In a semiconductor integrated circuit device, semiconductor elements formed in active regions included in a first element formation portion (stress transition region) in a peripheral circuit formation portion are not electrically driven, while only semiconductor elements of a second element formation portion (steady stress region) are electrically driven. Therefore, the second element formation portion in the peripheral circuit formation portion is located away from an outer STI region so as to be hardly affected by compressive stress.
|
1. A semiconductor integrated circuit device comprising:
an outer isolation region isolating a function block from another; and
an inner isolation region isolating a plurality of devices from one another in the function block,
wherein the plurality of devices are formed on an outer active region and an inner active region,
the outer active region is formed adjacent to the outer isolation region,
the inner active region is formed apart from the outer isolation region, with the outer active region interposed therebetween,
only the plurality of the devices of the inner active region are electrically driven, and
one element of the outer active region has the same plane dimensions as one element of the inner active region.
2. The semiconductor integrated circuit device of
the outer active region has a stress resulting from a material constituting the outer isolation region, the stress varying depending on the distance between the outer active region and the outer isolation region, and
the inner active region has a stress resulting from a material constituting the outer isolation region, the stress being constant regardless of the distance between the inner active region and the outer isolation region.
3. The semiconductor integrated circuit device of
wherein the outer isolation region has the same width as that of the inner isolation region.
4. The semiconductor integrated circuit device of
the inner and outer isolation regions have the minimum dimension of the design rule.
5. The semiconductor integrated circuit device of
a dummy active region formed adjacent to the outer active region with the outer isolation region interposed therebetween,
wherein
one element of the dummy active region has the same plane dimensions as one element of the outer active region.
6. The semiconductor integrated circuit device of
7. The semiconductor integrated circuit device of
the outer isolation region has the same width as that of the inner isolation region.
8. The semiconductor integrated circuit device of
the outer and inner active regions have at least two kinds of different planar shapes, and said at least two kinds of different planar shapes are placed one after another in a predetermined cycle.
9. The semiconductor integrated circuit device of
the outer isolation region has a larger width than that of the inner isolation region.
10. The semiconductor integrated circuit device of
wherein the outer and inner active regions have at least two kinds of different planar shapes, said at least two kinds of different planar shapes are placed one after another in a predetermined cycle.
|
(1) Field of the Invention
The present invention relates to a semiconductor integrated circuit device (Large-Scale Integration (LSI)), and more particularly relates to a semiconductor integrated circuit device for preventing or suppressing a change in electrical performance of a device, such as a transistor, resulting from stress caused by the isolation region to active region of the device.
(2) Description of Related Art
A known semiconductor integrated circuit device will be described with reference to
As shown in
The stress interference blocking patterns 215, which form dummy active regions, reduce a difference in stress resulting from the isolation region 201, for example, between the active regions of the p-channel and n-channel transistor regions 211 and 212. This can suppress deterioration in sensitivity of the sense amplifier caused by the difference in threshold voltage (Vth) between the p-channel and n-channel transistors.
However, the known semiconductor integrated circuit device is merely for reducing stress interference in a particular element pattern limited to the active regions of differentially operating transistors such as p-channel and n-channel transistors.
In recent years, semiconductor integrated circuit devices are becoming finer so that their structures are becoming more complicated. Under these circumstances, a difference in stress is produced between the end of an active region forming a device such as a transistor and the central part of the active region. Thus, a change in transistor electrical performance resulting from this stress difference is becoming unignorable. Changes in transistor electrical performance due to stress include, for example, fluctuations in threshold voltage and driving current. Such changes in characteristics increase 1/f noise in an integrated circuit or often induce the phenomenon that the margin of the driving timing decreases.
The present invention is made to solve the conventional problems, and its object is to reduce the difference in stress between the end and central part of the active region of a device, such as a transistor, to reduce and further prevent the change in device electrical performance resulting from the difference in stress produced between the end and central part thereof.
In order to accomplish the above object, the present inventors paid attention to, as a cause of the difference in electrical characteristics among transistors in a plurality of device regions (active regions), i.e., regions in which a device is to be formed, forming a semiconductor integrated circuit device, stress applied to the active regions from an isolation region that partitions the active regions from one another. As a result, the present invention takes the following four solutions:
(1) out of a plurality of active regions forming devices, those adjacent to an isolation region placed around the plurality of active regions are not electrically driven;
(2) a first isolation region that partitions the active regions from one another and a second isolation region placed around the plurality of active regions have the same width;
(3) the design dimensions (plane dimensions) of each of dummy active regions placed in the isolation region located around the plurality of active regions are matched with the design dimensions of the adjacent active region; and
(4) the design dimensions (plane dimensions) of each of the dummy active regions placed in the isolation region located around the plurality of active regions are matched with the design dimensions of the corresponding active region located inside the periphery (ends) of the active regions.
Specifically, a first semiconductor integrated circuit device of the present invention may comprise: a plurality of active regions arranged so as to be partitioned from one another by a first isolation region; and a second isolation region formed around the plurality of active regions and having a larger width than the first isolation region, wherein some of the plurality of active regions constitute a first element formation portion adjacent to the second isolation region and the others constitute a second element formation portion located inside the first element formation portion, and only elements included in the second element formation portion are electrically driven.
According to the first semiconductor integrated circuit device, the plurality of active regions are sectioned into the first element formation portion adjacent to the second isolation region and the second element formation portion located inside thereof, and only elements included in the second element formation portion located inside the first element formation portion are electrically driven. In this case, since the second element formation portion is located away from the second isolation region formed around the plurality of active regions and having a width larger than the first isolation region, the elements included in the second formation portion are hardly affected by stress resulting from the second isolation region. As a result, no difference in electrical performance is produced among the elements included in the second element formation region.
In the first semiconductor integrated circuit device, it is preferable that the first element formation portion is a stress transition region in which stress resulting from a material constituting the second isolation region is shifted depending on the distance between the first element formation portion and the second isolation region and the second element formation portion is a steady stress region in which stress resulting from a material constituting the second isolation region is not shifted depending on the distance between the second element formation portion and the second isolation region. As will be described later, the present inventors have obtained the following findings: the compressive stress applied from an isolation region to each of the active regions increases in proportion to the width of each of the isolation region; and the compressive stress applied from an isolation region to each of the active regions is inversely proportional to the distance from the isolation region. Therefore, if the second element formation portion located away from the second isolation region becomes the steady stress region that is hardly affected by stress resulting from a material constituting the second element isolation region, electrical performance of the elements in the second element formation portion can be surely stabilized.
A second semiconductor integrated circuit device of the present invention may comprise: a plurality of active regions arranged so as to be partitioned from one another by a first isolation region; and a second isolation region formed around the plurality of active regions and having the same width as that of the first isolation region.
It is seen from the above-mentioned first finding that reduction in width of each of the element isolation regions leads to reduced stress applied to each of the active regions. Therefore, according to the second semiconductor integrated circuit device, differences in electrical performance among the elements included in the plurality of active regions can be reduced.
In the second semiconductor integrated circuit device, the first and second isolation regions are preferably formed to have the minimum dimension of the design rule.
The second semiconductor integrated circuit device may further comprise dummy active regions formed on the opposite side of the second isolation region to the plurality of active regions, wherein the ratio of total area of element patterns in the dummy active regions to unit area is preferably identical with that of total area of element patterns in the active regions to unit area.
A third semiconductor integrated circuit device of the present invention may comprise: a plurality of active regions arranged so as to be partitioned from one another by a first isolation region; and dummy active regions formed around the plurality of active regions with a second isolation region interposed therebetween, wherein some of the plurality of active regions constitute a first element formation portion adjacent to the second isolation region and the others constitute a second element formation portion located inside the first element formation portion, and the dummy active regions are formed to have the same plane dimensions as the adjacent active regions included in the first element formation portion.
According to the third semiconductor integrated circuit device, stress applied from the second isolation region is equally applied to the dummy active regions and the active regions included in the first element formation portion. Therefore, the elements included in the active regions of the first element formation portion adjacent to the second isolation region also have stabilized electrical performance.
In the third semiconductor integrated circuit device, it is preferable that the plurality of active regions include at least two kinds of active regions of different planar shapes and said at least two kinds of active regions of different planar shapes are placed one after another in a predetermined cycle.
A fourth semiconductor integrated circuit device of the present invention may comprise: a plurality of active regions arranged so as to be partitioned from one another by a first isolation region; and dummy active regions formed around the plurality of active regions with a second isolation region interposed therebetween, wherein the plurality of active regions include at least two kinds of active regions of different planar shapes, said at least two kinds of active regions of different planar shapes are placed one after another in a predetermined cycle, and some of the plurality of active regions constitute a first element formation portion adjacent to the second isolation region and the others constitute a second element formation portion located inside the first element formation portion; and the dummy active regions are formed to have the same plane dimensions as the corresponding active regions included in the second element formation region and adjacent to the first element formation portion.
According to the fourth semiconductor integrated circuit device, when the plurality of active regions include at least two kinds of active regions of different planar shapes and said at least two kinds of active regions of different planar shapes are arranged one after another in a given cycle, assuming that an element pattern of an active region included in the first element formation portion is pattern b and an element pattern of an active region included in the second element formation portion and adjacent to the first element formation portion is pattern a, an element pattern of a dummy active region is pattern a. Therefore, the active regions including the dummy active regions are placed inwardly in the order of pattern a, pattern b, pattern a, . . . , whereby stress applied from the second isolation region is equally applied to the dummy active regions and the active regions included in the first element formation portion. As a result, the elements included in the active regions of the first element formation portion adjacent to the second isolation region have further stabilized electrical performance.
In the third or fourth semiconductor integrated circuit device, the first and second isolation regions are preferably formed to have the same width.
In the third or fourth semiconductor integrated circuit device, the first and second isolation regions are preferably formed to have the minimum dimension of a design rule.
A first embodiment of the present invention will be described with reference to the drawings.
As shown in
An outer STI region 32 having a width larger than the inner STI region 310 is formed between the dummy active regions 21B and the peripheral circuit formation region 31.
For example, a cause of a change in electrical performance of a transistor formed in each active region 311 in the peripheral circuit formation portion 31 is considered to be the influence of stresses applied from the inner STI region 310 and the outer STI region 32 to the active region 311. Stresses applied from the inner STI region 310 and the outer STI region 32 to the active region change depending on the widths of the STI regions 310 and 32, the pattern shape of the active region 311 and the process conditions. In the first embodiment, a change in stress due to the process conditions is not considered but attention is focused on the widths of the STI regions 310 and 32 and the pattern shape of the active region 311.
With reference to the drawings, a description will be given below of s result obtained by evaluating the dependence of stress applied from an STI region to an active region on the STI width.
A method for evaluating stress will be described hereinafter.
Raman spectroscopy was used for evaluation of stress, a YAG (yttrium-aluminum-garnet) laser with a wavelength of 532 nm was used for a light source for irradiation, and a lens with a magnification of 150× was used to focus the laser on the center of a certain active region 311A.
The strain amount of a silicon (Si) crystal used for a substrate was calculated from the peak shift thereof. For this purpose, a Raman peak of Bare-Si was used as a reference for the Si peaks. A spectroscope adopted a backscattering arrangement, and a laser was radiated from the [100] direction of the zone axis of silicon.
In
Typically, a micro-Raman spectroscope measures stress by summing up spectra collected from the whole analyzed area 33 of the active region 311B. Thus, it is considered that the compressive stress seemingly becomes low in the border between the active region 311B and the STI region 310B because tensile stress produced at the bottom of part of the STI region 310B within the analyzed area 33 and the compressive stress produced in the active region 311B cancel out each other.
The present inventors have obtained the two following findings from the results of stress evaluation shown in
(1) the compressive stress applied from an STI region to an active region increases in proportion to the width of the STI region; and
(2) the compressive stress applied from an STI region to an active region is inversely proportional to the distance from the STI region.
Based on the evaluation results shown in
For example, conventionally, the outer STI region 32 has had a width of approximately several micrometer, and an outer STI region 32 with a so-called submicron size of 1 μm or less has not been formed between each of the dummy active regions 21B and the peripheral circuit formation portion 31.
In this relation, as shown in
Next, since the stress applied from the outer STI region 32 to each active region 311 is inversely proportional to the distance therebetween, a stress gradient occurs from the edge of the stress introduction region 100 adjacent to a first element formation portion 31a of the peripheral circuit formation portion 31 across the first element formation portion 31a. This area in which the stress gradient occurs is hereinafter referred to as a stress transition region 101.
Furthermore, the area of the peripheral circuit formation portion 31 other than the first element formation portion 31a, i.e., a second element formation portion 31b located inside the first element formation portion 31a is unaffected by the stress from the outer STI region 32. This area is hereinafter referred to as a steady stress region 102.
As described above, in the known semiconductor integrated circuit device, semiconductor elements within a first element formation portion 31a of a peripheral circuit formation portion 31 adjacent to an outer STI region 32, i.e., semiconductor elements within a stress transition region 101, are also electrically driven. Therefore, as a matter of course, a circuit is formed to operate active regions 311 including those having differences in electrical performance among the elements due to stress applied from the stress introduction region 100.
However, with the progress of miniaturization, local changes in characteristics or increase of noise resulting from stress differences among the elements in the integrated circuit decrease the margin of the circuit operation, which is a factor that makes the yield worse.
To cope with this, in the first embodiment, the semiconductor elements formed in the active regions 311 within the first element formation portion 31a (stress transition region 101) of the peripheral circuit formation portion 31 are not electrically driven, while only the semiconductor elements within the second element formation portion 31b (steady stress region 102) are electrically driven. In this manner, as shown in
As a result of various studies, the present inventors have obtained the finding that the active regions 311 located approximately 1.01 μm inwardly from the outer STI region 32 are hardly affected by stress from the outer STI region 32. In this case, it is desirable that the elements within the stress transition region 101 which are not electrically driven have the same structure as those within the steady stress region 102, e.g., the same gate electrode structure. The reason for this is as follows. It is considered that the stress applied to each active region 311 depends not only upon the outer STI region 32 but also upon the sizes or layouts of a gate electrode, a contact and the like included in the active region. Therefore, if the elements within the stress transition region 101 have the same structure as those within the steady stress region 102, the stress difference produced between the stress transition region 101 and the steady stress region 102 can also be reduced to a minimum.
A second embodiment of the present invention will be described hereinafter with reference to the drawings.
As shown in
The second embodiment is characterized in that an outer STI region 42 and the inner STI region 410 are arranged such that their respective widths d1 and d2 along the x direction are substantially the same and their respective widths d3 and d4 along the y direction are also substantially the same. In this case, the minimum value defined by a rule described in the design manual may be used as each of the widths d1, d2, d3, and d4.
As seen from the above, the second embodiment is an invention obtained from the above-mentioned first finding. Hence, compressive stress applied from a stress introduction region 100 to a stress transition region 101 is reduced. This reduces the difference between stress applied to each of the active regions 411A and 411B within a stress transition region 101 and stress applied to each of the active regions 411A and 411B within a steady stress region 102.
Therefore, the width of the outer STI region 42 serving as the stress introduction region 100 is not set at a dimension for improving flatness in a CMP process but is set to reduce the stress difference between the stress transition region 101 and the steady stress region 102 at the end of the SRAM circuit formation portion 41. In this manner, the difference in stress applied to each active region 411A or 411B between the stress transition region 101 and the steady stress region 102 is reduced. As a result, the difference in electrical performance of a semiconductor element formed in each active region 411A or 411B between the stress transition region 101 and the steady stress region 102 can be suppressed.
On the other hand, in the known semiconductor integrated circuit device, when a fabrication process with a design rule of 0.13 μm is given as an example, the width of the inner STI region of the SRAM circuit is about 0.2 μm and the width of the outer STI region is at least about 1 μm. Since compressive stress applied to each active region becomes larger in proportion to the width of the STI region, the stress transition region is different in the value of stress applied to each active region from the steady stress region. As a result, a difference in electrical performance is produced between each semiconductor element formed in the stress transition region and each semiconductor element formed in the steady stress region.
A modification of the second embodiment of the present invention will be described hereinafter with reference to the drawings.
When the pattern shapes and arrangement of the dummy active regions 21B are changed, this varies the direction and value of compressive stress applied to each active region 411 within an SRAM circuit.
In this modification, as shown in
In this way, according to this modification, each of the dummy active regions 21B is divided into widths equivalent to those of the active regions 411, and furthermore the distances d5 and d6 between adjacent two of the dummy active regions 21B and the widths d1 and d3 of the outer STI region 42 are set at the same dimensions as the widths d2 and d4 of the inner STI region 411. Accordingly, the ratio of total area of the patterns in the dummy active regions 21B to unit area is substantially equivalent to that of total area of the patterns in the active regions 411 to unit area. Therefore, the difference in stress applied from a stress introduction region 100 between a stress transition region 101 and a steady stress region 102 can be reduced. This surely suppresses the difference in electrical performance between a semiconductor element formed in an active region 411 within the stress transition region 101 and a semiconductor element formed in an active region 411 within the steady stress region 102.
A third embodiment of the present invention will be described hereinafter with reference to the drawings.
As shown in
In this case, the region of an SRAM circuit formation portion 41 adjacent to the dummy active regions 21B is referred to as a first element formation portion 41a, and the region of the SRAM circuit formation portion 41 located inside the first element formation portion 41a is referred to as a second element formation portion 41b. The first element formation portion 41a corresponds to the stress transition region 101, and the second element formation portion 41b corresponds to the steady stress region 102.
The third embodiment is characterized in that the x-width d11 of each of first dummy active regions 21B1 arranged in the x direction is identical with the x-width d12 of each of first active regions 411A included in the first element formation portion 41a (stress transition region 101), and the x-width d13 of each of second dummy active regions 21B2 adjacent to one of the first dummy active regions 21B1 is identical with the x-width d14 of each of second active regions 411B included in the first element formation portion 41a (stress transition region 101).
In addition, the y-width d15 of each of third dummy active regions 21B3 arranged in the y direction is identical with the y-width d16 of each of the first active regions 411A included in the first element formation portion 41a (stress transition region 101).
Specifically, when the SRAM circuit formation portion 41 is formed such that the x- and y-widths d12 and d16 of each of the first active regions 411A are 0.3 μm and 1.0 μm, respectively and the x-width d14 of each of the second active regions 411B is 0.5 μm, the x-width d11 of each of the first dummy active regions 21B1 is 0.3 μm, the x-width d13 of each of the second dummy active regions 21B2 is 0.5 μm, and the y-width d15 of each of the third dummy active regions 21B3 is 1.0 μm.
In this case, the y-width d21 of each of the first and second dummy active regions 21B1 and 21B2 and the x-width d22 of each of the third dummy active regions 21B3 each need only be 1 μm or more. The reason for this is that stress insignificantly affects the active regions 411A and 411B located 1 μm or more away from the outer STI region 42.
When any of the y-widths of the first and second dummy active regions 21B1 and 21B2 and the x-width of the third dummy active region 21B3 is set at 1 μm or less, that dummy active region can be formed to have an entire width of 1 μm or more to obtain the same effects.
According to the third embodiment, the width of each of the dummy active regions 21B1, 21B2 and 21B3 is set at the same value as the width of the adjacent active region 411A or 411B included in the first element formation portion 41a, and furthermore the width of the outer STI region 42 that is the stress introduction region 100 is also set at the same value as the width of the inner STI region 410. Thus, as compared with the second embodiment and its modification, the state of compressive stress applied to each of the active regions 411A and 411B located at the end of the SRAM circuit formation portion 41 is brought closer to the state of compressive stress applied to the central portion of the SRAM circuit formation portion 41.
In this way, a rule for forming dummy active regions 21B is changed, thereby reducing the difference in stress between the stress transition region 101 and the steady stress region 102. This can suppress the difference in electrical performance between a semiconductor element formed in the stress transition region 101 and a semiconductor element formed in the steady stress region 102.
A fourth embodiment of the present invention will be described hereinafter with reference to the drawings.
As shown in
The fourth embodiment is characterized in that the x-width d11 of each of first dummy active regions 21B1 arranged in the x direction is identical with the x-width d31 of each of first active regions 411A included in the second element formation portion 41b (steady stress region 102), and the x-width d13 of each of second dummy active regions 21B2 adjacent to one of the first dummy active regions 21B1 is identical with the x-width d32 of each of second active regions 411B included in the second element formation portion 41b (steady stress region 102).
In addition, the y-width d15 of each of third dummy active regions 21B3 arranged in the y direction is identical with the y-width d33 of each of the second active regions 411B included in the second element formation portion 41b (steady stress region 102).
In this way, in the fourth embodiment, the x- and y-widths of each dummy active region 21B1, 21B2 or 21B3 are determined so that the planar shapes of the dummy active regions 21B1, 21B2 and 21B3 obtained by dividing each of the dummy active regions 21B correspond to repetitive patterns of the active regions 411A and 411B formed in the SRAM circuit formation portion 41.
To be specific, when the SRAM circuit formation portion 41 is formed such that the x-width d31 of each of the first active regions 411A is 0.3 μm, the x-width d32 of each of the second active regions 411B is 0.5 μm and the y-width d33 thereof is 1.5 μm, the x-width d11 of each of the first dummy active regions 21B1 is 0.31 μm, the x-width d13 of each of the second dummy active regions 21B2 is 0.5 μm, and the y-width d15 of each of the third dummy active regions 21B3 is 1.5 μm.
In this case, the y-width d21 of each of the first and second dummy active regions 21B1 and 21B2 and the x-width d22 of each of the third dummy active regions 21B3 each need only be 1 μm or more. The reason for this is that stress insignificantly affects the active regions 411A and 411B 1 μm or more away from the outer STI region.
When any of the y-widths of the first and second dummy active regions 21B1 and 21B2 and the x-width of the third dummy active region 21B3 is set at 1 μm or less, that dummy active region can be formed to have an entire width of 1 μm or more to obtain the same effects.
As described above, in the fourth embodiment, the plane dimensions of each dummy active region 21B1, 21B2 or 21B3 and the outer STI region 42 are allowed to correspond to repetitive patterns of the first active regions 411A and the second active regions 411B in the SRAM circuit formation portion 41.
Therefore, the dummy active regions 21B1, 21B2 and 21B3 are formed without disturbing the repetitive patterns of the active regions 411A and 411B, so that the difference in stress applied to the active regions 411A and 411B between the stress transition region 101 and the steady stress region 102 is further reduced. Therefore, the difference in electrical performance between a semiconductor element formed in the stress transition region 101 and a semiconductor element formed in the steady stress regions 102 can be further suppressed.
Okuno, Yasutoshi, Yamada, Masaru
Patent | Priority | Assignee | Title |
7582494, | Aug 20 2007 | Taiwan Semiconductor Manufacturing Co., Ltd. | Device structures for reducing device mismatch due to shallow trench isolation induced oxides stresses |
7714318, | Nov 08 2005 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Electronic device including a transistor structure having an active region adjacent to a stressor layer |
7843011, | Jan 31 2007 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Electronic device including insulating layers having different strains |
8021957, | Jan 31 2007 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Process of forming an electronic device including insulating layers having different strains |
8350330, | May 08 2008 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dummy pattern design for reducing device performance drift |
8569858, | Dec 20 2006 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Semiconductor device including an active region and two layers having different stress characteristics |
9847389, | Dec 20 2006 | NXP USA, INC | Semiconductor device including an active region and two layers having different stress characteristics |
9857677, | May 20 2011 | United Microelectronics Corp. | Dummy patterns |
Patent | Priority | Assignee | Title |
20020047138, | |||
20030127697, | |||
20030132473, | |||
20040152243, | |||
JP2001332706, | |||
JP2002368080, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 02 2004 | YAMADA, MASARU | MATSUSHITA ELECTRIC INSUSTRIAL CO ,, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015192 | /0978 | |
Apr 02 2004 | OKUNO, YASUTOSHI | MATSUSHITA ELECTRIC INSUSTRIAL CO ,, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015192 | /0978 | |
Apr 06 2004 | Matsushita Electric Industrial Co., Ltd. | (assignment on the face of the patent) | / | |||
Oct 01 2008 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Panasonic Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 033777 | /0873 | |
Dec 26 2014 | Panasonic Corporation | Pannova Semic, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036065 | /0273 |
Date | Maintenance Fee Events |
Mar 03 2008 | ASPN: Payor Number Assigned. |
Mar 02 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 02 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 12 2017 | ASPN: Payor Number Assigned. |
Apr 12 2017 | RMPN: Payer Number De-assigned. |
Mar 25 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 02 2010 | 4 years fee payment window open |
Apr 02 2011 | 6 months grace period start (w surcharge) |
Oct 02 2011 | patent expiry (for year 4) |
Oct 02 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 02 2014 | 8 years fee payment window open |
Apr 02 2015 | 6 months grace period start (w surcharge) |
Oct 02 2015 | patent expiry (for year 8) |
Oct 02 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 02 2018 | 12 years fee payment window open |
Apr 02 2019 | 6 months grace period start (w surcharge) |
Oct 02 2019 | patent expiry (for year 12) |
Oct 02 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |