A method of identifying potential novel word usage in a document comprises determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger, determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger, and comparing the part-of-speech assignment of the first and second part-of-speech taggers. The method then generates a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers. The words in the differential word set are candidates of words of novel usage.
|
10. A computer-readable article encoded with a computer-executable process, the process comprising:
assigning a first part-of-speech tag to words in at least one document according to a first part-of-speech tagging method;
assigning a second part-of-speech tag for words in the at least one document according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method;
comparing the first and second part-of-speech tags;
generating a differential word set having words with different first and second part-of-speech tags; and
determining a weight to each word in the differential word set in response to the first part-of-speech tag of the word.
17. A system for identifying potential novel word usage in a document set comprising:
a microprocessor; and
a series of computer instructions comprising a method of:
assigning a first part-of-speech tag to words in at least one document according to a first part-of-speech tagging method;
assigning a second part-of-speech tag for words in at least one document according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method;
comparing the first and second part-of-speech tags;
generating a differential word set having words with different first and second part-of-speech tags; and
selecting words of novel usage from the differential word set meeting a predetermined weight criteria.
1. A method of identifying potential novel word usage in a document, comprising:
determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger;
determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger;
comparing the part-of-speech assignment of the first and second part-of-speech taggers;
generating a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers, the words in the differential word set being candidates of words of novel usage; and
determining a weight to each word in the differential word set in response to the part-of-speech assignment of the word by the first part-of-speech tagger.
6. A method of identifying potential novel word usage in a document, comprising:
determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger;
determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger;
comparing the part-of-speech assignment of the first and second part-of-speech taggers;
generating a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers, the words in the differential word set being candidates of words of novel usage; and determining a weight to each word in the differential word set, wherein determining a weight to each word comprises determining a weight in response to a deviation from an expected part-of-speech usage of the word.
2. The method, as set forth in
3. The method, as set forth in
4. The method, as set forth in
W=Sd*WPOS(first POS tagger)*FR, where Sd is a difference sum that reflects the part-of-speech usage deviation from an expected part-of-speech usage of the word, WPOS(first POS tagger) is a weight based on the part-of-speech assignment for the word determined by the first part-of-speech tagger, and FR is a ratio of occurrence of the word in a document set comprising the document to a document corpus upon which the second part-of-speech tagger is based.
5. The method, as set forth in
7. The method, as set forth in
8. The method, as set forth in
9. The method, as set forth in
11. The article, as set forth in
12. The article, as set forth in
13. The article, as set forth in
14. The article, as set forth in
W=Sd*WPOS(first POS tagging method)*FR, where Sd is a difference sum that reflects the part-of-speech usage deviation from an expected part-of-speech usage of the word, WPOS(first POS tagging method) is a weight based on the first part-of-speech tag for the word, and FR is a ratio of occurrence of the word in a document set comprising the document to a document corpus upon which the second part-of-speech tagging method is based.
15. The article, as set forth in
16. The article, as set forth in
18. The system, as set forth in
19. The system, as set forth in
W=Sd*WPOS(first POS tagging method)*FR, where Sd is a difference sum that reflects the part-of-speech usage deviation from an expected part-of-speech usage of the word, WPOS(first POS tagging method) is a weight based on the first part-of-speech tag for the word, and FR is a ratio of occurrence of the word in a document set comprising the document to a document corpus upon which the second part-of-speech tagging method is based.
|
The present invention relates generally to the field of computers and, in particular, to a system and method for identifying special word usage in a document.
The Information Highway built on the Internet and the World Wide Web has brought a tsunami of electronic data to everyone's computer. The large volumes of data make it difficult to adequately process, comprehend and utilize the content of the data. As one of the first steps commonly used to process documents, part-of-speech (POS) taggers have been used to tag or label text with the grammatical or syntactical parts of speech. Because a word may have different meaning depending on the context, POS tagging significantly enhances the understanding of the text. POS tagging also enables natural language processing tasks so that data may be summarized, categorized, and otherwise applied to some function in some form.
Language is dynamic, however, and words may acquire new meaning in/for certain segments of the population. For example, certain words or their usage may evolve in certain geographical regions or cultural/racial groups. As another example, certain groups of people, such as a scientific, technical, legal or another professional community, may coin new meaning for known words, or create new words and new word combinations. Therefore, it is desirable to recognize and identify such special or novel word usage so that better text understanding may be achieved.
In accordance with an embodiment of the present invention, a method of identifying potential novel word usage in a document comprises determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger, determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger, and comparing the part-of-speech assignment of the first and second part-of-speech taggers. The method generates a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers. The words in the differential word set are candidates of words of novel usage.
In accordance with another embodiment of the invention, a computer-readable article encoded with a computer-executable process comprises assigning a first part-of-speech tag to words in a plurality of documents according to a first part-of-speech tagging method, assigning a second part-of-speech tag for words in the plurality of documents according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method, and comparing the first and second part-of-speech tags. The process further comprises generating a differential word set having words with different first and second part-of-speech tags.
In accordance with yet another embodiment of the present invention, a system for identifying novel word usage in a document set comprises a microprocessor, and a series of computer instructions comprising a method. The method comprises assigning a first part-of speech tag to words in a plurality of documents according to a first part-of-speech tagging method, assigning a second part-of-speech tag for words in the plurality of documents according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method, comparing the first and second part-of-speech tags, and generating a differential word set having words with different first and second part-of-speech tags.
For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
The preferred embodiment of the present invention and its advantages are best understood by referring to
In blocks 14 and 16, two different part-of-speech (POS) taggers are used to analyze each document in the document set to generate a first and second tag set for each document. The first POS tagger is a tagger such as a transformational rule-based Brill POS tagger authored by Eric Brill, or one of its variations. To increase the accuracy of the first tagger, a combination of two or more thorough and accurate POS taggers may be used. The POS tag set used in the Brill POS tagger is the University of Pennsylvania Treebank POS tagset shown in TABLE A:
TABLE A
1
CC
Coordinating conjunction
2
CD
Cardinal number
3
DT
Determiner
4
EX
Existential “there”
5
FW
Foreign word
6
IN
Preposition or subordinating conjunction
7
JJ
Adjective
8
JJR
Adjective, comparative
9
JJS
Adjective, superlative
10
LS
List item marker
11
MD
Modal
12
NN
Noun, singular or mass
13
NNS
Noun, plural
14
NNP
Proper noun, singular
15
NNPS
Proper noun, plural
16
PDT
Predeterminer
17
POS
Possessive ending
18
PP
Personal pronoun
19
PPS
Possessive pronoun
20
RB
Adverb
21
RBR
Adverb, comparative
22
RBS
Adverb, superlative
23
RP
Particle
24
SYM
Symbol
25
TO
“to”
26
UH
Interjection
27
VB
Verb, base form
28
VBD
Verb, past tense
29
VBG
Verb, gerund or present participle
30
VBN
Verb, past participle
31
VBP
Verb, non-3rd person singular present
32
VBZ
Verb, 3rd person singular present
33
WDT
Wh-determiner
34
WP
Wh-pronoun
35
WPS
Possessive Wh-pronoun
36
WRB
Wh-adverb
The tag set shown in TABLE A is a very thorough set of grammatical tags that makes distinctions between different verb and noun usages, for example.
A simple or partial tagger, such as the second tagger used in block 16 may not distinguish between the various verb forms, for example. An example of a partial POS tagger is a corpus-based tagger, which is a database or corpus of collected written and/or spoken text that has already been grammatically tagged. An example of such statistical database is the Word Frequencies in Written and Spoken English: based on the British National Corpus by Leech, Geoffrey et al. (2001). The British National Corpus (BNC) is a 100,000,000 word electronic database sampled from present-day spoken and written English. Because the tag set used by the partial POS tagger is likely to be different than that used in the full-featured POS tagger, certain tags may need to be expanded. Alternatively, a corpus that uses the same tag set as the first POS tagger may be used for the second POS tagger.
