A clip structure for a semiconductor package is disclosed. The clip structure includes a major portion, at least one pedestal extending from the major portion, a downset portion, and a lead portion. The downset portion is between the lead portion and the major portion. The clip structure can be used in a mlp (micro-leadframe package).

Patent
   7285849
Priority
Nov 18 2005
Filed
Nov 18 2005
Issued
Oct 23 2007
Expiry
Nov 18 2025
Assg.orig
Entity
Large
64
45
EXPIRED
1. A clip structure for a semiconductor package, the clip structure comprising:
a major portion comprising a horizontal surface;
a plurality of pedestals extending from the horizontal surface of the major portion;
a downset portion; and
a lead portion,
wherein the downset portion is between the lead portion and the major portion.
14. A semiconductor die package comprising:
a clip structure comprising a major portion comprising a horizontal surface, a plurality of pedestals extending from the horizontal surface of the major portion, a downset portion, and a lead portion, wherein the downset portion is between the lead portion and the major portion, and has a stepped configuration;
a leadframe structure; and
a semiconductor die,
wherein the semiconductor die is between the leadframe structure and the clip structure.
16. A semiconductor die package comprising:
a clip structure comprising a major portion, at least one pedestal extending from the major portion a downset portion, and a lead portion, wherein the downset portion is between the lead portion and the major portion, and has a stepped configuration;
a leadframe structure; and
a semiconductor die,
wherein the semiconductor die is between the leadframe structure and the clip structure, wherein the semiconductor die package is a mlp (micro-leadframe package) and comprises a power mosfet.
2. The clip structure of claim 1 wherein the clip structure is a source clip structure or a gate clip structure.
3. The clip structure of claim 1 wherein the downset portion includes a stepped configuration.
4. A semiconductor die package comprising:
the clip structure of claim 1;
a semiconductor die coupled to the clip structure; and
a molding material at least partially covering the clip structure and the semiconductor die.
5. The semiconductor die package of claim 4 further comprising a leadframe structure, wherein the semiconductor die is between the leadframe structure and the clip structure.
6. The semiconductor die package of claim 4 wherein the semiconductor die comprises a vertical power mosfet.
7. The semiconductor die package of claim 5 wherein the clip structure further comprises an exterior clip structure surface, wherein the exterior clip structure surface is exposed by the molding material and is substantially coplanar with an exterior molding material surface.
8. The semiconductor die package of claim 7 wherein the exterior molding material surface is a first exterior molding material surface and wherein the leadframe structure has a leadframe surface that is substantially coplanar with a second exterior molding material surface.
9. The semiconductor die package of claim 7 wherein the semiconductor die is a first semiconductor die and wherein the semiconductor die package further comprises a second semiconductor die coupled to the molding material.
10. The semiconductor die package of claim 9 wherein the molding material comprise an epoxy molding material.
11. The semiconductor die package of claim 10 wherein the package further comprises solder and wherein the solder contacts the semiconductor die and the horizontal surface, and also surrounds the pedestals.
12. The semiconductor die package of claim 5 wherein the package further comprises solder and the solder contacts the semiconductor die and the horizontal surface, and also surrounds the pedestals.
13. The semiconductor die package of claim 5 further comprising solder disposed around at least one of the pedestals and contacting the horizontal surface and the die, and wherein the die contacts the pedestals.
15. The semiconductor die package of claim 14 further comprising a molding material covering at least part of the clip structure, the leadframe structure, and the semiconductor die.
17. The semiconductor die package of claim 14 wherein the package further comprises solder and wherein solder contacts the semiconductor die and the horizontal surface, and also surrounds the pedestals.
18. The semiconductor die package of claim 17 wherein the die comprises a vertical mosfet comprising a trenched gate structure.
19. The semiconductor die package of claim 18 wherein the leadframe structure comprises copper.
20. The semiconductor die package of claim 14 further comprising solder disposed around at least one of the pedestals and contacting the horizontal surface and the die, and wherein the die contacts the pedestals.

None

Many semiconductor die packages use clips instead of wires to form external connections to external terminals. Such semiconductor die packages are sometimes referred to as “wireless” packages. A typical wireless package includes a clip that is attached to a semiconductor die. Wireless packages generally have better electrical and thermal performance than packages that use wire-based electrical connections.

Typically, conventional wireless packages need to be designed into a customers' circuit boards, because the circuit boards have unique footprints and pin assignments. It would be desirable to provide for a semiconductor die package that has a footprint and pin assignment that can correspond to conventional package footprints and pin assignments, while still having good electrical and thermal performance.

Also, when producing wireless packages, it is often difficult to create a clip (e.g., a source clip) that has a deep downset. The “downset” of a clip may correspond to the vertical distance between a major portion of the clip to the lead portion of the clip. It would also be desirable to provide for a clip that has a deeper downset than conventional clips so that different types of packages can be produced.

Another problem that exists is the problem of applying inconsistent or uneven amounts of solder between the clip and the semiconductor die. When inconsistent or uneven amounts of solder are used between a die and a clip, the resulting packages may exhibit poor performance.

In addition to the above-noted problems, it will be advantageous to provide for a method that can be used to create a semiconductor die package quickly and reliably. The method is also preferably compatible with Pb-free processing.

Embodiments of the invention address the above problems and other problems.

Embodiments of the invention are directed to clip structures, semiconductor die packages including the clip structures, and methods for making semiconductor die packages including clip structures.

One embodiment of the invention is directed to a clip structure for a semiconductor package, the clip structure comprising: a major portion; at least one pedestal extending from the major portion; a downset portion; and a lead portion, wherein the downset portion is between the lead portion and the major portion.

Another embodiment of the invention is directed to a clip structure for a semiconductor package, the clip structure comprising: a major portion; a downset portion having a stepped configuration; and a lead portion, wherein the downset portion is between the lead portion and the major portion.

Other embodiments of the invention are directed to semiconductor die packages including the above-described clip structures, as well as methods for making the semiconductor die packages using the clip structures.

Another embodiment of the invention is directed to a semiconductor die package comprising: a clip structure comprising a major portion, at least one pedestal extending from the major portion, a downset portion, and a lead portion, wherein the downset portion is between the lead portion and the major portion, and has a stepped configuration; a leadframe structure; and a semiconductor die, wherein the semiconductor die is between the leadframe structure and the clip structure.

Another embodiment of the invention is directed to method of manufacturing a semiconductor die package, the method comprising: obtaining a clip assembly; obtaining a leadframe structure comprising at least one alignment structure, wherein the alignment structure aligns the clip assembly to the leadframe structure during the assembly of a semiconductor die package; attaching a second surface of a semiconductor die to the leadframe structure; and attaching a first surface of the semiconductor die to the clip assembly.

These and other embodiments of the invention are described in further detail below.

FIG. 1 shows a side cross sectional view of a die package according to an embodiment of the invention.

FIG. 2 shows a side cross sectional view of a pedestal in a clip structure according to an embodiment of the invention.

FIG. 3 shows a perspective view of a semiconductor die package according to an embodiment of the invention.

FIG. 4 is a top schematic view of a semiconductor die package according to an embodiment of the invention.

FIG. 5 is a side view of a semiconductor die package according to an embodiment of the invention.

FIG. 6 shows a bottom view of a leadframe structure according to an embodiment of the invention.

FIG. 7 shows a top plan view of a clip assembly according to an embodiment of the invention.

FIG. 8 shows a side cross sectional view of a clip structure according to an embodiment of the invention.

FIG. 9 shows a side cross sectional view of a pedestal according to an embodiment of the invention.

FIG. 10 shows a top schematic view of a semiconductor die package including a MOSFET die and a Schottky diode die.

FIG. 11 shows a top schematic view of a semiconductor die package including two MOSFET dies.

FIG. 12 shows a semiconductor die package according to another embodiment of the invention. In this embodiment, surfaces of both the clip structure and the leadframe structure are exposed through a molding material.

FIGS. 13(a) to 13(d) show side cross sectional views of structures as they all are being assembled into semiconductor die packages.

Embodiments of the invention can include wireless packages. A wireless package according to an embodiment of the invention does not use wires to connect to input and/or output terminals of an electrical device in a semiconductor die. In other embodiments, the semiconductor die packages need not be wireless. For example, as illustrated below, embodiments of the invention include unique source clip structures with specific configurations. Such source clip structures could be used in a semiconductor die package with a gate wire bond. However, wireless semiconductor die packages are preferred as they generally have better thermal and electrical properties than semiconductor die packages that use wires for terminal connections.

In one semiconductor die package embodiment, the semiconductor die package comprises a clip structure comprising a major portion, at least one pedestal extending from the major portion, a downset portion, and a lead portion. The downset portion is between the lead portion and the major portion, and can have a stepped configuration. A semiconductor die is sandwiched between and is attached to the clip structure and a leadframe structure.

In embodiments of the invention, a first solder material can be used to mechanically and electrically couple the semiconductor die to the leadframe structure. A second solder material can be used to mechanically and electrically couple the semiconductor die to the clip structure. The first and second solder materials may be the same or different. They are preferably the same material and can comprise lead-free solder materials.

FIG. 1 shows a side cross-sectional view of a semiconductor die package according to an embodiment of the invention. The semiconductor die package 100 includes a semiconductor die 16, which is disposed between a source clip structure 14 and a leadframe structure 18. A molding material 20 at least partially covers the semiconductor die 16, the clip structure 14, and the leadframe structure 18. The molding material 20 may be an epoxy molding material or any other suitable commercially available molding material.

As shown in FIG. 1, the semiconductor die package 100 also includes a first lateral surface 100(a) and a second lateral surface 100(b), as well as a top surface 100(c) and a bottom surface 100(d).

Even though the resulting semiconductor die package 100 has embedded leads, the semiconductor die package 100 can be referred to as a “leadless” package in the sense that leads do not extend past the side surfaces of the molding material 20. It can also be in the form of a block, and the semiconductor die package 100 may also be referred to as a MLP (micro-leadframe package) type package in some embodiments. Although a leadless die package is described in detail in this application, it is understood that the clip structure 14 could alternatively be used in a leaded die package.

Solder 24 is between a first surface 16(a) of the semiconductor die 16 and the clip structure 14. Solder 90 is also present between a second surface 16(b) of the semiconductor die 16 and the leadframe structure 18.

Any suitable solder material may be used for solder 24 and solder 90. For example lead-tin solder could be used for solder 24 and solder 90. Preferably, the solder 24 and the solder 90 comprises a lead-free solder material such as indium-tin based solder. Alternatively, a conductive polymer adhesive (e.g., a conductive epoxy adhesive) could be used instead of solder.

The semiconductor die 16 may include any suitable semiconductor device. Suitable semiconductor devices may comprise a semiconductor material such as silicon, and may include vertical or horizontal devices. Vertical devices have at least an input at one side of the die and an output at the other side of the die so that current can flow vertically through the die. Horizontal devices include at least one input at one side of the die and at least one output at the same side of the die so that current flows horizontally through the die. The semiconductor device in the semiconductor die 16 is preferably a vertical power transistor.

Vertical power transistors include VDMOS transistors and vertical bipolar transistors. A VDMOS transistor is a MOSFET that has two or more semiconductor regions formed by diffusion. It has a source region, a drain region, and a gate. The device is vertical in that the source region and the drain region are at opposite surfaces of the semiconductor die. The gate may be a trenched gate structure or a planar gate structure, and is formed at the same surface as the source region. Trenched gate structures are preferred, since trenched gate structures are narrower and occupy less space than planar gate structures. During operation, the current flow from the source region to the drain region in a VDMOS device is substantially perpendicular to the die surfaces.

In this example, the semiconductor die 16 comprises a vertical MOSFET. The vertical MOSFET includes a source region and a gate region at the first surface 16(a), and a drain region at the second surface 16(b) of the semiconductor die 16. The source region may have a source metal (e.g., a solderable top metal or solder bumps), and may be electrically coupled to the clip structure 14 (which may be a source clip structure). The gate region may be electrically coupled to a corresponding gate clip structure (not shown), while the drain region at the second surface 16(b) may be electrically coupled to the leadframe 18.

The leadframe structure 18 includes a first surface 18(a), and a second surface 18(b). The leadframe structure 18 also includes a portion 18(c) that is formed by an etching process, as well as a pad portion 18(e) and a lead portion 18(d). The pad portion 18(e) may form the DAP (die attach pad) of the leadframe structure 18.

As shown in FIG. 1, the lead portion 18(d) does not extend past the molding material 20, and is substantially coplanar with a bottom exterior surface 20(a) of the molding material 20. The first lateral surface 100(a) of the semiconductor die package 100 coincides with a side surface of the molding material 20 and a side surface of the lead portion 18(d). The bottom surface 100(d) of the semiconductor die package 100 coincides with a bottom surface of the leadframe structure 18 and a bottom exterior surface of the molding material 20.

The bottom of the leadframe structure 18 is exposed through the molding material 20. The exposed bottom surface of the leadframe structure 18 provides for an additional drain connection as well as an additional cooling path for the semiconductor die package 100.

The leadframe structure 18 may comprise any suitable material. For example, the leadframe structure 34 may comprise copper, copper alloys, or any other suitable conductive material. It may also be plated with a solderable metal if desired.

The clip structure 14 may have any suitable configuration. In this example, the clip structure 14 includes a major portion 14(a), a lead portion 14(c), and a downset portion 14(b). The downset portion 14(b) is disposed between the major portion 14(a) and the lead portion 14(c). It includes a stepped or zigzag structure. Although one “step” is shown in FIG. 1, in other embodiments, the clip structure 14 may include multiple steps.

The clip structure 14 may comprise any suitable material. For example, conductive materials such as copper, aluminum, and noble metals (and alloys thereof) may be used in the clip structure 14. The clip structure 14 may also be plated with solderable layers if desired.

The stepped downset portion 14(b) of the clip structure 14 provides for a number of advantages. For example, the stepped structure allows for a better alignment tolerance between a bottom surface of the lead portion 14(c) and a bottom surface of the leadframe structure 18. Since the downset portion 14(b) is bent, it can “flex” more than a non-stepped downset portion. This allows the lead portion 14(c) to be more easily aligned with the bottom surface of the leadframe structure 18. Also, the stepped downset portion 14(b) also allows the clip structure 14 to have a deeper downset than conventional clip structures.

In the clip structure 14, a number of discrete pedestals 14(a)-1 extend downward and perpendicular to the horizontal surface of the main portion 14(a) of the clip structure 14. A pedestal 14(a)-1 is more clearly shown in FIG. 2. As shown, the end of the pedestal 14(a)-1 can contact the first surface 16(a) of the semiconductor die 16, and solder 24 surrounds the pedestal. The surface of the clip structure 14 opposite the pedestal 14(a)-1 is somewhat concave. This concave structure and the corresponding pedestal 14(a)-1 can be formed by a process such as stamping. Although a stamping process is described, the pedestals according to embodiments of the invention can be formed by any other suitable method known to those of ordinary skill in the art. For example, pedestals could be formed on a planar clip structure by etching the clip structure so that the appropriate protrusions are formed. Alternatively, protrusions can be formed by plating or placing conductive columns on a flat surface of a clip structure.

The pedestals 14(a)-1 in the clip structure 14 provide for a number of advantages. For example, they provide for consistent spacing between the bottom surface of the major portion 14(a) of the source clip structure 14 and the first surface 16(a) of the semiconductor die 16. Because there is a consistent spacing between the major portion 14(a) of the clip structure 14 and the first surface 16(a) of the semiconductor die, a consistent amount of solder is always present between them. Excess solder, if any, can squeeze out from between the clip structure 14 and the semiconductor die 16. In addition to providing for the more consistent solder deposition, the pedestals 14(a)-1 also provide for a larger attachment surface area for the clip structure 14, thereby providing for a better bond and better electrical connection between the source clip structure 14 and the semiconductor die 16. The pedestals 14(a)-1 also prevent the clip structure 14 from undesired “tilting”. If the pedestals 14(a)-1 were not present, the clip could “tilt”, thereby resulting in the uneven application of solder to the top surface of the semiconductor die 16.

FIG. 3 shows a perspective view of a semiconductor die package according to an embodiment of the invention. In this illustration, the molding material is not shown. As shown in FIG. 3, the semiconductor die package may include a source clip structure 14 and a gate clip structure 28. The gate clip structure 28 and the source clip structure 14 are electrically uncoupled from each other. As will be explained in greater detail below, the source clip structure 14 and the gate clip structure 28 may be derived from a clip assembly. In FIG. 3, as in FIG. 1, the semiconductor die 16 is sandwiched between the source clip structure 14 and the leadframe structure 18. Also, as shown in FIG. 3, the semiconductor die 16 is also sandwiched between the gate clip structure 28 and the leadframe structure 18. Like the source clip structure 14, the gate clip structure 28 may also include one or more pedestals (not shown) to provide for consistent solder deposition.

FIG. 4 shows a top view of a semiconductor die package in a package assembly. The dotted line indicated by reference number 40 shows where the assembly will be cut with a saw or the like. Prior to being cut, the gate clip structure 18 and the source clip structure 14 are joined by a bridge structure 52. The bridge structure 52 electrically and mechanically connects the leads of the gate clip structure 18 and the source clip structure 14. In addition, prior to being cut, the leadframe structure 18 is part of a leadframe assembly that includes an alignment rail structure 70. The alignment rail structure 70 includes two alignment end structures 70(a). In this example, the alignment end structures 70(a) are in the form of metal squares, but could have other shapes in other embodiments of the invention. The alignment end structures 70(a) confine the bridge structure 52 so that the clip assembly 102 is properly aligned with the terminals of the semiconductor die 16. Specifically, the source clip structure 14 and the source clip structure pedestals 14(a)-1 are automatically aligned so that they are electrically coupled to the source terminals in the MOSFET in the semiconductor die 16. At the same time, the gate clip structure 18 and the gate pedestal 18(a)-1 are automatically aligned so that they are electrically coupled to the gate terminal in the MOSFET in the semiconductor die 16. This alignment process takes one step, thereby saving processing time and cost.

Once the clip assembly 102 and the leadframe structure 18 are attached to the semiconductor die 16 using solder, the resulting assembly can be subjected to a reflow process to reflow all of the solder in the package simultaneously. A molding material can then be formed around the die in an encapsulation process. Then, the assembly can be cut along the dotted line shown by reference number 40. This separates the bridge structure 52 from the formed package and electrically uncouples the gate lead structure 18 and the source lead structure 16. Since only one reflow process is needed to form the resulting package, the package can be formed quickly and efficiently. Also, performing only one reflow process decreases the chances of forming intermetallic compounds in the solder. Intermetallic compounds are more likely to be formed with repeated heating. Intermetallic compounds can also lead to brittle solderjoints and an increase the likelihood of defective solder joints.

FIG. 5 shows the assembly in FIG. 4 from a side view. As shown in FIG. 5, the leadframe structure 18 and the lead portion 14(c) are coplanar with each other and are disposed on a temporary substrate 34. The temporary substrate 34, can be made of any suitable material. For example, the temporary substrate 34 could be made of tape. After the package is formed, the temporary substrate 34 may be removed.

FIG. 6 shows a bottom view of a leadframe assembly according to an embodiment of the invention. The leadframe assembly includes a leadframe structure 18, which includes a number of the drain leads 18(a), and an etched portion 18(c). The etched portion 18(c) may form a drain pad 18(b) for the semiconductor die package and may be eventually soldered to a circuit board (not shown). Connection rails 20 may connect the leadframe structure 18 to a frame 74. The frame 74 may include the previously described rail structure 70 and alignment end structures 70(a), and may define a hole 60. The leads of the source clip structure (not shown) may be present in the hole 60 during package assembly.

FIG. 7 shows a clip assembly 102 before it is cut. As showed in FIG. 7, a bridge structure 52 couples the leads of the source clip structure 14 and the lead of the gate clip structure 18. As explained above, the bridge structure 52 is separated from the gate clip structure 18 and the source clip structure 14, and they are electrically uncoupled from each other in the formed semiconductor die package. The other elements in FIG. 7 have been previously described.

FIG. 8 shows a side view of a clip structure 14 according to an embodiment of the invention. As shown in FIG. 8, the pedestal 14(a)-1 resembles a mesa structure. However, in other embodiments, the pedestals may be cone-shaped, cylinder-shaped, or may have any other protruding shape. Also, the downset height between a bottom surface of the major portion 14(a) and the bottom surface of the lead portion 14(c) may be designated by the height D. In preferred embodiments, the downset height may be about 2 times the thickness (or more) of the leadframe structure 18 or the thickness of the clip structure 14. The thickness of the leadframe structure 18 and/or the clip structure 14 can be greater than about 100 microns in some embodiments.

As shown in FIG. 9, the height of the pedestal 14(a)-1 may be about 50 microns, while the width of the pedestal may be approximately 150 microns. Of course, the dimensions of other pedestal may be different in other embodiments of the invention.

FIG. 10 shows a semiconductor die package 202 that includes a MOSFET die 82 and a Schottky diode die 84. A clip assembly 102 may include terminal connections to source and gate connections in the MOSFET die 82 and an input and/or output to the Schottky diode die 84. As in prior embodiments, the clip assembly 102 may include a bridge structure 52, which is aligned between alignment structures 70(a).

FIG. 11 shows a semiconductor die package 204 that includes two MOSFET dies 82. A clip assembly 102 may include terminal connections to source and gate connections in the MOSFET dies 82. As in prior embodiments, the clip assembly 102 may include a bridge structure 52, which is aligned between alignment structures 70(a).

FIG. 12 shows a semiconductor die package according to another embodiment of the invention. This embodiment is similar to the embodiment shown in FIG. 1, except that the molding material 20 at the top portion of the package exposes the upper surface of the clip structure 14. If desired, a heat sink (not shown) may be attached to the top surface 14(f) of the clip structure 14. The exposed clip structure surface 14(f) is substantially coplanar with an exterior surface 20(b) of the molding material 20. The exposed clip surface 14(f) allows for better heat dissipation and also results in a thinner semiconductor die package. The exposed clip surface 14(f) can be formed by covering the surface with tape or a molding die, or any other suitable method known to one skilled in the art, and then molding the molding material 20 around the semiconductor die 16. The other features in FIG. 12 have been previously described.

FIGS. 13(a)-13(d) show how semiconductor die packages according to embodiments of the invention can be assembled.

FIG. 13(a) shows semiconductor dies 16 being mounted on leadframe structures 34. The leadframe structure 34 may be in array or “gang” of leadframe structures. The gang may be a 2 or 1-dimensional array of leadframe structures connected together by rails or the like. As previously described, solder (e.g., lead-free solder) may be used to attach the semiconductor dies 16 to the leadframe structures 18. At this point in the process, the leadframe structures 18 may be disposed on a temporary substrate 34 such as tape. This is done to cover the bottom surface of the leadframe structure 18 so that it is not covered with a molding material. At this point, the solder that is used to attach the leadframe structures 18 to the semiconductor dies 16 has not yet been reflowed.

FIG. 13(b) shows clip structures 14 being placed on the semiconductor dies 16. The downset portions of the clip structures 14 are not shown as being stepped. However, it is understood that, in other embodiments, clip structures 14 with stepped downset portions may be used. As in other embodiments, the clip structures 14 may have pedestals 14(a)-1 that space major portions of the clip structures 14 from the top surfaces of the semiconductor dies 16.

In some embodiments, solder may be deposited on the top surfaces of the semiconductor dies 16 and the clip structures 14 may be mounted thereon. Alternatively or additionally, solder may be deposited on the clip structures 14 and the solder-coated clip structures may be attached to the top surfaces of the semiconductor dies 16.

As noted above, the solder material that is used to attach the semiconductor dies 16 to the leadframe structures 18 may be the same or different than the solder material that is used to attach the clip structures 14 to the semiconductor dies 16. After the clip structures 14 are attached to the semiconductor dies 16, the solder materials that are used to attach these components together are simultaneously reflowed. Suitable reflow processing conditions are known to those of ordinary skill in the art.

FIG. 13(c) shows the assembly after a molding process is performed. Commercially available molding tools may be used to perform the molding process. Molding materials such as epoxy molding materials may be used.

FIG. 13(d) shows the process of singulation. In a singulation process, semiconductor die packages 100 that are joined together are separated from each other. Any suitable cutting tool may be used for this purpose. For example, a water jet, laser, saw, etc. may be used to separate the semiconductor die packages from each other.

Embodiments of the invention provide for a number of advantages. For example, embodiments of the invention can have the same footprint and pin assignment as other types of conventional packages, while also exhibiting good electrical and thermal performance. In addition, the methods according to embodiments of the invention may use alignment structures to align clip structures on top of a semiconductor die with a leadframe structure at the bottom of the semiconductor die. This results in more efficient processing, and flip chip attachment processes need not be performed in embodiments of the invention. Also, embodiments of the invention are robust. In some embodiments, the semiconductor dies are not exposed to the environment.

Also, in embodiments of the invention, the same type of solder paste or conductive adhesive can be used to attach the leadframe structure to the bottom surface of the semiconductor die, and one or more clip structures to the top surface of the semiconductor die. A one-time solder-paste reflow process may be performed for both die attach and clip attach. Because only one reflow process is needed in this example, the formation of excessive amounts of intermetallic compounds in the solder joints is minimized or prevented. Also, because only one reflow process needs to be performed in this example, two types of Pb-free solder with different melting points are not needed.

In conventional processing, the die is attached to a leadframe structure using solder and that solder is reflowed. Then, a clip structure is attached to the semiconductor die and is also reflowed. The solder between the die and the leadframe structure is subjected to two heating processes. This increase in heating increases the chances that intermetallic compounds may form.

The above description is illustrative and is not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents. Moreover, any one or more features of one or more embodiments may be combined with one or more features of any other embodiment without departing from the scope of the invention. For example, the features in the embodiments in FIGS. 10 and 11 can be combined with the features of any other embodiment in any other figure without departing from the scope of the invention.

Any reference to positions such as “top”, “bottom”, “upper”, “lower”, etc. refer to the Figures and are used for convenience. They are not intended to refer to absolute positions. For example, although FIG. 1 shows a “bottom” surface of a semiconductor die package, it is understood that the semiconductor die package could be mounted sideways, upside-down, or right side up and would still be within the scope of the claims.

A recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary.

All patents, patent applications, publications, and descriptions mentioned above are herein incorporated by reference in their entirety for all purposes. None is admitted to be prior art.

Cruz, Erwin Victor R., Iyer, Venkat, Cabahug, Elsie, Shian, Ti Ching

Patent Priority Assignee Title
10325838, Jun 17 2016 Infineon Technologies AG Semiconductor device fabricated by flux-free soldering
10672677, Sep 18 2015 Industrial Technology Research Institute; WIN-HOUSE ELECTRONIC CO., LTD. Semiconductor package structure
10770379, Mar 23 2017 Rohm Co., Ltd. Semiconductor device
10777489, May 29 2018 KATOH ELECTRIC CO , LTD Semiconductor module
10784186, May 29 2018 KATOH ELECTRIC CO , LTD Semiconductor module
10896869, Jan 12 2018 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of manufacturing a semiconductor device
10910292, Feb 20 2017 SHINDENGEN ELECTRIC MANUFACTURING CO , LTD Electronic device and connection body
11056422, May 29 2018 SHINDENGEN ELECTRIC MANUFACTURING CO , LTD ; KATOH ELECTRIC CO , LTD Semiconductor module
11611170, Mar 23 2021 Amkor Technology Singapore Holding Pte. Ltd Semiconductor devices having exposed clip top sides and methods of manufacturing semiconductor devices
11764135, Jan 12 2018 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD. Method of manufacturing a semiconductor device
11862892, Mar 23 2021 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD. Semiconductor devices and methods of manufacturing semiconductor devices
7589338, Nov 30 2007 Semiconductor Components Industries, LLC Semiconductor die packages suitable for optoelectronic applications having clip attach structures for angled mounting of dice
7626249, Jan 10 2008 Semiconductor Components Industries, LLC Flex clip connector for semiconductor device
7675148, Mar 12 2007 Semiconductor Components Industries, LLC Power module having stacked flip-chip and method of fabricating the power module
7737548, Aug 29 2007 Semiconductor Components Industries, LLC Semiconductor die package including heat sinks
7768105, Jan 24 2007 Semiconductor Components Industries, LLC Pre-molded clip structure
7768108, Mar 12 2008 Semiconductor Components Industries, LLC Semiconductor die package including embedded flip chip
7781872, Dec 19 2007 Semiconductor Components Industries, LLC Package with multiple dies
7808103, Jan 10 2008 Semiconductor Components Industries, LLC Leadless package
7816784, Dec 17 2008 Semiconductor Components Industries, LLC Power quad flat no-lead semiconductor die packages with isolated heat sink for high-voltage, high-power applications, systems using the same, and methods of making the same
7824966, Jan 10 2008 Semiconductor Components Industries, LLC Flex chip connector for semiconductor device
7838340, Jan 24 2007 Semiconductor Components Industries, LLC Pre-molded clip structure
7843044, May 17 2005 Renesas Electronics Corporation Semiconductor device
7915721, Mar 12 2008 Semiconductor Components Industries, LLC Semiconductor die package including IC driver and bridge
7936054, Dec 13 2007 Semiconductor Components Industries, LLC Multi-chip package
7961470, Jul 19 2006 Infineon Technologies AG Power amplifier
7972906, Mar 07 2008 Semiconductor Components Industries, LLC Semiconductor die package including exposed connections
7973393, Feb 04 2009 Semiconductor Components Industries, LLC Stacked micro optocouplers and methods of making the same
8008759, Jan 24 2007 Semiconductor Components Industries, LLC Pre-molded clip structure
8018054, Mar 12 2008 Semiconductor Components Industries, LLC Semiconductor die package including multiple semiconductor dice
8049312, Jan 12 2009 Texas Instruments Incorporated Semiconductor device package and method of assembly thereof
8106406, Jan 09 2008 Semiconductor Components Industries, LLC Die package including substrate with molded device
8106501, Dec 12 2008 Semiconductor Components Industries, LLC Semiconductor die package including low stress configuration
8188587, Nov 06 2008 Semiconductor Components Industries, LLC Semiconductor die package including lead with end portion
8193618, Dec 12 2008 Semiconductor Components Industries, LLC Semiconductor die package with clip interconnection
8198139, Feb 28 2008 Semiconductor Components Industries, LLC Power device package and method of fabricating the same
8222718, Feb 05 2009 Semiconductor Components Industries, LLC Semiconductor die package and method for making the same
8227908, Jul 07 2008 Infineon Technologies AG Electronic device having contact elements with a specified cross section and manufacturing thereof
8258622, Feb 28 2007 Semiconductor Components Industries, LLC Power device package and semiconductor package mold for fabricating the same
8294258, Apr 02 2010 Hitachi, LTD Power semiconductor module
8373257, Sep 25 2008 Alpha & Omega Semiconductor Incorporated Top exposed clip with window array
8421204, May 18 2011 Semiconductor Components Industries, LLC Embedded semiconductor power modules and packages
8513059, Jan 24 2007 Semiconductor Components Industries, LLC Pre-molded clip structure
8525192, Jan 09 2008 Semiconductor Components Industries, LLC Die package including substrate with molded device
8674490, Mar 12 2008 Semiconductor Components Industries, LLC Semiconductor die package including IC driver and bridge
8680658, May 30 2008 Alpha & Omega Semiconductor, Ltd Conductive clip for semiconductor device package
8691631, Sep 30 2008 Infineon Technologies AG Device including two mounting surfaces
8754509, Dec 19 2007 Semiconductor Components Industries, LLC Package with multiple dies
8754510, Dec 10 2010 Panasonic Corporation Conduction path, semiconductor device using the same, and method of manufacturing conduction path, and semiconductor device
8871630, Jul 07 2008 Infineon Technologies AG Manufacturing electronic device having contact elements with a specified cross section
8884410, Oct 20 2008 MORGAN STANLEY SENIOR FUNDING, INC Method for manufacturing a microelectronic package comprising at least one microelectronic device
9041170, Apr 02 2013 Infineon Technologies Austria AG Multi-level semiconductor package
9054040, Feb 27 2013 Infineon Technologies Austria AG Multi-die package with separate inter-die interconnects
9111922, Oct 17 2012 Renesas Electronics Corporation Semiconductor device with step portion having shear surfaces
9130065, Mar 12 2007 Semiconductor Components Industries, LLC Power module having stacked flip-chip and method for fabricating the power module
9355941, Oct 17 2012 Renesas Electronics Corporation Semiconductor device with step portion having shear surfaces
9496208, Feb 25 2016 Texas Instruments Incorporated Semiconductor device having compliant and crack-arresting interconnect structure
9570379, Dec 09 2013 Infineon Technologies Americas Corp Power semiconductor package with integrated heat spreader and partially etched conductive carrier
9583454, Jan 24 2007 Semiconductor Components Industries, LLC Semiconductor die package including low stress configuration
9620475, Dec 09 2013 Infineon Technologies Americas Corp Array based fabrication of power semiconductor package with integrated heat spreader
9653386, Oct 16 2014 Infineon Technologies Americas Corp Compact multi-die power semiconductor package
9704787, Oct 16 2014 Infineon Technologies Americas Corp Compact single-die power semiconductor package
9754862, Mar 31 2015 Infineon Technologies Austria AG Compound semiconductor device including a multilevel carrier
9812384, Feb 25 2016 Texas Instruments Incorporated Semiconductor device having compliant and crack-arresting interconnect structure
Patent Priority Assignee Title
6040626, Sep 25 1998 Infineon Technologies Americas Corp Semiconductor package
6133634, Aug 05 1998 Semiconductor Components Industries, LLC High performance flip chip package
6307755, May 27 1999 Advanced Analogic Technologies, Inc Surface mount semiconductor package, die-leadframe combination and leadframe therefor and method of mounting leadframes to surfaces of semiconductor die
6391687, Oct 31 2000 ID IMAGE SENSING LLC Column ball grid array package
6423623, Jun 09 1998 Semiconductor Components Industries, LLC Low Resistance package for semiconductor devices
6432750, Jun 13 2000 Semiconductor Components Industries, LLC Power module package having insulator type heat sink attached to rear surface of lead frame and manufacturing method thereof
6465276, May 18 2000 Siliconx (Taiwan) Ltd. Power semiconductor package and method for making the same
6469384, Feb 01 2001 Semiconductor Components Industries, LLC Unmolded package for a semiconductor device
6489678, Aug 05 1998 Semiconductor Components Industries, LLC High performance multi-chip flip chip package
6509582, Mar 27 2002 Semiconductor Components Industries, LLC Semiconductor pad construction enabling pre-bump probing by planarizing the post-sort pad surface
6566749, Jan 15 2002 Semiconductor Components Industries, LLC Semiconductor die package with improved thermal and electrical performance
6580165, Nov 16 2000 Semiconductor Components Industries, LLC Flip chip with solder pre-plated leadframe including locating holes
6621152, Dec 19 2000 Semiconductor Components Industries, LLC Thin, small-sized power semiconductor package
6627991, Aug 05 1998 Semiconductor Components Industries, LLC High performance multi-chip flip package
6645791, Apr 23 2001 Semiconductor Components Industries, LLC Semiconductor die package including carrier with mask
6646329, May 15 2001 Semiconductor Components Industries, LLC Power chip scale package
6661082, Jul 19 2000 Semiconductor Components Industries, LLC Flip chip substrate design
6674157, Nov 02 2001 Semiconductor Components Industries, LLC Semiconductor package comprising vertical power transistor
6683375, Jun 15 2001 Semiconductor Components Industries, LLC Semiconductor die including conductive columns
6696321, Aug 05 1998 Semiconductor Components Industries, LLC High performance multi-chip flip chip package
6720642, Dec 16 1999 Semiconductor Components Industries, LLC Flip chip in leaded molded package and method of manufacture thereof
6731003, Mar 12 2002 Semiconductor Components Industries, LLC Wafer-level coated copper stud bumps
6740541, Feb 01 2001 Semiconductor Components Industries, LLC Unmolded package for a semiconductor device
6756689, Sep 13 1999 Semiconductor Components Industries, LLC Power device having multi-chip package structure
6762067, Jan 18 2000 Semiconductor Components Industries, LLC Method of packaging a plurality of devices utilizing a plurality of lead frames coupled together by rails
6774465, Oct 05 2001 Semiconductor Components Industries, LLC Semiconductor power package module
6777786, Mar 12 2001 Semiconductor Components Industries, LLC Semiconductor device including stacked dies mounted on a leadframe
6777800, Sep 30 2002 Semiconductor Components Industries, LLC Semiconductor die package including drain clip
6798044, Dec 04 2000 Semiconductor Components Industries, LLC Flip chip in leaded molded package with two dies
6806580, Dec 26 2002 Semiconductor Components Industries, LLC Multichip module including substrate with an array of interconnect structures
6830959, Jan 22 2002 Semiconductor Components Industries, LLC Semiconductor die package with semiconductor die having side electrical connection
6836023, Apr 17 2002 Semiconductor Components Industries, LLC Structure of integrated trace of chip package
6861286, May 15 2001 Semiconductor Components Industries, LLC Method for making power chip scale package
6867481, Apr 11 2003 Semiconductor Components Industries, LLC Lead frame structure with aperture or groove for flip chip in a leaded molded package
6867489, Jan 22 2002 Semiconductor Components Industries, LLC Semiconductor die package processable at the wafer level
6870254, Apr 13 2000 Semiconductor Components Industries, LLC Flip clip attach and copper clip attach on MOSFET device
6890793, Nov 16 2000 Semiconductor Components Industries, LLC Method for producing a semiconductor die package using leadframe with locating holes
6891256, Oct 22 2001 Semiconductor Components Industries, LLC Thin, thermally enhanced flip chip in a leaded molded package
6891257, Mar 30 2001 Semiconductor Components Industries, LLC Packaging system for die-up connection of a die-down oriented integrated circuit
6893901, May 14 2001 Semiconductor Components Industries, LLC Carrier with metal bumps for semiconductor die packages
6943434, Oct 03 2002 Semiconductor Components Industries, LLC Method for maintaining solder thickness in flipchip attach packaging processes
6949410, Dec 16 1999 Semiconductor Components Industries, LLC Flip chip in leaded molded package and method of manufacture thereof
6953998, Feb 01 2001 Semiconductor Components Industries, LLC Unmolded package for a semiconductor device
6989588, Apr 13 2000 Semiconductor Components Industries, LLC Semiconductor device including molded wireless exposed drain packaging
6992384, Aug 05 1998 Semiconductor Components Industries, LLC High performance multi-chip flip chip package
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 16 2005SHIAN, TI CHINGFairchild Semiconductor CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0195470816 pdf
Nov 18 2005Fairchild Semiconductor Corporation(assignment on the face of the patent)
Nov 21 2005CRUZ, ERWIN VICTOR R Fairchild Semiconductor CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0195470816 pdf
Nov 21 2005CABAHUG, ELSIEFairchild Semiconductor CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0195470816 pdf
Nov 28 2005IYER, VENKATFairchild Semiconductor CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0195470816 pdf
Jul 22 2021Fairchild Semiconductor CorporationSemiconductor Components Industries, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0576940374 pdf
Date Maintenance Fee Events
Apr 25 2011M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 05 2015REM: Maintenance Fee Reminder Mailed.
Oct 23 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 23 20104 years fee payment window open
Apr 23 20116 months grace period start (w surcharge)
Oct 23 2011patent expiry (for year 4)
Oct 23 20132 years to revive unintentionally abandoned end. (for year 4)
Oct 23 20148 years fee payment window open
Apr 23 20156 months grace period start (w surcharge)
Oct 23 2015patent expiry (for year 8)
Oct 23 20172 years to revive unintentionally abandoned end. (for year 8)
Oct 23 201812 years fee payment window open
Apr 23 20196 months grace period start (w surcharge)
Oct 23 2019patent expiry (for year 12)
Oct 23 20212 years to revive unintentionally abandoned end. (for year 12)