Methods of operating an integrated circuit memory device include providing a first address and a first command to the memory device and executing the first command within the memory device. This step of executing the first command is performed concurrently with providing at least one of a second address and a second command to the memory device prior to terminating execution of the first command. This providing of at least one of the second address and the second command prior to termination execution of the first command improves timing efficiency by reducing delay associated with execution of each new command.
|
1. A method of operating a flash memory device, comprising the steps of:
providing a first address and a first read, write or erase command to the flash memory device;
executing the first read, write or erase command within the flash memory device concurrently with providing at least one of a second address and a second read, write or erase command to the flash memory device prior to terminating execution of the first read, write or erase command; and
executing the second read, write or erase command within the flash memory device concurrently with providing at least one of a third address and a third read, write or erase command to the flash memory device prior to terminating execution of the second read, write or erase command; wherein said step of executing the first read, write or erase command comprises providing the second address to the flash memory device prior to terminating execution of the first read, write or erase command.
2. The method of
3. The method of
4. A method of operating a flash memory device; comprising the steps of: providing a first address and a first read, write or erase command to the flash memory device; executing the first read, write or erase command within the flash memory device concurrently with providing at least one of a second address and a second read, write or erase command to the flash memory device prior to terminating execution of the first read, write or erase command; and executing the second read, write or erase command within the flash memory device concurrently with providing at least one of a third address and a third read, write or erase command to the flash memory device prior to terminating execution of the second read, write or erase command;
The method of
5. The method of
|
This application claims priority to Korean Patent Application No. 2005-00560, filed Jan. 4, 2005, the disclosure of which is hereby incorporated herein by reference.
The present invention relates to integrated circuit devices and, more particularly, to integrated circuit memory devices and methods of operating integrated circuit memory devices.
Integrated circuit memory devices are typically classified into one of two categories. These categories include random access memory (RAM) devices and read only memory (ROM) devices. Random access memory devices are typically volatile memory devices that lose their data when power to the memory is interrupted. In contrast, read only memory devices are typically non-volatile memory devices that retain their data even in the presence of power interruption. Examples of random access memory devices include dynamic RAM (DRAM) and static RAM (SRAM). Examples of non-volatile memory devices include programmable ROM (PROM), erasable programmable ROM (EPROM) and electrically erasable programmable ROM (EEPROM). A widely used EEPROM device includes flash memory, which may be classified as NAND-type or NOR-type.
Embodiments of the present invention include methods of operating an integrated circuit memory device by providing a first address and a first command to the memory device and executing the first command within the memory device. This step of executing the first command is performed concurrently with providing at least one of a second address and a second command to the memory device prior to terminating execution of the first command. This providing of at least one of the second address and the second command prior to termination execution of the first command improves timing efficiency by reducing delay associated with execution of each new command. In some of these embodiments, the providing step may include sequentially providing the first address and then the first command to the memory device. Moreover, the executing step may include providing the second address to the memory device prior to terminating execution of the first command. In this case, the executing step may be followed by the step of providing the second command to the memory device after terminating execution of the first command. In alternative embodiments, the executing step includes providing the second command to the memory device prior to terminating execution of the first command. This executing step is followed by the step of providing the second address to the memory device after terminating execution of the first command.
Still further embodiments of the invention include methods of operating a flash memory device. These methods include providing a first address and a first read, write or erase command to the flash memory device. A step is then performed to execute the first read, write or erase command within the flash memory device concurrently with providing at least one of a second address and a second read, write or erase command to the flash memory device prior to terminating execution of the first read, write or erase command. Thereafter, a step is performed to execute the second read, write or erase command within the flash memory device concurrently with providing at least one of a third address and a third read, write or erase command to the flash memory device prior to terminating execution of the second read, write or erase command.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
Patent | Priority | Assignee | Title |
8050131, | Aug 31 2006 | Round Rock Research, LLC | System and memory for sequential multi-plane page memory operations |
8289802, | Aug 31 2006 | Round Rock Research, LLC | System and memory for sequential multi-plane page memory operations |
Patent | Priority | Assignee | Title |
5995438, | Feb 26 1997 | Powerchip Semiconductor Corp. | Synchronous semiconductor memory device |
6381192, | Dec 28 1999 | DOSILICON CO , LTD | Address buffer in a flash memory |
6654289, | Mar 09 2001 | Round Rock Research, LLC | Non-volatile memory device with erase address register |
7085866, | Feb 19 2002 | Nvidia Corporation | Hierarchical bus structure and memory access protocol for multiprocessor systems |
7106648, | Dec 15 2003 | Hynix Semiconductor, Inc. | X-address extractor and memory for high speed operation |
7117332, | Nov 20 2001 | Solid State System Co., Ltd. | Window-based flash memory storage system and management and access methods thereof |
20060265533, | |||
JP200184772, | |||
KR1998073525, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 22 2005 | MA, SUNG-HUN | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017401 | /0787 | |
Dec 29 2005 | Samsung Electronics Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 22 2008 | ASPN: Payor Number Assigned. |
Feb 25 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 26 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 22 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 25 2010 | 4 years fee payment window open |
Mar 25 2011 | 6 months grace period start (w surcharge) |
Sep 25 2011 | patent expiry (for year 4) |
Sep 25 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 25 2014 | 8 years fee payment window open |
Mar 25 2015 | 6 months grace period start (w surcharge) |
Sep 25 2015 | patent expiry (for year 8) |
Sep 25 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 25 2018 | 12 years fee payment window open |
Mar 25 2019 | 6 months grace period start (w surcharge) |
Sep 25 2019 | patent expiry (for year 12) |
Sep 25 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |