread operation involving first memory of a first memory class and second memory of a second memory class |
9170744, | Apr 06 2011 | P4TENTS1, LLC | Computer program product for controlling a flash/DRAM/embedded DRAM-equipped system |
9171585, | Jun 24 2005 | GOOGLE LLC | Configurable memory circuit system and method |
9176671, | Apr 06 2011 | P4TENTS1, LLC | Fetching data between thread execution in a flash/DRAM/embedded DRAM-equipped system |
9182914, | Apr 06 2011 | P4TENTS1, LLC | System, method and computer program product for multi-thread operation involving first memory of a first memory class and second memory of a second memory class |
9189442, | Apr 06 2011 | P4TENTS1, LLC | Fetching data between thread execution in a flash/DRAM/embedded DRAM-equipped system |
9195395, | Apr 06 2011 | P4TENTS1, LLC | Flash/DRAM/embedded DRAM-equipped system and method |
9223507, | Apr 06 2011 | P4TENTS1, LLC | System, method and computer program product for fetching data between an execution of a plurality of threads |
9250954, | Jan 17 2013 | XOCKETS IP, LLC | Offload processor modules for connection to system memory, and corresponding methods and systems |
9258276, | May 22 2012 | XOCKETS IP, LLC | Efficient packet handling, redirection, and inspection using offload processors |
9286472, | May 22 2012 | XOCKETS IP, LLC | Efficient packet handling, redirection, and inspection using offload processors |
9288101, | Jan 17 2013 | XOCKETS IP, LLC | Full bandwidth packet handling with server systems including offload processors |
9348638, | Jan 17 2013 | XOCKETS IP, LLC | Offload processor modules for connection to system memory, and corresponding methods and systems |
9378161, | Jan 17 2013 | XOCKETS IP, LLC | Full bandwidth packet handling with server systems including offload processors |
9417754, | Aug 05 2011 | SMITH INTERFACE TECHNOLOGIES, LLC | User interface system, method, and computer program product |
9436638, | Jan 17 2013 | XOCKETS IP, LLC | Full bandwidth packet handling with server systems including offload processors |
9436639, | Jan 17 2013 | XOCKETS IP, LLC | Full bandwidth packet handling with server systems including offload processors |
9436640, | Jan 17 2013 | XOCKETS IP, LLC | Full bandwidth packet handling with server systems including offload processors |
9460031, | Jan 17 2013 | XOCKETS IP, LLC | Full bandwidth packet handling with server systems including offload processors |
9495308, | May 22 2012 | XOCKETS IP, LLC | Offloading of computation for rack level servers and corresponding methods and systems |
9507739, | Jun 24 2005 | GOOGLE LLC | Configurable memory circuit system and method |
9542352, | Feb 09 2006 | GOOGLE LLC | System and method for reducing command scheduling constraints of memory circuits |
9542353, | Feb 09 2006 | GOOGLE LLC | System and method for reducing command scheduling constraints of memory circuits |
9558351, | May 22 2012 | XOCKETS IP, LLC | Processing structured and unstructured data using offload processors |
9563587, | Jul 27 2012 | Netlist, Inc. | Memory module with distributed data buffers and method of operation |
9619406, | May 22 2012 | XOCKETS IP, LLC | Offloading of computation for rack level servers and corresponding methods and systems |
9632929, | Feb 09 2006 | GOOGLE LLC | Translating an address associated with a command communicated between a system and memory circuits |
9659601, | Nov 03 2010 | Netlist, Inc. | Memory module with packages of stacked memory chips |
9665503, | May 22 2012 | XOCKETS IP, LLC | Efficient packet handling, redirection, and inspection using offload processors |
9727458, | Feb 09 2006 | GOOGLE LLC | Translating an address associated with a command communicated between a system and memory circuits |
9846659, | Mar 05 2012 | Netlist, Inc. | Memory module and circuit providing load isolation and noise reduction |
9858215, | Mar 05 2004 | Netlist, Inc. | Memory module with data buffering |
Patent | Priority | Assignee | Title |
3268772, | |||
4535385, | Apr 22 1983 | CRAY, INC | Circuit module with enhanced heat transfer and distribution |
4628407, | Apr 22 1983 | CRAY, INC | Circuit module with enhanced heat transfer and distribution |
4849858, | Oct 20 1986 | Northrop Grumman Corporation | Composite heat transfer means |
4867235, | Oct 20 1986 | Northrop Grumman Corporation | Composite heat transfer means |
4887353, | May 01 1985 | AMP Incorporated | Conduction cooled module connector system and method of making |
5060113, | Apr 09 1987 | Raychem Corporation | Connector assembly |
5343359, | Nov 19 1992 | SILICON GRAPHICS INTERNATIONAL, CORP | Apparatus for cooling daughter boards |
5812374, | Oct 28 1996 | Electrical circuit cooling device | |
5892658, | May 12 1998 | Lockhead Martin Corporation | VME eurocard triple printed wiring board single slot module assembly |
5949650, | Sep 02 1998 | Hughes Electronics Corporation | Composite heat sink/support structure |
5986887, | Oct 28 1998 | Unisys Corporation | Stacked circuit board assembly adapted for heat dissipation |
6064575, | May 12 1998 | Lockheed Martin Corporation | Circuit module assembly |
6104613, | May 12 1998 | Lockheed Martin Federal Systems, Inc.; Lockheed Martin Corporation | VME eurocard double printed wiring card host circuit card circuit (module) assembly |
6151215, | Dec 08 1998 | AlliedSignal Inc | Single mount and cooling for two two-sided printed circuit boards |
6201700, | Jan 06 2000 | Ford Motor Company; FORD MOTOR COMPANY, A CORP OF DELAWARE | Box design for maximum heat dissipation |
6222739, | Jan 20 1998 | SANMINA CORPORATION | High-density computer module with stacked parallel-plane packaging |
6232659, | Sep 16 1992 | Thin multichip module | |
6297960, | Jun 30 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Heat sink with alignment and retaining features |
6381140, | Aug 30 1999 | Witek Enterprise Co., Ltd. | Memory module |
6525943, | Jun 30 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Heat sink with alignment and retaining features |
6713854, | Oct 16 2000 | Legacy Electronics, Inc | Electronic circuit module with a carrier having a mounting pad array |
6760224, | Jun 30 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Heat sink with alignment and retaining features |
7023701, | May 05 2003 | Polaris Innovations Limited | Device for cooling memory modules |
20040218367, | |||
20050078457, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 07 2005 | Netlist, Inc. | (assignment on the face of the patent) | / | |||
Apr 22 2005 | BHAKTA, JAYESH R | NETLIST, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017702 | /0703 | |
Apr 29 2005 | PAULEY, ROBERT S | NETLIST, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017702 | /0703 | |
Apr 29 2005 | GERVASI, WILLIAM M | NETLIST, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017702 | /0703 | |
Aug 22 2005 | CHEN, CHI SHE | NETLIST, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017702 | /0703 | |
Jul 18 2013 | NETLIST, INC | DBD CREDIT FUNDING LLC | SECURITY AGREEMENT | 030830 | /0945 | |
Nov 18 2015 | NETLIST, INC | SVIC NO 28 NEW TECHNOLOGY BUSINESS INVESTMENT L L P | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 037150 | /0897 | |
Nov 19 2015 | DBD CREDIT FUNDING LLC | NETLIST, INC | TERMINATION OF INTELLECTUAL PROPERTY SECURITY AGREEMENT | 037209 | /0158 | |
Oct 27 2023 | SVIC NO 28 NEW TECHNOLOGY BUSINESS INVESTMENT L L P | NETLIST, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 065629 | /0328 |
Date | Maintenance Fee Events |
Feb 02 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 29 2015 | LTOS: Pat Holder Claims Small Entity Status. |
Jan 29 2015 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jul 06 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jan 24 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 07 2010 | 4 years fee payment window open |
Feb 07 2011 | 6 months grace period start (w surcharge) |
Aug 07 2011 | patent expiry (for year 4) |
Aug 07 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 07 2014 | 8 years fee payment window open |
Feb 07 2015 | 6 months grace period start (w surcharge) |
Aug 07 2015 | patent expiry (for year 8) |
Aug 07 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 07 2018 | 12 years fee payment window open |
Feb 07 2019 | 6 months grace period start (w surcharge) |
Aug 07 2019 | patent expiry (for year 12) |
Aug 07 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |