A method of identifying potential novel word usage in a document comprises determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger, determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger, and comparing the part-of-speech assignment of the first and second part-of-speech taggers. The method then generates a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers. The words in the differential word set are candidates of words of novel usage.

Patent
   7269544
Priority
May 20 2003
Filed
May 20 2003
Issued
Sep 11 2007
Expiry
Nov 08 2025
Extension
903 days
Assg.orig
Entity
Large
169
2
EXPIRED
10. A computer-readable article encoded with a computer-executable process, the process comprising:
assigning a first part-of-speech tag to words in at least one document according to a first part-of-speech tagging method;
assigning a second part-of-speech tag for words in the at least one document according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method;
comparing the first and second part-of-speech tags;
generating a differential word set having words with different first and second part-of-speech tags; and
determining a weight to each word in the differential word set in response to the first part-of-speech tag of the word.
17. A system for identifying potential novel word usage in a document set comprising:
a microprocessor; and
a series of computer instructions comprising a method of:
assigning a first part-of-speech tag to words in at least one document according to a first part-of-speech tagging method;
assigning a second part-of-speech tag for words in at least one document according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method;
comparing the first and second part-of-speech tags;
generating a differential word set having words with different first and second part-of-speech tags; and
selecting words of novel usage from the differential word set meeting a predetermined weight criteria.
1. A method of identifying potential novel word usage in a document, comprising:
determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger;
determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger;
comparing the part-of-speech assignment of the first and second part-of-speech taggers;
generating a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers, the words in the differential word set being candidates of words of novel usage; and
determining a weight to each word in the differential word set in response to the part-of-speech assignment of the word by the first part-of-speech tagger.
6. A method of identifying potential novel word usage in a document, comprising:
determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger;
determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger;
comparing the part-of-speech assignment of the first and second part-of-speech taggers;
generating a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers, the words in the differential word set being candidates of words of novel usage; and determining a weight to each word in the differential word set, wherein determining a weight to each word comprises determining a weight in response to a deviation from an expected part-of-speech usage of the word.
2. The method, as set forth in claim 1, wherein determining a weight to each word further comprises determining a weight in response to how frequently the word occurs in the document.
3. The method, as set forth in claim 1, wherein determining a weight to each word further comprises determining a weight in response to how frequently the word occurs in a document set comprising the document.
4. The method, as set forth in claim 1, wherein determining a weight to each word further comprises determining a weight by determining:

W=Sd*WPOS(first POS tagger)*FR,
where Sd is a difference sum that reflects the part-of-speech usage deviation from an expected part-of-speech usage of the word, WPOS(first POS tagger) is a weight based on the part-of-speech assignment for the word determined by the first part-of-speech tagger, and FR is a ratio of occurrence of the word in a document set comprising the document to a document corpus upon which the second part-of-speech tagger is based.
5. The method, as set forth in claim 1, further comprising selecting a subset of words from the differential word set in response to the weight determined for each word.
7. The method, as set forth in claim 6, further comprising determining the weight based on a frequency of use of the word in the document.
8. The method, as set forth in claim 6, further comprising determining the weight based on a frequency of use of the word in a document set comprising the document.
9. The method, as set forth in claim 6, further comprising selecting a subset of words from the differential word set in response to the weight determined for each word.
11. The article, as set forth in claim 10, wherein determining a weight to each word comprises determining a weight in response to a deviation from an expected part-of-speech usage of the word.
12. The article, as set forth in claim 10, wherein determining a weight to each word comprises determining a weight in response to how frequently the word occurs in the document.
13. The article, as set forth in claim 10, wherein determining a weight to each word comprises determining a weight in response to how frequently the word occurs in a document set comprising the document.
14. The article, as set forth in claim 10, wherein determining a weight to each word comprises determining a weight by determining:

W=Sd*WPOS(first POS tagging method)*FR,
where Sd is a difference sum that reflects the part-of-speech usage deviation from an expected part-of-speech usage of the word, WPOS(first POS tagging method) is a weight based on the first part-of-speech tag for the word, and FR is a ratio of occurrence of the word in a document set comprising the document to a document corpus upon which the second part-of-speech tagging method is based.
15. The article, as set forth in claim 10, further comprising selecting words of novel usage from the differential word set.
16. The article, as set forth in claim 15, wherein selecting words of novel usage comprises selecting words meeting a predetermined weight criteria.
18. The system, as set forth in claim 17, wherein the method further comprises determining a weight to each word in the differential word set.
19. The system, as set forth in claim 17, wherein the method further comprises determining a weight to each word by determining:

W=Sd*WPOS(first POS tagging method)*FR,
where Sd is a difference sum that reflects the part-of-speech usage deviation from an expected part-of-speech usage of the word, WPOS(first POS tagging method) is a weight based on the first part-of-speech tag for the word, and FR is a ratio of occurrence of the word in a document set comprising the document to a document corpus upon which the second part-of-speech tagging method is based.

The present invention relates generally to the field of computers and, in particular, to a system and method for identifying special word usage in a document.

The Information Highway built on the Internet and the World Wide Web has brought a tsunami of electronic data to everyone's computer. The large volumes of data make it difficult to adequately process, comprehend and utilize the content of the data. As one of the first steps commonly used to process documents, part-of-speech (POS) taggers have been used to tag or label text with the grammatical or syntactical parts of speech. Because a word may have different meaning depending on the context, POS tagging significantly enhances the understanding of the text. POS tagging also enables natural language processing tasks so that data may be summarized, categorized, and otherwise applied to some function in some form.

Language is dynamic, however, and words may acquire new meaning in/for certain segments of the population. For example, certain words or their usage may evolve in certain geographical regions or cultural/racial groups. As another example, certain groups of people, such as a scientific, technical, legal or another professional community, may coin new meaning for known words, or create new words and new word combinations. Therefore, it is desirable to recognize and identify such special or novel word usage so that better text understanding may be achieved.

In accordance with an embodiment of the present invention, a method of identifying potential novel word usage in a document comprises determining a part-of-speech assignment for each word in the document using a first part-of-speech tagger, determining a part-of-speech assignment for each word in the document using a second part-of-speech tagger different from the first part-of-speech tagger, and comparing the part-of-speech assignment of the first and second part-of-speech taggers. The method generates a differential word set having words with different part-of-speech assignment by the first and second part-of-speech taggers. The words in the differential word set are candidates of words of novel usage.

In accordance with another embodiment of the invention, a computer-readable article encoded with a computer-executable process comprises assigning a first part-of-speech tag to words in a plurality of documents according to a first part-of-speech tagging method, assigning a second part-of-speech tag for words in the plurality of documents according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method, and comparing the first and second part-of-speech tags. The process further comprises generating a differential word set having words with different first and second part-of-speech tags.

In accordance with yet another embodiment of the present invention, a system for identifying novel word usage in a document set comprises a microprocessor, and a series of computer instructions comprising a method. The method comprises assigning a first part-of speech tag to words in a plurality of documents according to a first part-of-speech tagging method, assigning a second part-of-speech tag for words in the plurality of documents according to a second part-of-speech tagging method more simplistic than the first part-of-speech tagging method, comparing the first and second part-of-speech tags, and generating a differential word set having words with different first and second part-of-speech tags.

For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:

FIG. 1 is a flowchart of an embodiment of a method for identifying special word usage in a document according to the present invention;

FIG. 2 is a flowchart of an embodiment of a method for determining the word weighting according to the present invention; and

FIG. 3 is a block diagram of a system embodiment for identifying special word usage according to the present invention.

The preferred embodiment of the present invention and its advantages are best understood by referring to FIGS. 1 through 3 of the drawings, like numerals being used for like and corresponding parts of the various drawings.

FIG. 1 is a flowchart of an embodiment of a method 10 for identifying special word usage in a document according to the present invention. Method 10 may be initiated or used in a variety of ways. For example, method 10 may be automatically invoked by another computer application, such as a word processor, browser, database user interface, search engine, etc. A user may also manually initiate method 10. In block 12, the document set containing a plurality of text documents are provided as input to method 10. There may be one or more preparatory steps that need to be taken. If the document is paper-based, optical character recognition (OCR) applications may be used to scan and convert the paper-based, optical document into an electronic document. Other applications or tools may be used to separate the text from non-text portions of the document and further index or store each recognizable word in a data structure such as an array. If the document set is a website, then the input in block 12 may comprise the universal resource locator (URL) of the website. If the document set is stored in a folder or directory, then the input may comprise the path to the directory or folder. If the document set contains documents that are ordered in some manner, such as messages posted on a message board (or “blog”) over time, then such sequential ordering of the documents or information related thereto are also provide as input.

In blocks 14 and 16, two different part-of-speech (POS) taggers are used to analyze each document in the document set to generate a first and second tag set for each document. The first POS tagger is a tagger such as a transformational rule-based Brill POS tagger authored by Eric Brill, or one of its variations. To increase the accuracy of the first tagger, a combination of two or more thorough and accurate POS taggers may be used. The POS tag set used in the Brill POS tagger is the University of Pennsylvania Treebank POS tagset shown in TABLE A:

TABLE A
1 CC Coordinating conjunction
2 CD Cardinal number
3 DT Determiner
4 EX Existential “there”
5 FW Foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, comparative
9 JJS Adjective, superlative
10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NNP Proper noun, singular
15 NNPS Proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PP Personal pronoun
19 PPS Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative
23 RP Particle
24 SYM Symbol
25 TO “to”
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or present participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WPS Possessive Wh-pronoun
36 WRB Wh-adverb

The tag set shown in TABLE A is a very thorough set of grammatical tags that makes distinctions between different verb and noun usages, for example.

A simple or partial tagger, such as the second tagger used in block 16 may not distinguish between the various verb forms, for example. An example of a partial POS tagger is a corpus-based tagger, which is a database or corpus of collected written and/or spoken text that has already been grammatically tagged. An example of such statistical database is the Word Frequencies in Written and Spoken English: based on the British National Corpus by Leech, Geoffrey et al. (2001). The British National Corpus (BNC) is a 100,000,000 word electronic database sampled from present-day spoken and written English. Because the tag set used by the partial POS tagger is likely to be different than that used in the full-featured POS tagger, certain tags may need to be expanded. Alternatively, a corpus that uses the same tag set as the first POS tagger may be used for the second POS tagger.

In block 18, the tagged results from the full POS tagger (block 14) and the tagged results from the partial POS tagger (block 16) are compared to determine a differential word set that contains words that have been tagged differently by the two POS taggers. For example, a sentence, “Bob might race to win” may be tagged in this manner by the two POS taggers:

SENTENCE: Bob might race to win
FIRST POS NNP MD VB IN VB
TAGGER
SECOND POS NNP MD NN PREP VB
TAGGER

NNP represents singular proper noun, MD represents modal, VB represents base form verb, IN represents preposition or subordinating conjunction, NN represents singular or mass noun, and PREP represents preposition. It may be seen that the word “race” is tagged differently by the two POS taggers. The first or full POS tagger has correctly tagged “race” as a verb, and the second or partial POS tagger has incorrectly tagged “race” as a noun. The word “race” will thus be included in the differential word set. Therefore, the process generates a differential word set or signature for each document in the document set of interest. A signature is an ordered vector highlighting the POS differences between the full tagger and the partial or corpus-based tagger. For example, the following may be a signature expressed in XML (extensible markup language) for a corpus in which new slang terms are being used:

<TaggerDifferences>
  <Term>
    <Spelling>swing</Spelling>
    <Weight>34.44</Weight>
  </Term>
...
  <Term>
    <Spelling>hoop</Spelling>
    <Weight>3.67</Weight>
  </Term>
</TaggerDifferences>

In block 20, a weighting is determined for each word in the differential word set of each document. In general, how a word is used in an entire document set is of interest. For example, if in a document set we find a particular word, “race,” is used as a verb 56.7% of the time and as a noun 43.3% of the time. These percentages are significantly different from the established 6.3% verb and 93.7% noun usage statistics. Referring also to block 38 in FIG. 2, a difference sum, Sd, for a particular word in the differential word set can be computed from:
SdiεPOS tag set(|%(full POS tagger)−%(partial POS tagger)|)
Thus for the word, “race,” its difference sum would be:
Sd=|56.7−6.4|+|43.3−93.7|=100.8
In general, the value for the difference sum, Sd, will range from 0 to 200. Therefore, the difference sum reflects the present usage deviation from the established or expected POS usage of the word.

In block 40, a weighting based on the parts of speech of each word is determined. For example, words or terms that are nouns and verbs are typically of interest or more important than prepositions. As such, words used as nouns may receive a higher weighting than words used as prepositions. Therefore, the POS tagging by the full tagger is used as the basis to determine a POS-based weighting, WPOS(full tagger). There are various different ways to determine the relative weighting, such as modified steepest descent, principal component analysis, support vector machines, and other suitable approaches now known and later developed.

In block 42, a word frequency ratio is determined. The word frequency ratio, FR, is a number arrived at by combining a number of variables commonly used in the field of information retrieval, including term frequency, TF, inverse document frequency, IDF, and inverse (document) length, IL. TF measures the frequency by which a word appears in a document. IDF measures the relative occurrence of the word across many documents and is typically expressed as:
IDF=−log2 dfw/D,
Where dfw is document frequency or the number of documents that contain the word, and D is the number of documents in the document set. IL is (length of the document)−1. The weighting, W, can be a function of the above terms:
W=Sd*WPOS(full tagger)*TF*IL*IDF.
The expression, TF*IL*IDF, can be simplified to a variable called frequency ratio, FR, or the ratio of occurrence of the term in the document set of interest compared to the tagged corpus. Frequency ratio is a concept that is also commonly used in the field of information retrieval. Therefore, with the determination of FR in block 42, a weighting, W, for the word is determined in block 44, which can be expressed by:
W=Sd*WPOS(full tagger)*FR.
The process for determining a weight for each word in the differential word set is repeated for each document and ends in block 46.

Returning to FIG. 1, the weight for each word in the differential word set of each document is determined as shown in blocks 14-20 until all documents in the document set have been processed, as determined in block 22. An exemplary output from this process represented in XML format is shown below:

<WeightWordSet type=“DocumentSet” namespace=“Test”>
  <Word>
    <Spelling>race</Spelling>
    <Weight>100.8</Weight>
    <FullPOS>VB</FullPOS>
  </Word>
  <Word>
    <Spelling>shingle</Spelling>
    <Weight>134.5</Weight>
    <FullPOS>VB</FullPOS>
  </Word>
  <Word>
    <Spelling>chad</Spelling>
    <Weight>144.5</Weight>
    <FullPOS>VB</FullPOS>
  </Word>
...
</WeightWordSet>

In the above example, three words or more have been identified in the differential word set of the document set. For each word, its weight and POS tag as determined by the full POS tagger are provided.

In block 24, a subset of the words in the differential word set of the document set is selected. The selected words are of high interest and are possibly slang, code words, jargon, words indicative of style, and other terms of interest. A number of criteria may be used alone or in combination to select the high interest words from the differential word set. For example, the selection criteria may include selecting a predetermined number of words with the highest weight, all words with weighting greater than or equal to a predetermined weight value, all words with greater than or equal to a predetermined percentage of the highest weighted words, and combinations of these and other suitable criteria. The result is a high interest word set for the document set.

In blocks 26-34, the resultant high interest word set is used in a number of exemplary applications described below to identify words used in a special manner so that documents containing these special word usages may be identified and/or classified, new trends for word usage may be identified and tracked, and better machine text understanding is possible.

In block 26, the high interest word set is used to identify documents in another document corpus that are similar in context to the document set. More specifically, the words in the high interest word set are used to cluster documents that may share similar characteristics as the document set. The “context” uncovered or indicated by the high interest word set may provide code words or words that are used in a novel manner in the document set. Because the high interest word set is derived from words that have been tagged differently by the POS taggers, the resultant words in the high interest word set are remarkably different than keywords derived by conventional or other keyword identification processes. In these processes, the keywords are typically used in their correct statistical POS distribution, not one that deviates from it. The conventional processes are especially ineffective where the documents are sequential (such as a series of electronic mail messages or follow-up messages or articles), and where the documents contain purposely obfuscated text. In these instances, the process described above and shown in FIGS. 1 and 2 is operable to identify and recognize words used in a novel manner that may be of interest.

Slang is another type of word usage that may be detected by process 10, as shown in block 28. Slang is a word that is consistently used as a different parts of speech than its normal, conventional usage. The progressive adoption of slang may be identifiable and traceable across documents in a temporal order. In addition, unknown words can be represented separately from known words used in a novel way.

Jargon is another type of special word usage that may be detected by process 10, as shown in block 30. Jargon is special terminology used in a given field. Jargon is used more formally and typically distinguished from slang, which is used in informal language. Similar to slang, jargon can be a known word used in a different way from its statistical POS usage, or an unknown word.

Using process 10, the style and/or genre of documents, as characterized by novel word usage, may be detected, as shown in block 32. Therefore, these documents may be grouped accordingly to such determination. In particular, the absolute and relative use of words in a novel manner with respect to their POS statistics may be determined. For example, the mean value of the difference sum, Sd, across the entire document set may be determined. The mean value of Sd or μ(Sd) is high when the document set contains many novel uses of words. μ(Sd) can be weighted by word length, word novelty, and other statistics, and may be used to cluster the documents according to style and genre. Document clustering may be determined by a number of factors such as μ(Sd) and weighted μ(Sd), high interest word set, unknown words and their use, weighted high interest word set and/or weighted unknown words, and a weighted combination of one or more of the foregoing factors.

In block 34, nexus tracking refers to identifying trends in novel word usage across a corpus temporally, geographically and/or culturally. Such novel word usage trends may be indicative of document interrelationship and other associations, which may be further recognized and processed using other means such as keyword extraction, etc.

The previous applications shown in blocks 26-34 are examples provided that may benefit from the high interest word set generation process of the present invention. These high interest words may include such words as slang, code words, jargon, and words indicative of style and genre of the document. The manner in which this information may be used to improve text understanding is numerous and varied.

FIG. 3 is a block diagram of a system embodiment for identifying special word usage according to the present invention. System 50 receives a document set 52 consisting of a at least one document in electronic form and stores the document set in a memory 54. Memory 54 is coupled and accessible by a processor 56, which is further coupled to an input device 58 and an output device 60. Input device 58 comprises any device that is operable to provide input to processor 56, including devices that may be directly manipulated by users such as a keyboard and a pointing device. Output device 60 comprises any devices that is operable to provide information from processor 56 in a human-perceivable form, such as a display, printer, facsimile machine, speakers, etc. Processor 56 is operable to execute computer-readable instructions 62 encoding at least one embodiment of the methods for identifying novel word usage. As described above, the resultant word set may be used in a number of applications so that documents containing these special word usages may be identified and/or classified, new trends for word usage may be identified and tracked, and better machine text understanding is possible.

Simske, Steven J.

Patent Priority Assignee Title
10043516, Sep 23 2016 Apple Inc Intelligent automated assistant
10049663, Jun 08 2016 Apple Inc Intelligent automated assistant for media exploration
10049668, Dec 02 2015 Apple Inc Applying neural network language models to weighted finite state transducers for automatic speech recognition
10049675, Feb 25 2010 Apple Inc. User profiling for voice input processing
10057736, Jun 03 2011 Apple Inc Active transport based notifications
10067938, Jun 10 2016 Apple Inc Multilingual word prediction
10074360, Sep 30 2014 Apple Inc. Providing an indication of the suitability of speech recognition
10078631, May 30 2014 Apple Inc. Entropy-guided text prediction using combined word and character n-gram language models
10079014, Jun 08 2012 Apple Inc. Name recognition system
10083688, May 27 2015 Apple Inc Device voice control for selecting a displayed affordance
10083690, May 30 2014 Apple Inc. Better resolution when referencing to concepts
10089072, Jun 11 2016 Apple Inc Intelligent device arbitration and control
10101822, Jun 05 2015 Apple Inc. Language input correction
10102359, Mar 21 2011 Apple Inc. Device access using voice authentication
10108612, Jul 31 2008 Apple Inc. Mobile device having human language translation capability with positional feedback
10127220, Jun 04 2015 Apple Inc Language identification from short strings
10127911, Sep 30 2014 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
10134385, Mar 02 2012 Apple Inc.; Apple Inc Systems and methods for name pronunciation
10169329, May 30 2014 Apple Inc. Exemplar-based natural language processing
10170123, May 30 2014 Apple Inc Intelligent assistant for home automation
10176167, Jun 09 2013 Apple Inc System and method for inferring user intent from speech inputs
10185542, Jun 09 2013 Apple Inc Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant
10186254, Jun 07 2015 Apple Inc Context-based endpoint detection
10192552, Jun 10 2016 Apple Inc Digital assistant providing whispered speech
10199051, Feb 07 2013 Apple Inc Voice trigger for a digital assistant
10223066, Dec 23 2015 Apple Inc Proactive assistance based on dialog communication between devices
10241644, Jun 03 2011 Apple Inc Actionable reminder entries
10241752, Sep 30 2011 Apple Inc Interface for a virtual digital assistant
10249300, Jun 06 2016 Apple Inc Intelligent list reading
10255907, Jun 07 2015 Apple Inc. Automatic accent detection using acoustic models
10269345, Jun 11 2016 Apple Inc Intelligent task discovery
10276170, Jan 18 2010 Apple Inc. Intelligent automated assistant
10283110, Jul 02 2009 Apple Inc. Methods and apparatuses for automatic speech recognition
10289433, May 30 2014 Apple Inc Domain specific language for encoding assistant dialog
10297253, Jun 11 2016 Apple Inc Application integration with a digital assistant
10311871, Mar 08 2015 Apple Inc. Competing devices responding to voice triggers
10318871, Sep 08 2005 Apple Inc. Method and apparatus for building an intelligent automated assistant
10332518, May 09 2017 Apple Inc User interface for correcting recognition errors
10354011, Jun 09 2016 Apple Inc Intelligent automated assistant in a home environment
10356243, Jun 05 2015 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
10366158, Sep 29 2015 Apple Inc Efficient word encoding for recurrent neural network language models
10381016, Jan 03 2008 Apple Inc. Methods and apparatus for altering audio output signals
10410637, May 12 2017 Apple Inc User-specific acoustic models
10431204, Sep 11 2014 Apple Inc. Method and apparatus for discovering trending terms in speech requests
10446141, Aug 28 2014 Apple Inc. Automatic speech recognition based on user feedback
10446143, Mar 14 2016 Apple Inc Identification of voice inputs providing credentials
10475446, Jun 05 2009 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
10482874, May 15 2017 Apple Inc Hierarchical belief states for digital assistants
10490187, Jun 10 2016 Apple Inc Digital assistant providing automated status report
10496753, Jan 18 2010 Apple Inc.; Apple Inc Automatically adapting user interfaces for hands-free interaction
10497365, May 30 2014 Apple Inc. Multi-command single utterance input method
10509862, Jun 10 2016 Apple Inc Dynamic phrase expansion of language input
10521466, Jun 11 2016 Apple Inc Data driven natural language event detection and classification
10552013, Dec 02 2014 Apple Inc. Data detection
10553209, Jan 18 2010 Apple Inc. Systems and methods for hands-free notification summaries
10553215, Sep 23 2016 Apple Inc. Intelligent automated assistant
10567477, Mar 08 2015 Apple Inc Virtual assistant continuity
10568032, Apr 03 2007 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
10592095, May 23 2014 Apple Inc. Instantaneous speaking of content on touch devices
10593346, Dec 22 2016 Apple Inc Rank-reduced token representation for automatic speech recognition
10607140, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
10607141, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
10657961, Jun 08 2013 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
10659851, Jun 30 2014 Apple Inc. Real-time digital assistant knowledge updates
10671428, Sep 08 2015 Apple Inc Distributed personal assistant
10679605, Jan 18 2010 Apple Inc Hands-free list-reading by intelligent automated assistant
10691473, Nov 06 2015 Apple Inc Intelligent automated assistant in a messaging environment
10705794, Jan 18 2010 Apple Inc Automatically adapting user interfaces for hands-free interaction
10706373, Jun 03 2011 Apple Inc. Performing actions associated with task items that represent tasks to perform
10706841, Jan 18 2010 Apple Inc. Task flow identification based on user intent
10733993, Jun 10 2016 Apple Inc. Intelligent digital assistant in a multi-tasking environment
10747498, Sep 08 2015 Apple Inc Zero latency digital assistant
10755703, May 11 2017 Apple Inc Offline personal assistant
10762293, Dec 22 2010 Apple Inc.; Apple Inc Using parts-of-speech tagging and named entity recognition for spelling correction
10789041, Sep 12 2014 Apple Inc. Dynamic thresholds for always listening speech trigger
10789945, May 12 2017 Apple Inc Low-latency intelligent automated assistant
10791176, May 12 2017 Apple Inc Synchronization and task delegation of a digital assistant
10791216, Aug 06 2013 Apple Inc Auto-activating smart responses based on activities from remote devices
10795541, Jun 03 2011 Apple Inc. Intelligent organization of tasks items
10810274, May 15 2017 Apple Inc Optimizing dialogue policy decisions for digital assistants using implicit feedback
10878174, Jun 24 2020 Starmind AG Advanced text tagging using key phrase extraction and key phrase generation
10904611, Jun 30 2014 Apple Inc. Intelligent automated assistant for TV user interactions
10978090, Feb 07 2013 Apple Inc. Voice trigger for a digital assistant
10984326, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
10984327, Jan 25 2010 NEW VALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
11010550, Sep 29 2015 Apple Inc Unified language modeling framework for word prediction, auto-completion and auto-correction
11025565, Jun 07 2015 Apple Inc Personalized prediction of responses for instant messaging
11037565, Jun 10 2016 Apple Inc. Intelligent digital assistant in a multi-tasking environment
11069347, Jun 08 2016 Apple Inc. Intelligent automated assistant for media exploration
11080012, Jun 05 2009 Apple Inc. Interface for a virtual digital assistant
11087759, Mar 08 2015 Apple Inc. Virtual assistant activation
11120372, Jun 03 2011 Apple Inc. Performing actions associated with task items that represent tasks to perform
11133008, May 30 2014 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
11152002, Jun 11 2016 Apple Inc. Application integration with a digital assistant
11217255, May 16 2017 Apple Inc Far-field extension for digital assistant services
11257504, May 30 2014 Apple Inc. Intelligent assistant for home automation
11281993, Dec 05 2016 Apple Inc Model and ensemble compression for metric learning
11379763, Aug 10 2021 Starmind AG Ontology-based technology platform for mapping and filtering skills, job titles, and expertise topics
11405466, May 12 2017 Apple Inc. Synchronization and task delegation of a digital assistant
11410053, Jan 25 2010 NEWVALUEXCHANGE LTD. Apparatuses, methods and systems for a digital conversation management platform
11423886, Jan 18 2010 Apple Inc. Task flow identification based on user intent
11500672, Sep 08 2015 Apple Inc. Distributed personal assistant
11526368, Nov 06 2015 Apple Inc. Intelligent automated assistant in a messaging environment
11556230, Dec 02 2014 Apple Inc. Data detection
11587559, Sep 30 2015 Apple Inc Intelligent device identification
7698129, Feb 23 2006 Hitachi, LTD Information processor, customer need-analyzing method and program
8244732, Apr 14 2010 Institute For Information Industry Named entity marking apparatus, named entity marking method, and computer readable medium thereof
8359191, Aug 01 2008 International Business Machines Corporation Deriving ontology based on linguistics and community tag clouds
8473293, Apr 17 2012 GOOGLE LLC Dictionary filtering using market data
8719006, Aug 27 2010 Apple Inc. Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis
8892446, Jan 18 2010 Apple Inc. Service orchestration for intelligent automated assistant
8903716, Jan 18 2010 Apple Inc. Personalized vocabulary for digital assistant
8930191, Jan 18 2010 Apple Inc Paraphrasing of user requests and results by automated digital assistant
8942986, Jan 18 2010 Apple Inc. Determining user intent based on ontologies of domains
9117447, Jan 18 2010 Apple Inc. Using event alert text as input to an automated assistant
9262612, Mar 21 2011 Apple Inc.; Apple Inc Device access using voice authentication
9300784, Jun 13 2013 Apple Inc System and method for emergency calls initiated by voice command
9318108, Jan 18 2010 Apple Inc.; Apple Inc Intelligent automated assistant
9330720, Jan 03 2008 Apple Inc. Methods and apparatus for altering audio output signals
9338493, Jun 30 2014 Apple Inc Intelligent automated assistant for TV user interactions
9368114, Mar 14 2013 Apple Inc. Context-sensitive handling of interruptions
9430463, May 30 2014 Apple Inc Exemplar-based natural language processing
9483461, Mar 06 2012 Apple Inc.; Apple Inc Handling speech synthesis of content for multiple languages
9495129, Jun 29 2012 Apple Inc. Device, method, and user interface for voice-activated navigation and browsing of a document
9502031, May 27 2014 Apple Inc.; Apple Inc Method for supporting dynamic grammars in WFST-based ASR
9514221, Mar 14 2013 Microsoft Technology Licensing, LLC Part-of-speech tagging for ranking search results
9535906, Jul 31 2008 Apple Inc. Mobile device having human language translation capability with positional feedback
9548050, Jan 18 2010 Apple Inc. Intelligent automated assistant
9576574, Sep 10 2012 Apple Inc. Context-sensitive handling of interruptions by intelligent digital assistant
9582608, Jun 07 2013 Apple Inc Unified ranking with entropy-weighted information for phrase-based semantic auto-completion
9606986, Sep 29 2014 Apple Inc.; Apple Inc Integrated word N-gram and class M-gram language models
9620104, Jun 07 2013 Apple Inc System and method for user-specified pronunciation of words for speech synthesis and recognition
9620105, May 15 2014 Apple Inc. Analyzing audio input for efficient speech and music recognition
9626955, Apr 05 2008 Apple Inc. Intelligent text-to-speech conversion
9633004, May 30 2014 Apple Inc.; Apple Inc Better resolution when referencing to concepts
9633660, Feb 25 2010 Apple Inc. User profiling for voice input processing
9633674, Jun 07 2013 Apple Inc.; Apple Inc System and method for detecting errors in interactions with a voice-based digital assistant
9646609, Sep 30 2014 Apple Inc. Caching apparatus for serving phonetic pronunciations
9646614, Mar 16 2000 Apple Inc. Fast, language-independent method for user authentication by voice
9668024, Jun 30 2014 Apple Inc. Intelligent automated assistant for TV user interactions
9668121, Sep 30 2014 Apple Inc. Social reminders
9697820, Sep 24 2015 Apple Inc. Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks
9697822, Mar 15 2013 Apple Inc. System and method for updating an adaptive speech recognition model
9711141, Dec 09 2014 Apple Inc. Disambiguating heteronyms in speech synthesis
9715875, May 30 2014 Apple Inc Reducing the need for manual start/end-pointing and trigger phrases
9721566, Mar 08 2015 Apple Inc Competing devices responding to voice triggers
9734193, May 30 2014 Apple Inc. Determining domain salience ranking from ambiguous words in natural speech
9760559, May 30 2014 Apple Inc Predictive text input
9785630, May 30 2014 Apple Inc. Text prediction using combined word N-gram and unigram language models
9798393, Aug 29 2011 Apple Inc. Text correction processing
9818400, Sep 11 2014 Apple Inc.; Apple Inc Method and apparatus for discovering trending terms in speech requests
9842101, May 30 2014 Apple Inc Predictive conversion of language input
9842105, Apr 16 2015 Apple Inc Parsimonious continuous-space phrase representations for natural language processing
9858925, Jun 05 2009 Apple Inc Using context information to facilitate processing of commands in a virtual assistant
9865248, Apr 05 2008 Apple Inc. Intelligent text-to-speech conversion
9865280, Mar 06 2015 Apple Inc Structured dictation using intelligent automated assistants
9886432, Sep 30 2014 Apple Inc. Parsimonious handling of word inflection via categorical stem + suffix N-gram language models
9886953, Mar 08 2015 Apple Inc Virtual assistant activation
9899019, Mar 18 2015 Apple Inc Systems and methods for structured stem and suffix language models
9922642, Mar 15 2013 Apple Inc. Training an at least partial voice command system
9934775, May 26 2016 Apple Inc Unit-selection text-to-speech synthesis based on predicted concatenation parameters
9953088, May 14 2012 Apple Inc. Crowd sourcing information to fulfill user requests
9959870, Dec 11 2008 Apple Inc Speech recognition involving a mobile device
9966060, Jun 07 2013 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
9966065, May 30 2014 Apple Inc. Multi-command single utterance input method
9966068, Jun 08 2013 Apple Inc Interpreting and acting upon commands that involve sharing information with remote devices
9971774, Sep 19 2012 Apple Inc. Voice-based media searching
9972304, Jun 03 2016 Apple Inc Privacy preserving distributed evaluation framework for embedded personalized systems
9986419, Sep 30 2014 Apple Inc. Social reminders
Patent Priority Assignee Title
5610812, Jun 24 1994 Binary Services Limited Liability Company Contextual tagger utilizing deterministic finite state transducer
WO30070,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 19 2003SIMSKE, STEVEN J HEWLETT-PACKARD DEVELOPMENT COMPANY, L P ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0139790586 pdf
May 20 2003Hewlett-Packard Development Company, L.P.(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 30 2010M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 24 2015REM: Maintenance Fee Reminder Mailed.
Sep 11 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Sep 11 20104 years fee payment window open
Mar 11 20116 months grace period start (w surcharge)
Sep 11 2011patent expiry (for year 4)
Sep 11 20132 years to revive unintentionally abandoned end. (for year 4)
Sep 11 20148 years fee payment window open
Mar 11 20156 months grace period start (w surcharge)
Sep 11 2015patent expiry (for year 8)
Sep 11 20172 years to revive unintentionally abandoned end. (for year 8)
Sep 11 201812 years fee payment window open
Mar 11 20196 months grace period start (w surcharge)
Sep 11 2019patent expiry (for year 12)
Sep 11 20212 years to revive unintentionally abandoned end. (for year 12)