An integrating capacitor circuit for an integrating amplifier and related methods are disclosed that allow for efficient detection of currents or charges, particularly those produced by pixel cells in a detector image array. By placing a capacitor-connected field-effect-transistor (FET) in parallel with an integration capacitor and setting its gate voltage to a selected voltage level, the current or charge from the detector depletes the charge on the gate of the FET capacitor while integrating on the capacitor. In addition, the gate voltage level can be adjusted to modify the current depleting characteristics of the capacitor-connected FET. The resulting operation of this integrating circuitry provides significant resulting advantages for the integrating amplifier.
|
11. An integrating capacitance circuit, comprising:
an integrating capacitor coupled between an integration node and a reference node, the integration node being an integrating node coupled to receive a current signal to be integrated;
a field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level configured to be a fixed dc voltage level for a charge integration cycle, the FET having its source and drain coupled to the integration node or the voltage node and having its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node; and
a switch coupled between the reference node and the integration node, the switch being configured to initialize the integration node to a reference voltage level on the reference node.
1. An integrating amplifier, comprising:
a detector element coupled to an integration node;
an integrating capacitance circuit, comprising:
an integrating capacitor coupled between the integration node and a reference node, the integration node being coupled to receive a current signal from the detector element to be integrated; and
a first field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level, the first FET having its source and drain coupled to the integration node or the voltage node and having its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node; and
an amplifier coupled through at least one switch to the integration node to provide an amplified output signal that is related to the current signal from the detector element to be integrated.
16. A method for integrating signals, comprising
applying a current signal to be integrated to an integration node;
integrating charge on the integration node for a period of time utilizing an integration capacitor;
depleting charge from the integration node during the integrating step utilizing a field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level, the FET having its source and drain coupled to the integration node or the voltage node and having its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node; and
transferring charge from the integration node to another node through at least one switch;
wherein the gate of the FET is coupled to the voltage node, the voltage level determining an amount of charge that is depleted by the FET during the integration step; and
wherein the voltage level is programmable.
21. A method for integrating signals, comprising
applying a current signal to be integrated to an integration node;
integrating charge on the integration node for a period of time utilizing an integration capacitor;
depleting charge from the integration node during the integrating step utilizing a field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level, the FET having its source and drain coupled to the integration node or the voltage node and having its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node; and
transferring charge from the integration node to another node through at least one switch;
wherein the transferring step comprises transferring charge from the integration node to the another node at regular intervals and storing charge on the another node using a capacitor; and
wherein the another node is a transfer node, and further comprising transferring charge from the transfer node to a summing node at regular intervals, and storing charge on the summing node using a summing capacitor.
17. A method for integrating signals, comprising
applying a current signal to be integrated to an integration node;
integrating charge on the integration node for a period of time utilizing an integration capacitor;
depleting charge from the integration node during the integrating step utilizing a field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level, the FET having its source and drain coupled to the integration node or the voltage node and having its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node; and
transferring charge from the integration node to another node through at least one switch;
wherein the gate of the FET is coupled to the voltage node, the voltage level determining an amount of charge that is depleted by the FET during the integration step; and
wherein the voltage level is set higher than a voltage level expected for the integration node such that charge is depleted by the FET throughout the time period for the integration step and the capacitor-connected FET thereby provides additional integrating capacitance throughout the period of time for the integration step.
2. The integrating amplifier of
3. The integrating amplifier of
4. The integrating amplifier of
5. The integrating amplifier of
6. The integrating amplifier of
7. The integrating amplifier of
8. The integrating amplifier of
9. The integrating amplifier of
10. The integrating amplifier of
12. The integrating capacitor circuit of
13. The integrating capacitor circuit of
14. The integrating capacitor circuit of
15. The integrating capacitor circuit of
18. The method of
19. The method of
20. The method of
22. The method of
|
This application claims priority to the following co-pending provisional application: Provisional Application Ser. No. 60/635,272 filed Dec. 10, 2004, and entitled “NON-LINEAR INTEGRATING AMPLIFIER,” which is hereby expressly incorporated by reference in its entirety.
This invention was made with United States Government support under Contract No. DAAB07-98-3-J002. The Government may have certain rights in this invention.
This invention relates to techniques and architectures for measuring electrical currents or charge, and more particularly, for integrating signals obtained from pixel cells in image sensing systems.
Many devices utilize current and/or charge measurements for operations. One such set of devices are digital cameras that utilize detector arrays to acquire scene energy. These detector arrays typically include detector cells that absorb scene energy. The voltages on these cells can then be measured, quantified and processed in order to produce a digital image of the scene being viewed. As part of this process, a detection current is often measured with respect to each pixel cell within an image sensing system.
One method of measuring a current is to integrate that current on a capacitor for a fixed amount of time and then measure the voltage on the capacitor. Because the voltage is inversely proportional to the capacitance, a small capacitance will give the circuit higher sensitivity (i.e., a large change in voltage for a small change in current). Unfortunately, small capacitors have more limited integration times and, therefore, cause reduced signal to noise ratios. In other words, the longer the integration time is for the integration node, the better the signal to noise ratio tends to be. At long integration times, however, the voltage on the capacitor also gets large, and larger capacitors tend to degrade sensitivity. Thus, although larger integration capacitors can increase the integration time, they also have the downside of lowering sensitivity. And although higher integration voltages increase integration times, these higher voltages also cause problems for current integrated circuits where the maximum voltages are limited to avoid damage to the integrated devices. Other attempts to improve integration have included subtracting a fixed current from the integration node. This technique, however, can increase noise and/or become very complicated to achieve.
The present invention provides an integrating capacitor circuit for an integrating amplifier and related method that allows for efficient measurement of currents and, more particularly, currents from pixel cells within an image detector array. By placing a capacitor-connected field-effect-transistor (FET) in parallel with an integration capacitor and setting its gate voltage to a voltage level, the current from the detector depletes the charge on the gate of the FET capacitor while integrating on the capacitor. In addition, the gate voltage level can be adjusted to modify the current depleting characteristics of the capacitor-connected FET. The resulting operation of this integrating circuitry, including the non-linear operation of the capacitor-connected FET, provides significant resulting advantages for the integrating amplifier. As described below, other features and variations can be implemented, if desired.
In one embodiment, the present invention is an integrating amplifier including an integrating capacitance circuit including a detector element coupled to an integration node, an integrating capacitance circuit, and an amplifier coupled to the integration node to provide an amplified output signal that is related to the signal from the detector element, where the integrating circuit includes an integrating capacitor coupled between the integration node and a reference node with the integration node being an integration node coupled to receive a signal to be integrated and a field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level with the FET having its source and drain coupled to the integration node or the voltage node and having its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node. As described below, other features and variations can be implemented, if desired, and related methods can be utilized, as well.
In another embodiment, the present invention is an integrating capacitance circuit including an integrating capacitor coupled between an integration node and a reference node with the integration node being an integrating node coupled to receive a signal to be integrated and a field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level with the FET having its source and drain coupled to the integration node or the voltage node and having its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node. As described below, other features and variations can be implemented, if desired, and related methods can be utilized, as well.
In a further embodiment, the present invention is a method for integrating signals including applying a signal to be integrated to an integration node, integrating charge on the integration node utilizing over a period of time utilizing an integration capacitor, depleting charge from the integration node during the integration step utilizing a field effect transistor (FET) coupled between the integration node and a voltage node having a voltage level, and utilizing the integrated charge less the depleted charge as an output signal, where the FET has its source and drain coupled to the integration node or the voltage node and has its gate coupled to the other of the integration node or the voltage node to thereby provide a capacitor-connected FET device coupled to the integration node. As described below, other features and variations can be implemented, if desired, and related systems can be utilized, as well.
It is noted that the appended drawings illustrate only exemplary embodiments of the invention and are, therefore, not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The present invention provides an integrating amplifier and related method that allow for efficient measurement of currents, particularly those produced by detector array cells. This advantageous solution to measuring electrical currents is achieved by utilizing a switched-capacitor network with a unique configuration. In particular, a capacitor-connected field-effect-transistor (FET) is utilized to deplete current or charge being integrated on an integrating amplifier. Although usable in other applications, the integrating circuitry of the present invention is particularly useful, for example, in amplifying signals from pixel cells that are part of an image array detector.
As the image scene is being captured, each pixel cell is accessed to determine the level of scene energy it is detecting. Signal lines 156 represent a plurality of signal lines coupled to pixels cells within the image detector array 152. A plurality of pixel amplifiers 100A, 100B, . . . 100C . . . can be used to provide amplified versions of the scene energy being detected by the pixel cells. For example, a pixel amplifier 100 could be provided for each pixel cell within the image detector array 152. Signal lines 158 then represent the amplified output signals from pixel amplifiers 100A, 100B, 100C . . . , and these signal lines 158 provide the amplified values to an image processor 154. The image processor 154 can perform desired processing on the analog pixel cell values, such as analog-to-digital conversion and signal multiplexing followed by storage of the image and further processing of the image. Ultimately, the resulting image can be displayed to a user.
As describe herein, the present invention relates to the integrating circuitry within pixel amplifiers 100 that can be utilized to detect the amount of voltage or charge collected on a pixel cell. It is noted that the integrating circuitry and related pixel amplifier 100 can be utilized in a wide variety of systems where current or charge is integrated, such as, for example, imaging systems where pixel cells need to be read-out for image processing.
As depicted in
As discussed below, the voltage level (VSEL) on the voltage node determines the amount of charge that is depleted from the integration node 103 by the capacitor-connected FET (CFET) 120B. It is noted that the FET (CFET) 120B may be a metal-oxide-semiconductor (MOS) device. It is also noted that a variety of other capacitor circuit topologies could also be implemented while still utilizing the depleting capacitor-connected FET (CFET) 120B of the present invention. For example, the integration capacitor (CINT) 120A could be a plurality of capacitors and/or other devices that are connected so as to form an integrating capacitance for integration node 103. In addition, capacitor-connected FET (CFET) 120B could be implemented as one or more FET devices and could include other devices as well as long as the depleting characteristic of the capacitor-connected FET (CFET) 120B is maintained.
Example operation of the pixel read-out amplifier 100 of
Looking back to
In operation, by placing a capacitor-connected field-effect-transistor (FET) C2A in parallel with an integration capacitor C2 and setting its gate voltage to a fixed DC level (VNL), the current from the detector depletes the charge on the gate of the FET capacitor C2A while integrating on the capacitor C2. In addition, as discussed above, the DC level (VNL) can be adjusted to modify the current depleting characteristics of the MOS-capacitor C2A that is in parallel with the integration capacitor C2. This circuit configuration for a integrating capacitance, such as can be used to detect charge or current from pixel cells in an image detector array, greatly increases integration time without greatly increasing the voltage across the capacitor C2. When the charge is depleted on the FET capacitor C2A, only the capacitor C2 is left in circuit, and the original sensitivity of the circuit is maintained. In addition, this same circuit can also be used to lower the sensitivity of the circuit without significantly changing the integration time by setting the gate voltage (VNL) on the FET capacitor C2A higher than the final voltage on the capacitor C2. Thus, the integrating capacitance circuitry architecture of the present invention provides a flexible, configurable, and efficient solution for integrating capacitors and integrating amplifiers that utilize such circuits. And a wide variety of integrating architectures could be utilized while still taking advantage of the capacitor-connected FET of the present invention. It is further noted that the capacitor values and transistor sizings for the integrating capacitance circuitry and related amplifier circuitry can be selected depending upon the operational characteristics desired.
It is noted that although a circuit application for the present invention is described above with respect to pixel cell amplifiers for image detectors, the present invention is broadly applicable to any circuit that measures current or charge with an integrating capacitor. As discussed above, the present invention advantageously provides a capacitor-connected FET device with its gate connected to a selectable voltage to improve integration time and sensitivity with respect to such integration capacitors. And the non-linear operation of this capacitor-connected FET device helps facilitate these performance advantages.
Further modifications and alternative embodiments of this invention will be apparent to those skilled in the art in view of this description. It will be recognized, therefore, that the present invention is not limited by these example arrangements. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the invention. It is to be understood that the forms of the invention herein shown and described are to be taken as the presently preferred embodiments. Various changes may be made in the implementations and architectures. For example, equivalent elements may be substituted for those illustrated and described herein, and certain features of the invention may be utilized independently of the use of other features, all as would be apparent to one skilled in the art after having the benefit of this description of the invention.
Gaalema, Stephen D., Brady, III, John F.
Patent | Priority | Assignee | Title |
8183513, | Jun 30 2008 | DRS Network & Imaging Systems, LLC | In-cell current subtraction for infrared detectors |
Patent | Priority | Assignee | Title |
4404525, | Mar 03 1981 | AMI Semiconductor, Inc | Switched capacitor gain stage with offset and switch feedthrough cancellation scheme |
5128534, | Jul 17 1990 | MICROELECTRONICS TECHNOLOGY, INC | High charge capacity focal plane array readout cell |
6040568, | May 06 1998 | Raytheon Company | Multipurpose readout integrated circuit with in cell adaptive non-uniformity correction and enhanced dynamic range |
6147340, | Sep 29 1998 | Raytheon Company | Focal plane readout unit cell background suppression circuit and method |
6384413, | Oct 13 1998 | California Institute of Technology | Focal plane infrared readout circuit |
6849845, | Feb 13 2002 | EM Microelectronic - Marin SA | Low power integrating circuit for use with a photodetector and optical sensor including such an integrating circuit |
6873359, | Sep 29 2000 | SAMSUNG ELECTRONICS CO , LTD | Self-adjusting, adaptive, minimal noise input amplifier circuit |
7015742, | Jun 20 2003 | Media Tek Inc. | Switched capacitor circuit capable of eliminating clock feedthrough by complementary control signals for digital tuning VCO |
7148727, | Nov 07 2002 | XENICS N V | Read-out circuit for infrared detectors |
20030224740, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2005 | L-3 Communications Corporation | (assignment on the face of the patent) | / | |||
Aug 01 2005 | BRADY, JOHN F , III | L-3 Communications Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016957 | /0103 | |
Aug 15 2005 | GAALEMA, STEPHEN D | L-3 Communications Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016957 | /0103 | |
Dec 31 2016 | L-3 Communications Corporation | L3 Technologies, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 057153 | /0710 | |
Jun 29 2019 | L3 Technologies, Inc | L3HARRIS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057102 | /0001 | |
Aug 16 2021 | L3HARRIS TECHNOLOGIES, INC | DRS Network & Imaging Systems, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057327 | /0829 |
Date | Maintenance Fee Events |
Dec 02 2010 | ASPN: Payor Number Assigned. |
Mar 04 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 05 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 04 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 11 2010 | 4 years fee payment window open |
Mar 11 2011 | 6 months grace period start (w surcharge) |
Sep 11 2011 | patent expiry (for year 4) |
Sep 11 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 11 2014 | 8 years fee payment window open |
Mar 11 2015 | 6 months grace period start (w surcharge) |
Sep 11 2015 | patent expiry (for year 8) |
Sep 11 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 11 2018 | 12 years fee payment window open |
Mar 11 2019 | 6 months grace period start (w surcharge) |
Sep 11 2019 | patent expiry (for year 12) |
Sep 11 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |