An active tunable filter circuit for use as an integratable active filter in a mobile radio apparatus, comprises an active amplifier circuit (A) including a reactive feedback network including a first tunable element (L1) set to pass with amplification a wanted input signal, and a passive resonant circuit (P) coupled to the active amplifier circuit and including an inductive element (LFB, L3 or L4) and an inactive semiconductor element (FET2, FET3 or FET4) having an interelectrode capacitance which in operation resonates with the inductive element at a harmonic of the wanted signal. In one configuration (FIG. 1) the circuit comprises a band pass filter with amplification and in another configuration (FIG. 6-not shown) the circuit comprises a harmonic notch filter with amplification.

Patent
   7289784
Priority
Sep 13 2001
Filed
Sep 10 2002
Issued
Oct 30 2007
Expiry
Jan 08 2024
Extension
485 days
Assg.orig
Entity
Large
13
13
all paid
1. An active tunable filter circuit comprising an active amplifying element having a reactive feedback network coupled from the output to the input of the active amplifying element and including a tunable element for amplifying an input signal, and a passive resonant circuit shunting said reactive feedback network and including an inductive element and the interelectode capacitance of an inactive semiconductor device wherein said capacitance of the inactive semiconductor device in operation resonates with the inductive element to provide filtering at a harmonic of the input signal.
2. A circuit as claimed in claim 1, characterised in that the resonant circuit further comprises a capacitance shunting the interelectrode capacitance.
3. A circuit as claimed in claim 2, characterised by the resonant circuit having a resistive element in series with the inductive element.
4. A circuit as claimed in claim 2, characterised in that the tunable element and the inductive element have respective control electrodes and in that the control electrodes are coupled to an input for receiving a frequency control voltage.
5. A circuit as claimed in claim 2, characterised in that the first tunable element is a variable inductance.
6. A circuit as claimed in claim 1, characterised in that the resonant circuit includes an inductance coupled in series with a capacitance.
7. A circuit as claimed in claim 1, characterised by at least two resonant circuits, each resonant circuit having an input coupled to an input terminal for connection to a respective frequency control voltage and an output coupled to an output of the reactive feedback network.
8. A module comprising an active tunable filter circuit as claimed in claim 1.
9. A radio communications apparatus comprising an active tunable filter circuit as claimed in claim 1.

The present invention relates to an active tunable filter circuit having applications in multi-band mobile radio communications applications.

With the introduction of multi-band mobile radio systems, such as GSM and DCS, there is a requirement for handsets to operate on at least two separate systems. Technical developments relating to circuits for use in hand sets to improve sub-system performance have focused on impedance matching techniques and efficient power amplifier design which have lead to reduced power dissipation and improved efficiency of RF sub-systems. The impedance matching techniques still require a plurality of RF filters for each individual frequency band within multi-band communication systems. There have been two different approaches to implementing tunable elements for filtering applications, namely, passive tunable component design and active inductor and capacitor design. Drawbacks to passive tunable component design are that it is still evolving and it is currently not possible to achieve the required wide tuning range. Although the active inductor and capacitor design technique is developed, the technique is characterised with high parasitics, leading to low Q design which results in fundamental performance limitations in many component designs. As a consequence separate filtering chains have been used in multi-band mobile radio systems in order to differentiate the individual frequency bands. In many cases for mobile handsets, the individual RF filter chains are implemented using SAW techniques. Such techniques are not only expensive but also such filter modules require special integration techniques to enable the SAW filters to be integrated with other parts, such as power amplifiers, of the RF sub-assembly. This conventional RF module design with individual RF filter chains is relatively a high cost solution having a high power dissipation and relatively large size.

An object of the present invention is to overcome these drawbacks in the known filter design.

According to the present invention there is provided an active tunable filter circuit comprising an amplifying element having a reactive feedback network including a tunable element for amplifying an input signal, and a resonant circuit including an inductive element and the interelectode capacitance of an inactive semiconductor device which in operation resonates with the inductive element to provide filtering at a harmonic of the input signal.

The present invention is based on the realisation that it is possible to make an active tunable filter circuit having amplification-like filtering with low noise figure using high Q reactive feed back which makes use of the parasitics of a semiconductor active element such as a transistor, for example a FET, to provide a very low value capacitance in order to provide a circuit capable of resonating at harmonics of frequencies such as 900 MHz and higher.

The present invention will now be described, by way of example, with reference to the accompanying drawings, wherein:

FIG. 1 is a schematic circuit diagram of a first embodiment of an active tunable filter for multi-band mobile radio communications,

FIG. 2 is a graph showing a bandpass response obtainable with the first embodiment of the active tunable filter,

FIG. 3 is a diagram of the feedback circuit shown in FIG. 1 with only the parasitics in the case of a FET,

FIG. 4 shows the S12 simulated results of the reactive feedback,

FIG. 5 shows the S21 simulated results of the reactive feedback,

FIG. 6 is a schematic circuit diagram of a second embodiment of an active filter for multi-band mobile radio communications, and

FIG. 7 is a graph of the frequency response of the second embodiment of the active filter.

In the drawings the same reference numerals have been used to indicate corresponding features.

Referring to FIG. 1 the active tunable filter illustrated comprises an active amplification and filtering part A and a passive resonator part P providing harmonic filtering.

The active part A comprises an active semiconductor amplification device such as FET1. An input terminal 10 receives an RF input signal which is applied by way of a capacitor 12 to the gate electrode of FET 1. The source electrode of FET1 is coupled to ground and its drain electrode is coupled by way of a capacitor 14 to an RF output terminal 16. A source of drain bias voltage (not shown) is coupled to a terminal 18 which is directly connected to the drain of FET1.

A reactive feedback circuit RFC1 is coupled between the drain and gate electrodes of the FET1. The reactive feedback circuit RFC1 comprises a dc blocking capacitor C1, a variable inductance L1 and a resistor R1 connected in series between the drain and gate electrodes of FET1. A capacitor C2 is connected in parallel with the series chain. A source of frequency control volts VFC (not shown) on a terminal 20 is applied to a control electrode of the variable inductance L1 by way of a series resistor R2. The variable inductance L1 is set to pass the wanted RF signals present on the input terminal 10.

The passive resonator part P comprises a non conductive, semi-conductor device FET2 having a reactive feedback network RFC2 comprising a dc blocking capacitor CFB, a variable inductance LFB and a resistor RFB connected in series between the drain and source electrodes of FET2. A capacitor C3 is connected in parallel with the series chain. The gate of FET2 is coupled to ground by way of a capacitor C4 and is not driven with any drain bias voltage. Consequently FET2 is in a passive mode. A control electrode of the variable inductor LFB is coupled to the terminal 20 by way of the resistor R2.

In operation the drain bias voltage is applied to the terminal 18 and a frequency control voltage VFC is applied to the terminal 20. An RF input signal on the terminal 10 is bandpass filtered and the result appears on the terminal 16.

The reactive feedback circuit RFC2 of the passive part P effectively shunts the reactive feedback circuit RFC1 of the active part A and gives infinite impedance at the wanted frequency. This is shown in FIG. 2. The resonant frequency of the filter is determined by the feedback inductance LFB resonating with the gate-drain parasitic capacitance Cgd of the non-conductive FET2. The feedback resistor RFB has a small value to provide stability. The variable inductance LFB has a value significantly different from that of the variable inductance L1 in order that the resonant circuit formed by the inductance LFB and the parasitic capacitance Cgd resonates at the second or higher harmonic of the signal present on the input terminal 10.

Referring to FIG. 3, an explanation will be given of the operation of the resonating circuit. When the resistor RFB has a small value, the feedback impedance is completely dominated by the feedback reactance value so that the circuit is working in a reactive feedback mode. Consequently the feedback inductance LFB interacts with the parasitics of a transistor, in this case FET2. In order to facilitate an understanding of the reactive mode the analytical expressions below consider only the intrinsic parameters of FET2. Thus the feedback circuit is represented as shown in FIG. 3.

By using well known conversion formulas between two port network parameters and the expression for maximum stable gain (MSG), the MSG is expressed as:

MSG = g m - ( 1 Z gd + 1 Z FB ) 1 Z gd + 1 Z FB
where gm is the transconductance of the equivalent circuit of FET2 in FIG. 3, Zgd is the gate-drain impedance of FET2, and ZFB is the impedance of the reactive feedback network RFC2. When

1 Z gd + 1 Z FB = 0 ,
MSG reaches infinity.

1 Z gd + 1 Z FB = j ω C gd - ω 2 C gd C FB ( R FB + j ω L FB ) + j ω C FB 1 + j ω C FB ( R FB + L FB )
where all the possible reactance components of the feedback loop have been considered, so that CFB, LFB and RFB are the feedback capacitance, inductance and resistance, respectively. In the case where RFB=0 (reactive feedback) or RFB<<|ωLFB|,

1 Z gd + 1 Z FB = j ω C FB ( 1 - ω 2 C gd L FB ) + j ω C gd 1 - ω 2 C FB L FB

When a low value of RFB (below a threshold value RK) is selected, the feedback inductance LFB can resonate with CFB at a frequency where ω2CFBLFB=1 creating extremely high gain with unconditional stability. Simulations confirm this ultra high gain design principle, when ten different RFB values have been swept at two different LFB values.

FIGS. 4 and 5 present the calculated results. FIG. 4 shows the reverse gain S12, that is, gain g in dB versus frequency f in Hz versus the feedback impedance LFB in Henries, and FIG. 5 shows the forward gain S21, that is, gain g in dB versus frequency f in Hz versus the feedback resistance RFB in ohms (Q). An examination of FIGS. 4 and 5 shows that a very high gain is obtained with stability due to resonance (as S12 goes to zero, S21 increases). The calculation clearly shows that the reactive feedback amplifier can produce extremely high gain.

Referring to FIG. 6, the active filter shown functions as a harmonic notch filter because the respective junction capacitances of FET3 and FET4 resonate with respective inductances L3 and L4, which are external of their respective FETs.

The active part A of the illustrated circuit resembles that described with reference to and shown in FIG. 1 and in the interests of brevity only the differences will be described. The active part is tuned to the wanted RF input signal by applying a tuning voltage Vf1 on a terminal 30 to a control electrode of the inductance L1 by way of a series resistor 32.

The passive part comprises two circuits 26, 28 based on non-conductive FET3 and FET4, the outputs of which are coupled by way of a series capacitor 38 to a junction of the drain electrode of the FET1 and the capacitor 14.

The circuits 26, 28 have the same architectures and in the interests of brevity the circuit 26 will be described in detail and the corresponding components in the circuit 28 will be referred to in parentheses.

An input terminal 33 (41) for a tuning voltage Vf2 (Vf3) is coupled by a series resistor 34 (40) to the gate electrode of the FET3 (FET4). An inductance L3 (L4) is coupled by one end to the drain electrode of the FET3 (FET4) and by its other end to the capacitor 38. The source electrode of the FET3 (FET4) is connected to ground. A capacitor C3 (C4) shunts the gate-source capacitance of the FET3 (FET4). A capacitance 36 (42) is coupled between the resistor 32 (40) and ground.

The tuning voltages Vf2 and Vf3 correspond to the second and third harmonics f2 and f3 of the fundamental frequency f1. When the voltages Vf1, Vf2 and Vf3 are applied to their respective input terminals 30, 33 and 41, the active tunable filter circuit behaves as a harmonic notch filter with a characteristic as shown in FIG. 7.

The feedback amplifier's noise parameters are:

R n F = y 21 y 21 - y FB 2 ( R n + y FB y 21 2 R FB ) G n F = G n + y 11 + y 21 - y cor 2 y FB y 21 2 R n R FB R n + y FB y 21 2 R FB y cor F = y cor + ( y 11 + y 21 - y cor ) y FB y 21 R n + y FB y 21 2 R FB R n + y FB y 21 2 R FB
where Rn, Gn and Ycor, respectively, are the equivalent noise resistance, the equivalent noise conductance and the correlation admittance of the FET2 without the feedback network RFC2. The above equations are valid when RFB≅|ωLFB|. This means that the inserted feedback elements generate extra noise (noise source), resulting in a contribution of noise to the amplifier. In the reactive mode (RFB<<|ωLFB|), the parameters can be simplified as

R n F = y 21 y 21 - y FB 2 ( R n )
GnF=Gn

y cor F = y cor + ( y 11 + y 21 - y cor ) y FB y 21

The amplifier noise is thus reduced, but the reactance component still functions as a noise source.

Compared to the prior art filters discussed in the preamble of this specification, the active tunable filter circuit made in accordance with the present invention has the benefits of a single circuit providing resonator type amplification with suppressed spurious attenuation and rejected harmonics, a low noise figure, and a tunable frequency and gain for mobile applications and capable of being manufactured as an integrated circuit using a standard foundry process.

Although the present invention has been described with reference to using FETs, it is to be understood that other active semiconductor devices may be used such as junction transistors.

A primary application of the active tunable filter circuit described above is as a front end of a RF stage in a radio receiver. However if sufficiently rugged active semiconductor devices are available the tunable active filter circuit made in accordance with the present invention may be used in a power amplifier circuit to provide an amplifier circuit with filtering.

In the present specification and claims the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. Further, the word “comprising” does not exclude the presence of other elements or steps than those listed.

From reading the present disclosure, other modifications will be apparent to persons skilled in the art. Such modifications may involve other features which are already known in the design, manufacture and use of active tunable filter circuits and component parts therefor and which may be used instead of or in addition to features already described herein.

Nam, Sueng-il

Patent Priority Assignee Title
10333475, Sep 12 2013 QuantalRF AG Logarithmic detector amplifier system for use as high sensitivity selective receiver without frequency conversion
11012953, Mar 15 2013 DOCKON AG Frequency selective logarithmic amplifier with intrinsic frequency demodulation capability
11050393, Sep 12 2013 Amplifier system for use as high sensitivity selective receiver without frequency conversion
11082014, Sep 12 2013 DOCKON AG Advanced amplifier system for ultra-wide band RF communication
11095255, Sep 12 2013 Amplifier system for use as high sensitivity selective receiver without frequency conversion
11183974, Sep 12 2013 DOCKON AG Logarithmic detector amplifier system in open-loop configuration for use as high sensitivity selective receiver without frequency conversion
7869528, Oct 31 2003 Northrop Grumman Systems Corporation Multi-carrier transceiver assembly
7894558, Nov 07 2005 PANASONIC SEMICONDUCTOR SOLUTIONS CO , LTD Receiving circuit for multi-slot receiving provided with circuit for adjusting frequency characteristic of active filter
8050650, Aug 12 2008 Wistron NeWeb Corporation Hairpin band pass filter and related frequency down converter
8406723, Feb 05 2009 CSR TECHNOLOGY INC Radio frequency filter having an active inductor
8620251, Feb 08 2012 Harris Corporation Electronic device with adjustable filter and associated methods
8954026, Feb 08 2012 HARRIS GLOBAL COMMUNICATIONS, INC Electronic device with adjustable filter and associated methods
9684807, Mar 15 2013 DOCKON AG Frequency selective logarithmic amplifier with intrinsic frequency demodulation capability
Patent Priority Assignee Title
3849677,
4404686, Dec 01 1980 Zenith Radio Corporation Four band VHF varactor tuner to cover extended CATV band utilizing two switching diodes per resonant circuit
4408348, Aug 19 1981 RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP OF DE Multiband tuning system for a television receiver
5159287, Jul 16 1990 Fujitsu Limited; Fujitsu Yamanashi Electronics Limited High efficiency RF power amplifier
5280638, Sep 06 1991 Visteon Global Technologies, Inc RF filter self-alignment for multiband radio receiver
5325019, Aug 21 1992 Sematech, Inc. Control of plasma process by use of harmonic frequency components of voltage and current
6232847, Apr 28 1997 Skyworks Solutions, Inc Trimmable singleband and tunable multiband integrated oscillator using micro-electromechanical system (MEMS) technology
6417740, Feb 22 2001 Chartered Semiconductor Manufacturing Ltd. Wide-band/multi-band voltage controlled oscillator
6509799, Nov 09 2000 Apple Inc Electrically tuned integrated amplifier for wireless communications
6573788, Jul 20 2000 Siemens Healthcare GmbH Amplifier device with frequency-response-compensating amplifier reactance, and use of the amplifier device
6624484, Jul 31 2001 RPX Corporation IGFET and tuning circuit
6819941, Oct 11 2001 Qorvo US, Inc Single output stage power amplification for multimode applications
20010008383,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 31 2002NAM, SUENG-ILKoninklijke Philips Electronics N VASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0132980408 pdf
Sep 10 2002NXP B.V.(assignment on the face of the patent)
Sep 29 2006PHILIPS SEMICONDUCTORS INTERNATIONAL B V NXP B V CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0268370649 pdf
Jul 04 2007Koninklijke Philips Electronics N VNXP B V ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0197190843 pdf
Sep 26 2011NXP B V CALLAHAN CELLULAR L L C ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0272650798 pdf
Date Maintenance Fee Events
Mar 31 2011M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 08 2012ASPN: Payor Number Assigned.
Feb 08 2012RMPN: Payer Number De-assigned.
Mar 25 2015M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 13 2019M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 30 20104 years fee payment window open
Apr 30 20116 months grace period start (w surcharge)
Oct 30 2011patent expiry (for year 4)
Oct 30 20132 years to revive unintentionally abandoned end. (for year 4)
Oct 30 20148 years fee payment window open
Apr 30 20156 months grace period start (w surcharge)
Oct 30 2015patent expiry (for year 8)
Oct 30 20172 years to revive unintentionally abandoned end. (for year 8)
Oct 30 201812 years fee payment window open
Apr 30 20196 months grace period start (w surcharge)
Oct 30 2019patent expiry (for year 12)
Oct 30 20212 years to revive unintentionally abandoned end. (for year 12)