In block 18, the tagged results from the full POS tagger (block 14) and the tagged results from the partial POS tagger (block 16) are compared to determine a differential word set that contains words that have been tagged differently by the two POS taggers. For example, a sentence, “Bob might race to win” may be tagged in this manner by the two POS taggers:
SENTENCE:
Bob
might
race
to
win
FIRST POS
NNP
MD
VB
IN
VB
TAGGER
SECOND POS
NNP
MD
NN
PREP
VB
TAGGER
NNP represents singular proper noun, MD represents modal, VB represents base form verb, IN represents preposition or subordinating conjunction, NN represents singular or mass noun, and PREP represents preposition. It may be seen that the word “race” is tagged differently by the two POS taggers. The first or full POS tagger has correctly tagged “race” as a verb, and the second or partial POS tagger has incorrectly tagged “race” as a noun. The word “race” will thus be included in the differential word set. Therefore, the process generates a differential word set or signature for each document in the document set of interest. A signature is an ordered vector highlighting the POS differences between the full tagger and the partial or corpus-based tagger. For example, the following may be a signature expressed in XML (extensible markup language) for a corpus in which new slang terms are being used:
<TaggerDifferences>
<Term>
<Spelling>swing</Spelling>
<Weight>34.44</Weight>
</Term>
...
<Term>
<Spelling>hoop</Spelling>
<Weight>3.67</Weight>
</Term>
</TaggerDifferences>
In block 20, a weighting is determined for each word in the differential word set of each document. In general, how a word is used in an entire document set is of interest. For example, if in a document set we find a particular word, “race,” is used as a verb 56.7% of the time and as a noun 43.3% of the time. These percentages are significantly different from the established 6.3% verb and 93.7% noun usage statistics. Referring also to block 38 in
Sd=ΣiεPOS tag set(|%(full POS tagger)−%(partial POS tagger)|)
Thus for the word, “race,” its difference sum would be:
Sd=|56.7−6.4|+|43.3−93.7|=100.8
In general, the value for the difference sum, Sd, will range from 0 to 200. Therefore, the difference sum reflects the present usage deviation from the established or expected POS usage of the word.
In block 40, a weighting based on the parts of speech of each word is determined. For example, words or terms that are nouns and verbs are typically of interest or more important than prepositions. As such, words used as nouns may receive a higher weighting than words used as prepositions. Therefore, the POS tagging by the full tagger is used as the basis to determine a POS-based weighting, WPOS(full tagger). There are various different ways to determine the relative weighting, such as modified steepest descent, principal component analysis, support vector machines, and other suitable approaches now known and later developed.
In block 42, a word frequency ratio is determined. The word frequency ratio, FR, is a number arrived at by combining a number of variables commonly used in the field of information retrieval, including term frequency, TF, inverse document frequency, IDF, and inverse (document) length, IL. TF measures the frequency by which a word appears in a document. IDF measures the relative occurrence of the word across many documents and is typically expressed as:
IDF=−log2 dfw/D,
Where dfw is document frequency or the number of documents that contain the word, and D is the number of documents in the document set. IL is (length of the document)−1. The weighting, W, can be a function of the above terms:
W=Sd*WPOS(full tagger)*TF*IL*IDF.
The expression, TF*IL*IDF, can be simplified to a variable called frequency ratio, FR, or the ratio of occurrence of the term in the document set of interest compared to the tagged corpus. Frequency ratio is a concept that is also commonly used in the field of information retrieval. Therefore, with the determination of FR in block 42, a weighting, W, for the word is determined in block 44, which can be expressed by:
W=Sd*WPOS(full tagger)*FR.
The process for determining a weight for each word in the differential word set is repeated for each document and ends in block 46.
Returning to
<WeightWordSet type=“DocumentSet” namespace=“Test”>
<Word>
<Spelling>race</Spelling>
<Weight>100.8</Weight>
<FullPOS>VB</FullPOS>
</Word>
<Word>
<Spelling>shingle</Spelling>
<Weight>134.5</Weight>
<FullPOS>VB</FullPOS>
</Word>
<Word>
<Spelling>chad</Spelling>
<Weight>144.5</Weight>
<FullPOS>VB</FullPOS>
</Word>
...
</WeightWordSet>
In the above example, three words or more have been identified in the differential word set of the document set. For each word, its weight and POS tag as determined by the full POS tagger are provided.
In block 24, a subset of the words in the differential word set of the document set is selected. The selected words are of high interest and are possibly slang, code words, jargon, words indicative of style, and other terms of interest. A number of criteria may be used alone or in combination to select the high interest words from the differential word set. For example, the selection criteria may include selecting a predetermined number of words with the highest weight, all words with weighting greater than or equal to a predetermined weight value, all words with greater than or equal to a predetermined percentage of the highest weighted words, and combinations of these and other suitable criteria. The result is a high interest word set for the document set.
In blocks 26-34, the resultant high interest word set is used in a number of exemplary applications described below to identify words used in a special manner so that documents containing these special word usages may be identified and/or classified, new trends for word usage may be identified and tracked, and better machine text understanding is possible.
In block 26, the high interest word set is used to identify documents in another document corpus that are similar in context to the document set. More specifically, the words in the high interest word set are used to cluster documents that may share similar characteristics as the document set. The “context” uncovered or indicated by the high interest word set may provide code words or words that are used in a novel manner in the document set. Because the high interest word set is derived from words that have been tagged differently by the POS taggers, the resultant words in the high interest word set are remarkably different than keywords derived by conventional or other keyword identification processes. In these processes, the keywords are typically used in their correct statistical POS distribution, not one that deviates from it. The conventional processes are especially ineffective where the documents are sequential (such as a series of electronic mail messages or follow-up messages or articles), and where the documents contain purposely obfuscated text. In these instances, the process described above and shown in
Slang is another type of word usage that may be detected by process 10, as shown in block 28. Slang is a word that is consistently used as a different parts of speech than its normal, conventional usage. The progressive adoption of slang may be identifiable and traceable across documents in a temporal order. In addition, unknown words can be represented separately from known words used in a novel way.
Jargon is another type of special word usage that may be detected by process 10, as shown in block 30. Jargon is special terminology used in a given field. Jargon is used more formally and typically distinguished from slang, which is used in informal language. Similar to slang, jargon can be a known word used in a different way from its statistical POS usage, or an unknown word.
Using process 10, the style and/or genre of documents, as characterized by novel word usage, may be detected, as shown in block 32. Therefore, these documents may be grouped accordingly to such determination. In particular, the absolute and relative use of words in a novel manner with respect to their POS statistics may be determined. For example, the mean value of the difference sum, Sd, across the entire document set may be determined. The mean value of Sd or μ(Sd) is high when the document set contains many novel uses of words. μ(Sd) can be weighted by word length, word novelty, and other statistics, and may be used to cluster the documents according to style and genre. Document clustering may be determined by a number of factors such as μ(Sd) and weighted μ(Sd), high interest word set, unknown words and their use, weighted high interest word set and/or weighted unknown words, and a weighted combination of one or more of the foregoing factors.
In block 34, nexus tracking refers to identifying trends in novel word usage across a corpus temporally, geographically and/or culturally. Such novel word usage trends may be indicative of document interrelationship and other associations, which may be further recognized and processed using other means such as keyword extraction, etc.
The previous applications shown in blocks 26-34 are examples provided that may benefit from the high interest word set generation process of the present invention. These high interest words may include such words as slang, code words, jargon, and words indicative of style and genre of the document. The manner in which this information may be used to improve text understanding is numerous and varied.
Patent | Priority | Assignee | Title |
10043516, | Sep 23 2016 | Apple Inc | Intelligent automated assistant |
10049663, | Jun 08 2016 | Apple Inc | Intelligent automated assistant for media exploration |
10049668, | Dec 02 2015 | Apple Inc | Applying neural network language models to weighted finite state transducers for automatic speech recognition |
10049675, | Feb 25 2010 | Apple Inc. | User profiling for voice input processing |
10057736, | Jun 03 2011 | Apple Inc | Active transport based notifications |
10067938, | Jun 10 2016 | Apple Inc | Multilingual word prediction |
10074360, | Sep 30 2014 | Apple Inc. | Providing an indication of the suitability of speech recognition |
10078631, | May 30 2014 | Apple Inc. | Entropy-guided text prediction using combined word and character n-gram language models |
10079014, | Jun 08 2012 | Apple Inc. | Name recognition system |
10083688, | May 27 2015 | Apple Inc | Device voice control for selecting a displayed affordance |
10083690, | May 30 2014 | Apple Inc. | Better resolution when referencing to concepts |
10089072, | Jun 11 2016 | Apple Inc | Intelligent device arbitration and control |
10101822, | Jun 05 2015 | Apple Inc. | Language input correction |
10102359, | Mar 21 2011 | Apple Inc. | Device access using voice authentication |
10108612, | Jul 31 2008 | Apple Inc. | Mobile device having human language translation capability with positional feedback |
10127220, | Jun 04 2015 | Apple Inc | Language identification from short strings |
10127911, | Sep 30 2014 | Apple Inc. | Speaker identification and unsupervised speaker adaptation techniques |
10134385, | Mar 02 2012 | Apple Inc.; Apple Inc | Systems and methods for name pronunciation |
10169329, | May 30 2014 | Apple Inc. | Exemplar-based natural language processing |
10170123, | May 30 2014 | Apple Inc | Intelligent assistant for home automation |
10176167, | Jun 09 2013 | Apple Inc | System and method for inferring user intent from speech inputs |
10185542, | Jun 09 2013 | Apple Inc | Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant |
10186254, | Jun 07 2015 | Apple Inc | Context-based endpoint detection |
10192552, | Jun 10 2016 | Apple Inc | Digital assistant providing whispered speech |
10199051, | Feb 07 2013 | Apple Inc | Voice trigger for a digital assistant |
10223066, | Dec 23 2015 | Apple Inc | Proactive assistance based on dialog communication between devices |
10241644, | Jun 03 2011 | Apple Inc | Actionable reminder entries |
10241752, | Sep 30 2011 | Apple Inc | Interface for a virtual digital assistant |
10249300, | Jun 06 2016 | Apple Inc | Intelligent list reading |
10255907, | Jun 07 2015 | Apple Inc. | Automatic accent detection using acoustic models |
10269345, | Jun 11 2016 | Apple Inc | Intelligent task discovery |
10276170, | Jan 18 2010 | Apple Inc. | Intelligent automated assistant |
10283110, | Jul 02 2009 | Apple Inc. | Methods and apparatuses for automatic speech recognition |
10289433, | May 30 2014 | Apple Inc | Domain specific language for encoding assistant dialog |
10297253, | Jun 11 2016 | Apple Inc | Application integration with a digital assistant |
10311871, | Mar 08 2015 | Apple Inc. | Competing devices responding to voice triggers |
10318871, | Sep 08 2005 | Apple Inc. | Method and apparatus for building an intelligent automated assistant |
10332518, | May 09 2017 | Apple Inc | User interface for correcting recognition errors |
10354011, | Jun 09 2016 | Apple Inc | Intelligent automated assistant in a home environment |
10356243, | Jun 05 2015 | Apple Inc. | Virtual assistant aided communication with 3rd party service in a communication session |
10366158, | Sep 29 2015 | Apple Inc | Efficient word encoding for recurrent neural network language models |
10381016, | Jan 03 2008 | Apple Inc. | Methods and apparatus for altering audio output signals |
10410637, | May 12 2017 | Apple Inc | User-specific acoustic models |
10431204, | Sep 11 2014 | Apple Inc. | Method and apparatus for discovering trending terms in speech requests |
10446141, | Aug 28 2014 | Apple Inc. | Automatic speech recognition based on user feedback |
10446143, | Mar 14 2016 | Apple Inc | Identification of voice inputs providing credentials |
10475446, | Jun 05 2009 | Apple Inc. | Using context information to facilitate processing of commands in a virtual assistant |
10482874, | May 15 2017 | Apple Inc | Hierarchical belief states for digital assistants |
10490187, | Jun 10 2016 | Apple Inc | Digital assistant providing automated status report |
10496753, | Jan 18 2010 | Apple Inc.; Apple Inc | Automatically adapting user interfaces for hands-free interaction |
10497365, | May 30 2014 | Apple Inc. | Multi-command single utterance input method |
10509862, | Jun 10 2016 | Apple Inc | Dynamic phrase expansion of language input |
10521466, | Jun 11 2016 | Apple Inc | Data driven natural language event detection and classification |
10552013, | Dec 02 2014 | Apple Inc. | Data detection |
10553209, | Jan 18 2010 | Apple Inc. | Systems and methods for hands-free notification summaries |
10553215, | Sep 23 2016 | Apple Inc. | Intelligent automated assistant |
10567477, | Mar 08 2015 | Apple Inc | Virtual assistant continuity |
10568032, | Apr 03 2007 | Apple Inc. | Method and system for operating a multi-function portable electronic device using voice-activation |
10592095, | May 23 2014 | Apple Inc. | Instantaneous speaking of content on touch devices |
10593346, | Dec 22 2016 | Apple Inc | Rank-reduced token representation for automatic speech recognition |
10607140, | Jan 25 2010 | NEWVALUEXCHANGE LTD. | Apparatuses, methods and systems for a digital conversation management platform |
10607141, | Jan 25 2010 | NEWVALUEXCHANGE LTD. | Apparatuses, methods and systems for a digital conversation management platform |
10657961, | Jun 08 2013 | Apple Inc. | Interpreting and acting upon commands that involve sharing information with remote devices |
10659851, | Jun 30 2014 | Apple Inc. | Real-time digital assistant knowledge updates |
10671428, | Sep 08 2015 | Apple Inc | Distributed personal assistant |
10679605, | Jan 18 2010 | Apple Inc | Hands-free list-reading by intelligent automated assistant |
10691473, | Nov 06 2015 | Apple Inc | Intelligent automated assistant in a messaging environment |
10705794, | Jan 18 2010 | Apple Inc | Automatically adapting user interfaces for hands-free interaction |
10706373, | Jun 03 2011 | Apple Inc. | Performing actions associated with task items that represent tasks to perform |
10706841, | Jan 18 2010 | Apple Inc. | Task flow identification based on user intent |
10733993, | Jun 10 2016 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
10747498, | Sep 08 2015 | Apple Inc | Zero latency digital assistant |
10755703, | May 11 2017 | Apple Inc | Offline personal assistant |
10762293, | Dec 22 2010 | Apple Inc.; Apple Inc | Using parts-of-speech tagging and named entity recognition for spelling correction |
10789041, | Sep 12 2014 | Apple Inc. | Dynamic thresholds for always listening speech trigger |
10789945, | May 12 2017 | Apple Inc | Low-latency intelligent automated assistant |
10791176, | May 12 2017 | Apple Inc | Synchronization and task delegation of a digital assistant |
10791216, | Aug 06 2013 | Apple Inc | Auto-activating smart responses based on activities from remote devices |
10795541, | Jun 03 2011 | Apple Inc. | Intelligent organization of tasks items |
10810274, | May 15 2017 | Apple Inc | Optimizing dialogue policy decisions for digital assistants using implicit feedback |
10878174, | Jun 24 2020 | Starmind AG | Advanced text tagging using key phrase extraction and key phrase generation |
10904611, | Jun 30 2014 | Apple Inc. | Intelligent automated assistant for TV user interactions |
10978090, | Feb 07 2013 | Apple Inc. | Voice trigger for a digital assistant |
10984326, | Jan 25 2010 | NEWVALUEXCHANGE LTD. | Apparatuses, methods and systems for a digital conversation management platform |
10984327, | Jan 25 2010 | NEW VALUEXCHANGE LTD. | Apparatuses, methods and systems for a digital conversation management platform |
11010550, | Sep 29 2015 | Apple Inc | Unified language modeling framework for word prediction, auto-completion and auto-correction |
11025565, | Jun 07 2015 | Apple Inc | Personalized prediction of responses for instant messaging |
11037565, | Jun 10 2016 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
11069347, | Jun 08 2016 | Apple Inc. | Intelligent automated assistant for media exploration |
11080012, | Jun 05 2009 | Apple Inc. | Interface for a virtual digital assistant |
11087759, | Mar 08 2015 | Apple Inc. | Virtual assistant activation |
11120372, | Jun 03 2011 | Apple Inc. | Performing actions associated with task items that represent tasks to perform |
11133008, | May 30 2014 | Apple Inc. | Reducing the need for manual start/end-pointing and trigger phrases |
11152002, | Jun 11 2016 | Apple Inc. | Application integration with a digital assistant |
11217255, | May 16 2017 | Apple Inc | Far-field extension for digital assistant services |
11257504, | May 30 2014 | Apple Inc. | Intelligent assistant for home automation |
11281993, | Dec 05 2016 | Apple Inc | Model and ensemble compression for metric learning |
11379763, | Aug 10 2021 | Starmind AG | Ontology-based technology platform for mapping and filtering skills, job titles, and expertise topics |
11405466, | May 12 2017 | Apple Inc. | Synchronization and task delegation of a digital assistant |
11410053, | Jan 25 2010 | NEWVALUEXCHANGE LTD. | Apparatuses, methods and systems for a digital conversation management platform |
11423886, | Jan 18 2010 | Apple Inc. | Task flow identification based on user intent |
11500672, | Sep 08 2015 | Apple Inc. | Distributed personal assistant |
11526368, | Nov 06 2015 | Apple Inc. | Intelligent automated assistant in a messaging environment |
11556230, | Dec 02 2014 | Apple Inc. | Data detection |
11587559, | Sep 30 2015 | Apple Inc | Intelligent device identification |
12087308, | Jan 18 2010 | Apple Inc. | Intelligent automated assistant |
7698129, | Feb 23 2006 | Hitachi, LTD | Information processor, customer need-analyzing method and program |
8244732, | Apr 14 2010 | Institute For Information Industry | Named entity marking apparatus, named entity marking method, and computer readable medium thereof |
8359191, | Aug 01 2008 | International Business Machines Corporation | Deriving ontology based on linguistics and community tag clouds |
8473293, | Apr 17 2012 | GOOGLE LLC | Dictionary filtering using market data |
8719006, | Aug 27 2010 | Apple Inc. | Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis |
8892446, | Jan 18 2010 | Apple Inc. | Service orchestration for intelligent automated assistant |
8903716, | Jan 18 2010 | Apple Inc. | Personalized vocabulary for digital assistant |
8930191, | Jan 18 2010 | Apple Inc | Paraphrasing of user requests and results by automated digital assistant |
8942986, | Jan 18 2010 | Apple Inc. | Determining user intent based on ontologies of domains |
9117447, | Jan 18 2010 | Apple Inc. | Using event alert text as input to an automated assistant |
9262612, | Mar 21 2011 | Apple Inc.; Apple Inc | Device access using voice authentication |
9300784, | Jun 13 2013 | Apple Inc | System and method for emergency calls initiated by voice command |
9318108, | Jan 18 2010 | Apple Inc.; Apple Inc | Intelligent automated assistant |
9330720, | Jan 03 2008 | Apple Inc. | Methods and apparatus for altering audio output signals |
9338493, | Jun 30 2014 | Apple Inc | Intelligent automated assistant for TV user interactions |
9368114, | Mar 14 2013 | Apple Inc. | Context-sensitive handling of interruptions |
9430463, | May 30 2014 | Apple Inc | Exemplar-based natural language processing |
9483461, | Mar 06 2012 | Apple Inc.; Apple Inc | Handling speech synthesis of content for multiple languages |
9495129, | Jun 29 2012 | Apple Inc. | Device, method, and user interface for voice-activated navigation and browsing of a document |
9502031, | May 27 2014 | Apple Inc.; Apple Inc | Method for supporting dynamic grammars in WFST-based ASR |
9514221, | Mar 14 2013 | Microsoft Technology Licensing, LLC | Part-of-speech tagging for ranking search results |
9535906, | Jul 31 2008 | Apple Inc. | Mobile device having human language translation capability with positional feedback |
9548050, | Jan 18 2010 | Apple Inc. | Intelligent automated assistant |
9576574, | Sep 10 2012 | Apple Inc. | Context-sensitive handling of interruptions by intelligent digital assistant |
9582608, | Jun 07 2013 | Apple Inc | Unified ranking with entropy-weighted information for phrase-based semantic auto-completion |
9606986, | Sep 29 2014 | Apple Inc.; Apple Inc | Integrated word N-gram and class M-gram language models |
9620104, | Jun 07 2013 | Apple Inc | System and method for user-specified pronunciation of words for speech synthesis and recognition |
9620105, | May 15 2014 | Apple Inc. | Analyzing audio input for efficient speech and music recognition |
9626955, | Apr 05 2008 | Apple Inc. | Intelligent text-to-speech conversion |
9633004, | May 30 2014 | Apple Inc.; Apple Inc | Better resolution when referencing to concepts |
9633660, | Feb 25 2010 | Apple Inc. | User profiling for voice input processing |
9633674, | Jun 07 2013 | Apple Inc.; Apple Inc | System and method for detecting errors in interactions with a voice-based digital assistant |
9646609, | Sep 30 2014 | Apple Inc. | Caching apparatus for serving phonetic pronunciations |
9646614, | Mar 16 2000 | Apple Inc. | Fast, language-independent method for user authentication by voice |
9668024, | Jun 30 2014 | Apple Inc. | Intelligent automated assistant for TV user interactions |
9668121, | Sep 30 2014 | Apple Inc. | Social reminders |
9697820, | Sep 24 2015 | Apple Inc. | Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks |
9697822, | Mar 15 2013 | Apple Inc. | System and method for updating an adaptive speech recognition model |
9711141, | Dec 09 2014 | Apple Inc. | Disambiguating heteronyms in speech synthesis |
9715875, | May 30 2014 | Apple Inc | Reducing the need for manual start/end-pointing and trigger phrases |
9721566, | Mar 08 2015 | Apple Inc | Competing devices responding to voice triggers |
9734193, | May 30 2014 | Apple Inc. | Determining domain salience ranking from ambiguous words in natural speech |
9760559, | May 30 2014 | Apple Inc | Predictive text input |
9785630, | May 30 2014 | Apple Inc. | Text prediction using combined word N-gram and unigram language models |
9798393, | Aug 29 2011 | Apple Inc. | Text correction processing |
9818400, | Sep 11 2014 | Apple Inc.; Apple Inc | Method and apparatus for discovering trending terms in speech requests |
9842101, | May 30 2014 | Apple Inc | Predictive conversion of language input |
9842105, | Apr 16 2015 | Apple Inc | Parsimonious continuous-space phrase representations for natural language processing |
9858925, | Jun 05 2009 | Apple Inc | Using context information to facilitate processing of commands in a virtual assistant |
9865248, | Apr 05 2008 | Apple Inc. | Intelligent text-to-speech conversion |
9865280, | Mar 06 2015 | Apple Inc | Structured dictation using intelligent automated assistants |
9886432, | Sep 30 2014 | Apple Inc. | Parsimonious handling of word inflection via categorical stem + suffix N-gram language models |
9886953, | Mar 08 2015 | Apple Inc | Virtual assistant activation |
9899019, | Mar 18 2015 | Apple Inc | Systems and methods for structured stem and suffix language models |
9922642, | Mar 15 2013 | Apple Inc. | Training an at least partial voice command system |
9934775, | May 26 2016 | Apple Inc | Unit-selection text-to-speech synthesis based on predicted concatenation parameters |
9953088, | May 14 2012 | Apple Inc. | Crowd sourcing information to fulfill user requests |
9959870, | Dec 11 2008 | Apple Inc | Speech recognition involving a mobile device |
9966060, | Jun 07 2013 | Apple Inc. | System and method for user-specified pronunciation of words for speech synthesis and recognition |
9966065, | May 30 2014 | Apple Inc. | Multi-command single utterance input method |
9966068, | Jun 08 2013 | Apple Inc | Interpreting and acting upon commands that involve sharing information with remote devices |
9971774, | Sep 19 2012 | Apple Inc. | Voice-based media searching |
9972304, | Jun 03 2016 | Apple Inc | Privacy preserving distributed evaluation framework for embedded personalized systems |
9986419, | Sep 30 2014 | Apple Inc. | Social reminders |
Patent | Priority | Assignee | Title |
5610812, | Jun 24 1994 | Binary Services Limited Liability Company | Contextual tagger utilizing deterministic finite state transducer |
WO30070, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 19 2003 | SIMSKE, STEVEN J | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013979 | /0586 | |
May 20 2003 | Hewlett-Packard Development Company, L.P. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 30 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 24 2015 | REM: Maintenance Fee Reminder Mailed. |
Sep 11 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 11 2010 | 4 years fee payment window open |
Mar 11 2011 | 6 months grace period start (w surcharge) |
Sep 11 2011 | patent expiry (for year 4) |
Sep 11 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 11 2014 | 8 years fee payment window open |
Mar 11 2015 | 6 months grace period start (w surcharge) |
Sep 11 2015 | patent expiry (for year 8) |
Sep 11 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 11 2018 | 12 years fee payment window open |
Mar 11 2019 | 6 months grace period start (w surcharge) |
Sep 11 2019 | patent expiry (for year 12) |
Sep 11 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |