The present invention provides an image-pickup apparatus such as a digital still camera. Herein, prior to actual photographing, pre-photographing is performed with a shutter speed set to a plurality of different values. A signal synthesizing circuit synthesizes the resultant image values to acquire information concerning a dynamic range required to photograph a photographic scene. A signal distribution arithmetic circuit produces a histogram using the acquired information. A signal distribution analyzing circuit analyzes the peak frequencies of the histogram. A shutter timing calculating circuit produces shutter timing signals optimal for actual photographing according to the result of the analysis. An image-pickup device or the like is driven in response to each of the produced shutter timing signals, whereby actual photographing is achieved.
|
1. An image-pickup apparatus comprising:
an information acquiring means for, prior to actual photographing, acquiring information concerning a dynamic range, which is required to photograph a photographic scene, with a first condition for exposure and a second condition for exposure different from the first condition for exposure;
an analyzing means for analyzing the information acquired by said information acquiring means, including an information synthesizing means for synthesizing the information concerning a dynamic range with said first and second conditions for exposure acquired by said information acquiring means, wherein the information synthesizing means synthesizes at least first and second luminance information obtained during the first condition for exposure and the second condition for exposure, respectively, wherein the first and second luminance information are matched with a corresponding exposure level associated with the first condition for exposure and the second condition for exposure, respectively, to provide synthetic luminance information based on the first and second luminance information and a histogram arithmetic means for producing a histogram of the information synthesized by said information synthesizing means including the synthetic luminance information;
a conditions-for-photographing setting means for setting the conditions for actual photographing according to the result of the analysis performed by said analyzing means;
a photographing means for performing actual photographing under the conditions for actual photographing set by said conditions-for-photographing setting means, and
an image information converting means for converting an image produced during the actual photographing according to the result of analysis performed by said analyzing means.
2. The image-pickup apparatus according to
a gray scale arithmetic means for producing a gray scale conversion characteristic curve using a histogram, which represents the distribution of frequencies that are equal to or larger than a predetermined value among the values of frequencies contained in the histogram produced by said histogram arithmetic means.
3. The image-pickup apparatus according to
4. The image-pickup apparatus according to
5. The image-pickup apparatus according to
6. The image-pickup apparatus according to
7. The image-pickup apparatus according to
8. The image-pickup apparatus according to
said conditions-for-photographing setting means includes a control means that judges from the result of analysis performed by said analyzing means whether a condition for exposure under which said information acquiring means acquires information is appropriate; and
if said control means judges that the condition for exposure is inappropriate, said control means changes the condition for exposure and instructs said information acquiring means to acquire information again.
9. The image-pickup apparatus according to
10. The image-pickup apparatus according to
11. The image-pickup apparatus according to
12. The image-pickup apparatus according to
13. The image-pickup apparatus according to
14. The image-pickup apparatus according to
15. The image-pickup apparatus according to
16. The image-pickup apparatus according to
17. The image-pickup apparatus according to
18. The image-pickup apparatus according to
19. The image-pickup apparatus according to
|
This application claims benefit of Japanese Application No. 2000-326522 filed in Japan on Oct. 26, 2000, Japanese Application No. 2001-019044 filed in Japan on Jan. 26, 2001, the contents of which are incorporated by this reference.
1. Field of the Invention
The present invention relates to an image-pickup apparatus, or more particularly, an image-pickup apparatus capable of substantially reproducing an image obtainable with a wide dynamic range.
2. Description of the Related Art
Various types of image-pickup apparatus for electrically producing an object image have been proposed in the past. In a digital still camera that is one type of image-pickup apparatus, a solid-state image-pickup device converts a light image, which is converged on a surface of the solid-state image-pickup device through a lens, into electric information and thus produces an image.
The solid-state image-pickup device incorporated in the digital still camera can produce many pixels at present and can therefore produce an image of a higher resolution. However, since the image-pickup device can offer only a very narrow dynamic range, a resultant image suffers from a narrow latitude (a range of reproduced brightness levels from a highlight to a shadow).
What is essential to reproduce an image despite the narrow dynamic range is an automatic exposure setting (AE) facility that properly determines a condition for exposure optimal to a photographic scene (exposure time (shutter speed) or an f-number). Some proposals have been made for a technology of reproducing an image using the AE facility in the past.
As an example of such a technology, Japanese Patent Unexamined Publication No. 6-38092 describes a technology concerning a video camera that can properly determine a condition for exposure and a photometry method employed in the camera. More particularly, according to the technology, when a value calculated by integrating luminance values that are specified in image information acquired for a photometric period within a horizontal scanning period is judged to fall within a predetermined range, photometry is performed based on the value. Furthermore, the patent unexamined publication describes that if the number of times by which the value calculated by integrating the luminance values is judged to fall outside the predetermined range exceeds a predetermined value, the condition for exposure is changed.
In order to acquire image information, which is obtainable with a wide dynamic range, from a solid-state image-pickup device suffering a narrow dynamic range, exposure is performed a plurality of times with an exposure level varied. This technology is well known.
The foregoing technologies will be described with reference to
Even when the foregoing technology of performing exposure a plurality of times is used to produce an image obtainable with a wide dynamic range, the AE facility plays a significant role in reproducing an optimal image. Specifically, when a scene which requires a wide dynamic range and in which a dark major object (figure) and a bright background coexist as shown in
Some technologies have been proposed for controlling photographing according to a photographic scene, which requires a wide dynamic range, so that both a major object and a background can be exposed optimally. For example, Japanese Patent Unexamined Publication No. 7-298142 describes an image-pickup apparatus that has a gray scale control facility. The gray scale control facility properly exposes both a major object and a background contained in a backlit photographic scene. To be more specific, the technology described in the patent unexamined publication requires a gray scale control means that switches timings, which set storing time of light information, according to whether a luminance value specified in image information indicates a high-luminance point or a low-luminance point.
Moreover, Japanese Patent Unexamined Publication No. 11-205661 describes a means that synthesizes a long-time exposure image produced under the predetermined condition for exposure, and a short-time exposure image produced while being exposed for a shorter exposure time. The means adjusts a ratio of exposure levels according to the position of a peak level point in a synthetic image.
However, according to the Japanese Patent Unexamined Publication No. 6-38092, if the number of times by which a value calculated by integrating luminance information falls outside a predetermined range exceeds a predetermined value, a condition for exposure is changed. Thereafter, photometry is performed in the same manner. As long as the scene shown in
Moreover, according to the Japanese Patent Unexamined Publication No. 7-298142, in order to produce an image that enjoys excellent reproducibility, information concerning a photographic scene must be read from a solid-state image-pickup device or the like all the time. This results in an increase of power consumption. Furthermore, when photographing is performed a plurality of times with an exposure level varied, information of a bright point and information of a dark point must be read independently of each other. Based on the read information, control must be extended so that both the bright and dark points will be imaged properly all the time. This may lead to a larger amount of consumed power compared with an amount normally consumed power.
As a measure to be taken for lightening a load imposed on the AE facility, a means is conceivable. Namely, the AE facility is used to control exposure of either a major object or a background. The other of the controlled major object or background is exposed at a fixed exposure ratio. If an exposure ratio is thus fixed, the AE facility can be designed similarly to that adopted for a typical digital still camera.
However, a backlit state in which a major object and a background are distinguished from each other includes various cases. If brightness changes moderately between the major object and background, photographing may fail. Moreover, if a difference in brightness is as large as a difference in brightness between a dark indoor and a bright outdoor is, a scene may not be reproduced with an exposure ratio set to a value permissible for imaging of a normally backlit scene.
Furthermore, the condition for exposure under which one of bright and dark points is photographed may not be determined using the AE facility, and the condition for exposure under which the other point is photographed may not be determined using a fixed ratio. Instead, a means enabling a user to designate an exposure time and an exposure ratio is conceivable. However, a user may have difficulty in judging a proper exposure time or exposure ratio according to a difference in brightness. But for a certain experience or knowledge, it may be hard to judge what exposure time or exposure ratio is optimal. The means is therefore unpractical.
In addition, a means is conceivable for preparing a plurality of exposure settings in association with photographic scenes, and allowing a user to select any of the exposure settings. However, a user who does not have for a certain experience or knowledge may have difficulty in subjectively judging from a difference in brightness or the like what exposure setting is optimal for an actual photographic scene. The means cannot therefore be said to be practical.
According to the Japanese Patent Unexamined Publication No. 7-298142, when exposure is performed a plurality of times with an exposure level varied, a high-luminance point and a low-luminance point are specified manually in units of each of blocks into which an image field is divided. It is not clearly described how to automatically identify the high-luminance point and low-luminance point. Besides, how to identify the high-luminance point and low-luminance point after photographic scenes are changed is not clarified.
Moreover, according to the Japanese Patent Unexamined Publication No. 11-205661, the long exposure-time image and short exposure-time image are produced under the predetermined condition for exposure. If the levels of a signal representing an object do not fall within the range from the level of the signal representing the long exposure-time image to the level of the signal representing the short exposure-time image, an incorrect peak level may be detected. This poses a problem in that the ratio of exposure levels is not calculated properly.
Accordingly, an object of the present invention is to provide an image-pickup apparatus capable of properly photographing even a photographic scene, which exhibits a large difference in brightness and contains an object that exhibits a brightness range comparable to an arbitrary dynamic range, without the necessity of driving an AE facility all the time. The image-pickup apparatus can thus reproduce an image that requires a wide dynamic range.
Another object of the present invention is to provide an image-pickup apparatus capable of automatically determining a condition for exposure optimal to a dynamic range comparable to a brightness range exhibited by a photographic scene. Consequently, the image-pickup apparatus can reproduce an image that exhibits a brightness range comparable to the dynamic range required by the photographic scene.
Briefly, according to the present invention, there is provided an image-pickup apparatus consisting mainly of an information acquiring means, an analyzing means, a conditions-for-photographing setting means, and a photographing means. The information acquiring means acquires information concerning a dynamic range, which is required to photograph a photographic scene, with a condition for exposure varied before performing actual photographing. The analyzing means analyzes the information acquired by the information acquiring means. The conditions-for-photographing setting means sets the conditions for actual photographing according to the result of the analysis performed by the analyzing means. The photographing means performs actual photographing under the actual photographing conditions set by the conditions-for-photographing setting means.
The above and other objects, features and advantages of the invention will become more clearly understood from the following description referring to the accompanying drawings.
Embodiments of the present invention will be described with reference to the drawings below.
A digital still camera shown in
An output of the A/D converter 5 is transferred to an AF/AE/AWB wave detecting circuit 7 and a shutter timing control circuit 21. The AF/AE/AWB wave detecting circuit 7 performs AF wave detection to acquire AF-related information that is needed to automatically control the focus of the camera prior to actual photographing. The AF/AE/AWB wave detecting circuit 7 also performs AE wave detection to acquire AE-related information that is needed to automatically control exposure. Moreover, the AF/AE/AWB wave detecting circuit 7 performs AWB wave detection to acquire AWB-related information that is needed to automatically set a white balance. The AF-related information, AE-related information, and AWB-related information are transferred to a CPU 8 that is a control means. The CPU 8 transfers the received information to the lens 2, diaphragm/shutter mechanism 3, and camera signal processing circuit 6. In a normal photographing mode, the CPU 8 produces a shutter timing signal using the AE-related information, and transmits the signals to a selection switch 22.
A shutter timing control circuit 21 that is an analyzing means produces photographing control information, which is needed to perform actual photographing, in a photographic scene dependent photographing mode (wide dynamic range photographing mode) under the control of the CPU 8 that is a conditions-for-photographing setting means. The photographing control information is provided as a shutter timing signal in the present embodiment. The shutter timing signal is transferred to the selection switch 22 and CPU 8.
The camera signal processing circuit 6 and CPU 8 are interconnected via a bus 23. A DRAM 11 used as a work memory to process color data contained in image data is connected on the bus 23 with a memory controller 10 between them. A compression circuit 9 for compressing image data sent from the camera signal processing circuit 6 in compliance with the JPEG or the like is connected to the bus 23. Moreover, a memory card interface 14 is connected to the bus 23 so that the image data compressed by the compression circuit 9 can be recorded on a memory card 15. A liquid crystal display (LCD) 13 is connected on the bus 23 with a display circuit 12 between them, whereby image data may be read from the memory card 15 and displayed on the LCD or a photographic state is presented on the LCD. A personal computer (PC) interface 16 is connected on the bus 23 so that image data recorded on the memory card 15 can be transferred to a personal computer 17.
A strobe 19, an input key 20, and a shutter timing ROM 24 are connected to the CPU 8. The strobe 19 is a flashlight emitting means that is controlled based on AE-related information produced by the AF/AE/AWB wave detecting circuit 7 or a shutter timing signal produced by the shutter timing control circuit 21. The input key 20 is used to designate any of various imaging modes or drive a trigger switch. A plurality of different shutter timing signals, that is, three shutter timing signals ST1, ST2, and ST3 employed in the present embodiment are stored in the shutter timing ROM 24. In a photographic scene dependent photographing mode, during pre-photographing succeeding actual photographing, information concerning a dynamic range, which is required to photograph a photographic scene, is acquired with a condition for exposure varied sequentially in response to the shutter timing signals. For example, the shutter timing signals ST1, ST2, and ST3 indicate shutter speed values of 1/30 sec. 1/500 sec, and 1/8000 sec respectively.
In a normal photographing mode, the selection switch 22 selects a shutter timing signal produced by the CPU 8 according to AE-related information under the control of the CPU 8, and transfers the shutter timing signal to a timing generator (TG) 18. In a photographic scene dependent photographing mode, the selection switch 22 selects a shutter timing signal produced by the shutter timing control circuit 21 and transfers the shutter timing signal to the timing generator 18. For actual photographing, the selection switch 22 selects a shutter timing signal produced by the shutter timing control circuit 21 and transfers the shutter timing signal to the timing generator 18. Based on the shutter timing signal selected by the selection switch 22, the timing generator 18 controls the electronic shutter facility included in the image-pickup device 1.
In the image-pickup apparatus shown in
Specifically, when the normal photographing mode is selected, a photographic scene is photographed once with normal operation. Photographing information for one image field is acquired from the image-pickup device 1, and processed by the camera signal processing circuit 6. When the photographic scene dependent photographing mode is selected, a photographic scene is pre-photographed three times according to three shutter timing signals ST1, ST2, and ST3 stored in the shutter timing ROM 24. Information concerning a dynamic range required to construct three image fields is acquired from the image-pickup device 1 with an exposure level varied. A shutter timing signal is produced for actual photographing using the information concerning a dynamic range, and actual photographing is performed. The camera signal processing circuit 6 processes the image information resulting from the actual photographing.
Referring to
The shutter timing control circuit 21 includes a switch 31, a signal synthesizing circuit 32, a signal distribution arithmetic circuit 33, a signal distribution analyzing circuit 34, a shutter timing calculating circuit 35, and a shutter timing calculation lookup table (LUT) 36.
The CPU 8 controls the switch 31 in the photographic scene dependent photographing mode so that the switch 31 will be on only during pre-photographing. During the pre-photographing, a photographic scene is sequentially photographed according to the shutter timings ST1, ST2, and ST3 respectively. Image values (luminance values) acquired are transferred to the signal synthesizing circuit 32 via the A/D converter 5.
The signal synthesizing circuit 32 that is an information synthesizing means synthesizes the received image values for three image fields in accordance with the exposure levels attained for photographing, and produces luminance information obtainable with a wide dynamic range. The luminance information is then transferred to the signal distribution arithmetic circuit 33.
The signal distribution arithmetic circuit 33 that is a histogram arithmetic means arithmetically produces a histogram, which represents the distribution of luminance levels in a photographic scene, using the received luminance information obtainable with a wide dynamic range, and transfers the result of arithmetic operation to the signal distribution analyzing circuit 34.
The signal distribution analyzing circuit 34 detects a luminance level relevant to a peak frequency of the received histogram, and transfers the luminance value of a peak frequency to the shutter timing calculating circuit 35. If the histogram contains a plurality of peak frequencies, the luminance levels relevant to each peak frequencies are detected.
The shutter timing calculating circuit 35 reads a shutter speed, which is indicated by a shutter timing signal, from the shutter timing calculation LUT 36 according to the received luminance value. The shutter timing signal indicating the read shutter speed is then transferred to the timing generator 18. The shutter timing signal is also transferred to the CPU 8 as data for use in controlling the strobe, whereby an amount of flashlight to be emitted from the strobe 19 is controlled in proportion to the shutter speed indicated by the shutter timing signal. Actual photographing is then performed.
In the shutter timing calculation LUT 36, the shutter timing signals that permit proper exposure are stored in association with luminance levels.
Operation to be performed in the photographic scene dependent photographing mode will be described with reference to
When pre-photographing is completed, the signal synthesizing circuit 32 synthesizes the luminance information of the images based on the exposure levels attained for pre-photographing, and produces luminance information obtainable with a wide dynamic range (step S4).
Assume that a photographic scene contains, as shown in
For example, assume that a luminance information acquired by performing pre-photographing with each shutter timing signal is expressed with 8 bits. In this case, the shutter timing signals ST1, ST2, and ST3 are determined so that luminance information acquired in response to two adjoining shutter timing signals and related to the same exposure level will be 2 bits long. Information of 20 bits long (approximately 120 dB) can be acquired as a result.
In reality, a photographic scene exhibiting such a large difference in brightness as to be expressed with luminance information of 20 bits long is exceptional. For example, assuming that luminance values related to the same exposure level are 4 bits long, luminance information of 16 bits long (approximately 96 dB) is acquired. In this case, since luminance values related to the same exposure level are 4 bits long out of 8 bits long, the ratio of the shutter speed values indicated by the adjoining shutter timing signals is 1:16. For example, as mentioned above, the shutter speed (exposure time) value indicated by the shutter timing signal ST1 is set to 1/30 sec. The shutter speed value indicated by the shutter timing signal ST2 is set to 1/500 sec. The shutter speed value indicated by the shutter timing signal ST3 is set to 1/8000 sec. Thus, assuming that luminance values acquired with the shutter speed set sequentially to the values indicated by the shutter timing signals ST1, ST2, and ST3 are Y1, Y2, and Y3, synthetic luminance information Y is calculated as Y=Y1+16×Y2+16××16×Y3.
Referring to
Thereafter, the signal distribution analyzing circuit 34 detects a peak frequency of the histogram produced at step S5, and retrieves a luminance level related to the peak frequency (step S6). At step S6, a peak detection interval between instants at which a peak frequency of a histogram is detected is pre-set. When a slope determined by frequency values detected at the start and end of each peak detection interval changes from a positive value to a negative value, the frequency detected at the end of an immediately preceding peak detection interval is regarded as a peak frequency. A luminance level related to the peak frequency is then retrieved. In the case of the histogram shown in
A peak frequency of a histogram is used to obtain the imaging timing at which a related luminance level permits relatively appropriate exposure. As shown in
The luminance levels related to the peak frequencies are retrieved from the histogram at step S6. Thereafter, the shutter timing calculating circuit 35 retrieves, as shown in
Consequently, when a photographic scene is like the one shown in
As mentioned above, according to the present embodiment, in the photographic scene dependent photographing mode, a photographic scene is pre-photographed with the shutter speed set to the pre-set values indicated by the shutter timing signals ST1, ST2, and ST3 in order to acquire information concerning a dynamic range. A histogram graphically expressing synthetic information is produced. A shutter speed value to be indicated with a shutter timing signal is determined so that a luminance level related to a peak frequency of the histogram will permit relatively appropriate exposure. Actual photographing is then performed with the shutter speed set to the determined value. Even when a photographic scene exhibits a large brightness difference, the AE facility need not be driven all the time but imaging can be achieved optimally for the photographic scene. Eventually, an image obtainable with a wide dynamic range can be reproduced.
According to the present embodiment, all pixels are read during pre-photographing during which photographing is performed with the shutter speed set sequentially to the values indicated with the shutter timing signals ST1, ST2, and ST3 respectively. A histogram is then produced. The present invention is not limited to this mode. For example, the camera signal processing circuit 6 may thin out the pixels to read one pixel per two to eight pixels lined in a horizontal or vertical direction under the control of the CPU 8. A histogram may then be produced using the read pixels. In this case, precision deteriorates a little but a processing time can be shortened.
The digital still camera in accordance with the second embodiment includes a shutter timing control/gray scale calculating circuit 40 on behalf of the shutter timing control circuit 21 shown in
The shutter timing control/gray scale calculating circuit 40 that is an analyzing means includes, as shown in
According to the second embodiment, similarly to the aforesaid first embodiment, when the photographic scene dependent photographing mode is designated, the CPU 8 controls the switch 41 so that the switch 41 will be on only during pre-photographing. During pre-photographing, a photographic scene is imaged with the shutter speed set to the values indicated by the shutter timing signals ST1, ST2, and ST3 respectively. The acquired image values (luminance values) are transferred to the signal synthesizing circuit 42 via the A/D converter 5. The image values for three image fields are synthesized based on exposure levels attained during imaging, whereby luminance information acquirable with a wide dynamic range is produced. The luminance information is transferred to the signal distribution arithmetic circuit 43. A histogram representing the distribution of luminance levels in the photographic scene is then produced arithmetically.
The histogram arithmetically produced by the signal distribution arithmetic circuit 43 is transferred to the gray scale conversion characteristic calculating circuit 44 that is a gray scale arithmetic means. The gray scale conversion characteristic calculating circuit 44 produces a gray scale conversion characteristic curve using the received histogram. According to the present embodiment, frequencies equal to or larger than a predetermined threshold are retrieved from the receive histogram shown in
The shutter timing calculating circuit 45 reads a shutter speed value, which is represented by a shutter timing signal, from the shutter timing calculation LUT 46 using the received gray scale conversion characteristic curve. The shutter timing signal indicating the read shutter speed value is transferred to the timing generator 18, and also transferred to the CPU 8 as a strobe control signal in the same manner as it is in the first embodiment. Actual photographing is then performed. Similarly to the first embodiment, in the second embodiment, shutter speed values that are indicated by shutter timing signals and permit appropriate exposure are stored in association with luminance levels in the shutter timing calculation LUT 46.
In order to determine a shutter speed value, which is indicated by a shutter timing signal and used for actual photographing, using the gray scale conversion characteristic curve, a domain having a slope, that is, a domain interposed between those whose slopes are equal to or smaller than a predetermined value is detected. In other words, a domain indicating an area in an image field in which image data is present at a high density is detected in the characteristic curve. Frequencies contained in the domain detected in the characteristic curve that outlines a cumulative histogram are weighted, and luminance levels related to the weighted frequencies are averaged or a mean of the luminance levels is obtained. A shutter speed value associated with the obtained luminance level is retrieved from the shutter timing calculation LUT 46 and indicated by a shutter timing signal.
Assume that a luminance histogram concerning a photographic scene is like the one shown in
As mentioned above, according to the present embodiment, in the photographic scene dependent photographing mode, a photographic scene is pre-photographed with the shutter speed set to the pre-set values indicated by the shutter timing signals ST1, ST2, and ST3. Information concerning a dynamic range is then acquired. A gray scale conversion characteristic curve is produced by removing frequencies of luminance levels affected by noise from a histogram produced using the synthetic information. A shutter speed value to be indicated by a shutter timing signal and adopted for actual photographing is determined using the gray scale conversion characteristic curve. Actual photographing is then performed with the shutter speed set to the determined value. Eventually, even if a photographic scene exhibits a large brightness difference, a good-quality image obtainable with a wide dynamic range that is matched to a brightness range exhibited by the photographic scene can be produced. Moreover, the gray scale conversion characteristic curve produced by the gray scale conversion characteristic calculating circuit 44 is transferred to the camera signal processing circuit 6 so that it will be used to convert image information acquired during actual photographing. It is therefore unnecessary to produce a gray scale conversion characteristic curve in the course of processing image information values acquired during actual photographing. Consequently, image values acquired during actual photographing can be processed readily and quickly.
The present invention is not limited to the aforesaid embodiments. Various variants or modifications can be made. For example, according to the aforesaid embodiments, in the photographic scene dependent photographing mode, a photographic scene is pre-photographed in response to three shutter timing signals in order to acquire information concerning a dynamic range that is required to photograph the photographic scene. The number of shutter timing signals is not limited to three but may be any value equal to or larger than 2. Moreover, the aforesaid embodiments have been described by taking for instance a photographic scene that is actually photographed in response to two shutter timing signals to be produced. Depending on a photographic scene, one or more than three shutter timing signals may be produced for actual photographing. Therefore, when only one shutter timing signal is produced, the camera signal processing circuit 6 need not perform image synthesis. When two or more shutter timing signals are produced, image synthesis is performed in order to produce an image optimal to a photographic scene.
Moreover, according to the aforesaid embodiments, when pre-photographing or actual photographing is performed in the photographic scene dependent photographing mode, the electronic shutter facility included in the image-pickup device 1 is controlled via the timing generator 18 that receives a shutter timing signal. The diaphragm/shutter mechanism 3 may be controlled on behalf of the electronic shutter facility included in the image-pickup device 1. Otherwise, both the electronic shutter facility included in the image-pickup device 1 and the diaphragm/shutter mechanism 3 may be controlled in order to acquire image information of a photographic scene under a desired condition for exposure.
A photographic scene is pre-photographed with a condition for exposure varied prior to actual photographing, whereby information concerning a dynamic range is acquired. Actual photographing is then performed based on the acquired information concerning a dynamic range. Therefore, even when a photographic scene exhibits a large brightness difference, an image obtainable with a wide dynamic range that is matched to a brightness range exhibited by the photographic scene can be produced without the necessity of driving the AE facility all the time.
The major portion of the digital still camera in accordance with the third embodiment is substantially identical to that of the digital still camera in accordance with the first embodiment. The same reference numerals are assigned to components that have the same capabilities as those included in the first embodiment. A significant difference lies in that a shutter control information circuit 50 is substituted for the shutter timing control circuit 21 and the shutter timing ROM 24 is excluded.
To be more specific, the digital still camera consists mainly of, as shown in
The digital still camera can be set to a normal photographing mode or a wide dynamic range photographing mode. In the normal photographing mode, one image is picked up through one exposure and image data is produced. In the wide dynamic range photographing mode, a plurality of images is picked up at mutually close time instants with an exposure level varied, and synthesized in order to produce an image obtainable with a wide dynamic range.
A user manipulates the input key 20 to designate either of the imaging modes. Otherwise, the CPU 8 detects a highlight represented by image information sent from the image-pickup device 1, and autonomously designates an imaging mode. Depending on which of the imaging modes is designated, the CPU 8 controls imaging.
Specifically, when the normal photographing mode is selected, exposure is performed once during photographing in order to acquire image information for one image field from the image-pickup device 1. When the wide dynamic range photographing mode is selected, the same object is exposed a plurality of times in order to acquire image information for a plurality of image fields (for example, two image fields) from the image-pickup device 1 with an exposure level varied. The camera signal processing circuit 6 processes image data according to what imaging mode is selected.
The exposure is performed according to a known means, that is, using the electronic shutter facility included in the image-pickup device 1 or using the electronic shutter facility in combination with the diaphragm/shutter mechanism 3.
Furthermore, when the normal photographing mode is selected, the CPU 8 produces shutter control information, with which exposure is performed to pick up one image, according to the result of detection performed by the AF/AE/AWB wave detecting circuit 7. The CPU 8 drives the selection switch 22 so that the resultant information will be transferred to the timing generator 18.
When the wide dynamic range photographing mode is selected, the shutter control information circuit 50 produces shutter control information, with which exposure is performed to pick up a plurality of images with an exposure level varied. The shutter control information circuit 50 then drives the selection switch 22 so that the resultant information will be transferred to the timing generator 18.
According to the third embodiment, the shutter is controlled on the assumption that when the wide dynamic range photographing mode is selected, exposure is performed twice with a condition for exposure varied.
When the conditions for actual photographing are determined, luminance information concerning a photographic scene is adopted as information concerning a dynamic range needed to photograph the photographic scene.
First, pre-photographing is performed under a condition for exposure determined through normal automatic exposure (AE) in order to acquire luminance information concerning a photographic scene. Consequently, the A/D converter 5 transmits luminance information aa concerning the photographic scene.
The scene information distribution calculating circuit 51 serving as an information acquiring means receives the luminance information aa, produces the distribution of luminance information (histogram), and transmits the distribution as luminance distribution information bb.
The scene information analyzing circuit 52 serving as an analyzing means receives the luminance distribution information bb, analyzes the histogram concerning the luminance distribution information bb, and transmits the result of the analysis as luminance analysis information cc. During the analysis of the histogram, the frequency of a luminance level indicating a dark point (shadow) and the frequency of a luminance level indicating a bright point (highlight) are retrieved from the histogram.
A conditions-for-exposure judging circuit 53 serving as an conditions-for-photographing setting means and a control means receives the luminance analysis information cc, and judges whether a currently set condition for exposure is appropriate. The judgment is made to reach the conclusion that the current condition for exposure should be changed and pre-photographing should be performed again (change of a condition for exposure) or that the current condition for exposure should be adopted as one of the conditions for actual photographing (determination of a condition for exposure). A destination to which information representing the condition for exposure is transmitted is changed based on the conclusion. At the same time, the result of the judgment is transmitted as exposure optimization information dd to the CPU 8.
First, assuming that the result of judgment made to see if a condition for exposure is appropriate is “determination of a condition for exposure”, the conditions-for-exposure judging circuit 53 transmits actual photographing exposure information ff as a condition for exposure that is one of the conditions for actual photographing. A shutter control information-for-actual photographing producing circuit 55 serving as a conditions-for-photographing setting means receives the actual photographing exposure information ff, produces shutter control information with which actual photographing is performed, and transmits the shutter control information as actual photographing shutter control information hh.
On the other hand, when the result of judgment made to see if a condition for exposure is appropriate is “change of a condition for exposure”, the conditions-for-exposure judging circuit 53 transmits changed exposure information ee as a condition for exposure to be changed. A conditions-for-exposure changing circuit 54 serving as a conditions-for-photographing setting means and a control means receives the changed exposure information ee, changes the current condition for exposure, and produces shutter control information that matches the changed condition for exposure and that is used to perform pre-photographing again. The conditions-for-exposure changing circuit 54 then transmits the shutter control information as pre-photographing shutter control information gg.
A shutter control information selection switch 56 switches input signals according to control information ii sent from the CPU 8 that has received the exposure optimization information dd from the conditions-for-exposure judging circuit 53. Since the shutter control information selection switch 56 thus switches input signals, the pre-photographing shutter control information gg or actual photographing shutter control information hh is transmitted as shutter control information kk to the selection switch 22.
Moreover, the CPU 8 judges from the result of judgment, which is represented by the exposure optimization information dd, whether pre-photographing should be performed again or a standby state should be retained until actual photographing is started.
Specifically, if the exposure optimization information dd represents “change of a condition for exposure”, the CPU 8 instructs that pre-photographing should be performed again according to the shutter control information kk produced by the conditions-for-exposure changing circuit 54 in order to acquire luminance information concerning a photographic scene. The CPU 8 then instructs the shutter control information circuit 50 to perform the foregoing processing according to the luminance information aa produced by the A/D converter 5.
If the exposure optimization information dd represents “determination of a condition for exposure”, the CPU 8 retains a standby state until actual photographing is started in order to produce an image obtainable with a wide dynamic range by performing imaging according to the shutter control information kk produced by the shutter control information-for-actual photographing producing circuit 55.
Referring to
When the processing is started, the scene information distribution calculating circuit 51 produces a histogram of luminance information aa concerning a photographic scene (step S11). The histogram to be produced is equivalent to luminance distribution information bb shown in
Thereafter, the scene information analyzing circuit 52 references the produced histogram to obtain the frequency of a luminance level indicating a dark point and the frequency of a luminance level indicating a bright point (step S12). The obtained frequencies and related luminance levels are equivalent to luminance analysis information cc shown in
Thereafter, the frequency of the luminance level indicating a bright (dark) point is compared with a predetermined value (for example, 10% of the sum total of frequency values contained in the histogram) (step S13).
If it is judged at step S13 that the frequency of the luminance level indicating a bright (dark) point is equal to or larger than the predetermined value, it is thought that a highlight (shadow) results from photographing to be performed under a current condition for exposure. The current condition for photographing is therefore changed to the one determining an exposure value (EV) that makes an image one-step darker (brighter) (step S14). The condition for exposure treated at step S14 is equivalent to changed exposure information ee shown in
Thereafter, the conditions-for-exposure changing circuit 54 produces pre-photographing shutter control information gg, which is needed to perform pre-photographing again, according to the changed condition for exposure (step S15).
The produced pre-photographing shutter control information gg is transmitted as shutter control information kk through the shutter control information selection switch 56. The CPU 8 is thus instructed to perform pre-photographing again according to the shutter control information kk (step S16). The instruction given to the CPU 8 at step S16 is equivalent to exposure optimization information dd shown in
On the other hand, if it is judged at step S13 that the frequency of the luminance level indicating a bright (dark) point is smaller than the predetermined value, it is thought that imaging to be performed under a current condition for exposure is optimal for the relatively bright (dark) object. Under the current condition for exposure (that is, actual photographing exposure information ff shown in
The produced actual photographing shutter control information hh is transmitted as shutter control information kk through the shutter control information selection switch 56. The CPU 8 is thus informed of the fact that actual photographing can be performed based on the shutter control information kk (the standby state is retained). The information given to the CPU 8 is, like the instruction given at step S16, equivalent to the exposure optimization information dd shown in
When step S16 or S18 is completed, the processing is terminated.
Herein, when exposure is performed twice with a condition for exposure varied as it is in the present embodiment, imaging including the processing described in
As mentioned above, an initial condition for exposure is determined based on normal automatic exposure (AE)-related information, and pre-photographing is performed.
Thereafter, as described in
When both the processing concerning a bright point and the processing concerning a dark point enter the step at which a standby state is retained until actual photographing is started, photographing is performed once. This is because it is unnecessary to perform imaging twice under the same condition for exposure (the photographing is the same as the photographing in the normal photographing mode).
If a condition for exposure is changed in both the bright and dark points as they are at step S14, the condition for exposure is changed such that an exposure value (EV) makes an image one-step darker (condition for exposure determining a one-step smaller EV). Moreover, the condition for exposure is changed such that an EV makes an image one-step brighter (condition for exposure determining a one-step larger EV). Then, pre-photographing is performed again with the respective condition for exposure varied as mentioned above.
Thereafter, the processing described in
If the condition for exposure is the condition for exposure determining a one-step larger EV, information concerning the dark point alone is processed. If the condition for exposure is changed as described as step S14, the condition for exposure is changed such that an EV makes an image one-more-step brighter (that is, a two-steps larger EV). Pre-photographing is then performed again. Thereafter, the processing described in
Furthermore, in the case of the condition for exposure is changed as described as step S14 relative to photographing of either the bright or dark point, changing of the condition is made as follows. When the condition for exposure may be changed relative to photographing of the bright point, the condition for exposure is changed such that an EV makes an image one-step darker (one-step smaller EV). When the condition for exposure is changed relative to photographing of the dark point, the condition for exposure is changed such that an EV makes an image one-step brighter (one-step larger EV). Thereafter, the processing of information concerning either the bright or dark point is performed.
First, pre-photographing is performed under an initial condition for exposure (for example, with an exposure time set to 1/250 sec). Consequently, luminance information concerning a photographic scene shown in
Thereafter, the condition for exposure is changed relative to the bright point BR and the dark point DK respectively. Pre-photographing is performed again in order to acquire luminance information.
First, an initial condition for exposure under which the dark point DK is imaged is changed such that an EV that makes an image one-step brighter (a one-step larger EV, that is, with an exposure time set to 1/125 sec). At this time, luminance information like the one shown in
On the other hand, the condition for exposure under which the bright point BR is imaged is changed such that an EV makes an image one-step darker (one-step smaller EV, that is, with the exposure time set to 1/500 sec). At this time, luminance information like the one shown in
When the photographic scene like the one shown in
According to the third embodiment, prior to actual photographing, information concerning a dynamic range needed to photograph a photographic scene is acquired and analyzed. The conditions for actual photographing are determined based on the results of the analysis. Imaging is then achieved by performing one exposure or by performing a plurality of exposures with a condition for exposure varied. The condition for exposure optimal for a dynamic range needed to image the photographic scene can be determined automatically in order to perform imaging. Eventually, an image obtainable with a dynamic range needed to photograph the photographic scene can be produced in order to reproduce the photographic scene. In particular, when exposure is performed a plurality of times with the condition for exposure varied, even if photographing a photographic scene requires a wide dynamic range, the photographic scene can be imaged optimally. Eventually, an image obtainable with the wide dynamic range can be substantially produced in order to reproduce the photographic scene.
The fourth embodiment is, similarly to the third embodiment, a digital still camera to which an image-pickup apparatus in accordance with the present invention is adapted. The configuration of the digital still camera is nearly identical to that shown in
In the digital still camera of the fourth embodiment, similarly to the aforesaid digital still cameras, the shutter is controlled on the assumption that when the wide dynamic range photographing mode is selected, exposure is performed twice with a condition for exposure varied.
In the configuration shown in
Thereafter, a scene information analyzing circuit 62 that is an analyzing means receives the luminance distribution information (histogram) bb from the scene information distribution calculating circuit 61, and receives strobe setting information mm from the CPU 8. The scene information analyzing circuit 62 then analyzes the histogram. Specifically, according to the fourth embodiment, the strobe setting information mm is acquired in order to estimate within what range the brightness of a major object falls. The subsequent processing is performed so that the major object will be exposed properly. If the major object exists at a bright point, a condition for exposure is determined relative to imaging of the bright point alone. If the major object exists at a dark point, the condition for exposure is determined relative to imaging of the dark point alone. At this time, the condition for exposure is determined to realize proper exposure.
For example, if the strobe setting information mm signifies that the strobe is used, a photographic scene in which a figure poses while being backlit in the daytime or a figure poses at night is estimated. At this time, the luminance distribution information (histogram) bb produced under an initial condition for exposure is referenced.
Assume that the luminance distribution information (histogram) bb reveals that the frequency of a luminance level indicating a bright point (highlight) in the histogram is larger than a predetermined value. This means that the photographic scene contains many points equivalent to the highlight. The photographic scene is therefore thought to correspond to the photographic scene in which a figure poses while being backlit in the daytime. Since the strobe is used, a major object is estimated to lie at a relatively dark point. Consequently, the subsequent processing is performed in order to optimize a condition for exposure under which the dark point at which the major object lies is imaged.
Moreover, if the frequency of a luminance level indicating a bright point (highlight) in the histogram is equal to or smaller than a predetermined value, it is thought that the photographic scene does not contain many points equivalent to the highlight. The photographic scene is therefore regarded to correspond to the photographic scene in which a figure poses at night. The strobe is therefore used to image the photographic scene, and the major object is estimated to lie at a relatively bright point. Consequently, the subsequent processing is performed in order to optimize the condition for exposure relative to the bright point under which the main object lies.
In contrast, if the strobe setting information mm signifies that the strobe is unused, the subsequent processing is performed in order to optimize the condition for exposure under which the dark point is imaged.
The scene information analyzing circuit 62 calculates the frequency of the luminance level indicating the bright or dark point, and transmits the result of the analysis as luminance analysis information nn.
A conditions-for-exposure judging circuit 63 that serves as a conditions-for-photographing setting means and a control means receives the luminance analysis information nn, and then acts similarly to the conditions-for-exposure judging circuit 53 employed in the third embodiment.
If the result of judgment made to see if the condition for exposure is appropriate is “change of a condition for exposure”, the conditions-for-exposure judging circuit 63 transmits changed exposure information pp as the condition for exposure to be changed. A conditions-for-exposure changing circuit 64 that serves as a conditions-for-photographing setting means and a control means receives the changed exposure information pp and acts similarly to the conditions-for-exposure changing circuit 54 employed in the third embodiment. The conditions-for-exposure changing circuit 64 then transmits pre-photographing shutter control information qq that is produced in compliance with the changed condition for exposure.
In contrast, if the result of judgment made to see if the condition for exposure is appropriate is “determination of a condition for exposure”, the conditions-for-exposure judging circuit 63 transmits actual photographing exposure information oo as the condition for exposure that is one of the conditions for actual photographing to an exposure ratio adjusting circuit 65 and a shutter control information-for-actual photographing producing circuit 66 that will be described later.
The exposure ratio adjusting circuit 65 that serves as a conditions-for-photographing setting means and an adjusting means receives the actual photographing exposure information oo and camera setting information rr that includes photometric area information and strobe information sent from the CPU 8. The exposure ratio adjusting circuit 65 then calculates an exposure ratio at which imaging is performed twice with an exposure level varied.
Herein, the actual photographing exposure information oo is information representing a condition for exposure optimal to a major object. Unlike the aforesaid third embodiment, the actual photographing exposure information oo represents the condition for exposure under which exposure is performed only once. The exposure ratio adjusting circuit 65 therefore calculates an exposure ratio to the actual photographing exposure information oo and transmits the exposure ratio as exposure ratio information ss. The exposure ratio is the ratio of a condition for exposure, under which an object other than the major object is photographed.
The shutter control information-for-actual photographing producing circuit 66 that is a conditions-for-photographing setting means receives the actual photographing exposure information oo and exposure ratio information ss, and produces shutter control information needed to perform actual photographing during which exposure is performed twice with an exposure level varied. The shutter control information-for-actual photographing producing circuit 66 then transmits the shutter control information as actual photographing shutter control information tt.
A shutter control information selection switch 67 switches contacts thereof in response to control information ii sent from the CPU 8, and transmits the pre-photographing shutter control information qq or actual photographing shutter control information tt as shutter control information kk.
The CPU 8 judges, similarly to the CPU included in the third embodiment, from the result of checking of the exposure optimization information dd whether pre-photographing should be performed again or a standby state should be retained until actual photographing is started.
Step S21 is identical to step S11 in
Thereafter, based on the strobe setting information mm, a luminance level contained in a luminance histogram produced at step S21 is determined in order to optimize a condition for exposure under which a point indicated by the luminance level is photographed (step S22). Herein, either a bright point or a dark point is selected in order to optimize the condition for exposure under which the point is photographed.
The subsequent step S23 and step S24 are identical to step S12 and step S13 in
Step S25, step S26, and step S27 are identical to step S14, step S15, and step S16 in
Moreover, if it is judged at step S24 that the frequency of the luminance level indicating the bright (dark) point is smaller than the predetermined value (determination of a condition for exposure), the actual photographing exposure information oo is produced based on a current condition for exposure, and then transmitted (step S28).
Thereafter, the camera setting information rr is used to calculate an exposure ratio at which exposure is performed a plurality of times with an exposure level varied (step S29).
Herein, the camera setting information rr and actual photographing exposure information oo are referenced in order to calculate a ratio of photographing exposure information to the actual photographing exposure information oo. Herein, the actual photographing exposure information oo represents a condition for exposure under which a major object is exposed properly, and the photographing exposure information represents a condition for exposure under which an object other then the major object is photographed. The calculated ratio is transmitted as the exposure ratio information ss.
Thereafter, the actual photographing shutter control information tt is produced based on the actual photographing exposure information oo and exposure ratio information ss, and then transmitted. The CPU 8 is thus informed of the fact that the standby state is retained until actual photographing is started (step S30).
When step S27 or step S30 is completed, the processing is terminated.
The processing flow described in
Moreover, after the condition for exposure is changed, pre-photographing is performed. Thereafter, according to the processing flow described in
In order to produce exposure ratio information ss by referencing the lookup table shown in
The exposure ratio information ss shown in
Moreover, the ratio varies depending on whether the actual photographing exposure information oo is concerned with a bright point or a dark point.
For example, if the actual photographing exposure information oo is information concerning the bright point, what must be produced is exposure information concerning the dark point. An exposure time required to expose the dark point is longer than the exposure time required to expose the bright point. Therefore, the exposure ratio, that is, the ratio of the exposure times assumes a value equal to or larger than 1.
In contrast, when the actual photographing exposure information oo is information concerning the dark point, what must be produced is exposure information concerning the bright point. An exposure time required to expose the bright point is shorter than the exposure time required to expose the dark point. Therefore, the exposure ratio, that is, the ratio of the exposure times assumes a value equal to or smaller than 1.
The bright point and dark point are entered as sub-items of item Major Object written on the first row of the table shown in
Next, a description will be made of items contained in the camera setting information rr and employed in the table shown in
A photometry level is information concerning a dynamic range required to photograph a photographic scene, and detected in units of an area included in a plurality of areas into which an image field is divided. A difference between a maximum value of the photometry level and a minimum value thereof which are detected in each area is calculated, and the ratio of the difference to the largest value of the photometry level detected in the image field is calculated. An exposure ratio value is retrieved from the lookup table shown in
In the example shown in
The f-number is an f-number to which an image-pickup optical system including the lens 2 and diaphragm/shutter mechanism 3 is set. An exposure ratio value is retrieved from the lookup table shown in
In the example shown in
The strobe setting information mm is information indicating whether the strobe 19 is used or not. Based on the information, an exposure ratio value is retrieved from the lookup table shown in
In the example shown in
In addition, as shown in
In consideration of whether the actual photographing exposure information oo is concerned with a luminance level indicating a bright point or a dark point, an exposure ratio value is retrieved from the lookup table shown in
In this example, when the actual photographing exposure information oo is information concerning the bright point (short-time exposure in the wide dynamic range photographing mode), the exposure ratio assumes a value of, for example, 4. When the actual photographing exposure information oo is information concerning the dark point (long-time exposure in the wide dynamic range photographing mode), the exposure ratio assumes a value of 8.
The description has been made on the assumption that various kinds of information can be utilized. In reality, an exposure ratio value may be retrieved in association with any one kind of information. Otherwise, exposure ratio values retrieved in association with all the kinds of information may be averaged. Otherwise, the exposure ratio values retrieved in association with all the kinds of information may be weighted with coefficients proportional to the degrees of importance of the kinds of information, and then averaged. Thus, an exposure ratio value may be calculated. Nevertheless, the present invention is not limited to these means but can be applied to any other various means.
According to the fourth embodiment, prior to actual photographing, information concerning a dynamic range required to photograph a photographic scene is acquired and analyzed. The conditions for actual photographing are determined based on the result of the analysis. Photographing is then achieved by performing one exposure or by performing a plurality of exposures with a condition for exposure varied. The fourth embodiment can therefore provide the same advantages as the third embodiment. In particular, when photographing is achieved by performing a plurality of exposures with the condition for exposure varied, the exposure ratio is adjusted. Therefore, even when a photographic scene requires a wide dynamic range, the photographic scene can be photographed optimally. Namely, an image obtainable with a wide dynamic range can be produced in order to reproduce the photographic scene.
Having described the preferred embodiments of the invention referring to the accompanying drawings, it should be understood that the present invention is not limited to those precise embodiments and various changes and modifications thereof could be made by one skilled in the art without departing from the spirit or scope of the invention as defined in the appended claims.
Patent | Priority | Assignee | Title |
7382402, | Jul 24 2002 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Imaging system |
7990433, | Jul 09 2007 | Canon Kabushiki Kaisha | Imaging apparatus and imaging method |
8264594, | Jul 25 2007 | CANDELA Microsystems (S) Pte. Ltd. | Exposure control for an imaging system |
8334924, | Jul 25 2007 | CANDELA Microsystems (S) Pte. Ltd. | Exposure control for an imaging system |
8736750, | Mar 14 2007 | Sony Corporation | Image pickup apparatus, image pickup method, exposure control method, and program |
8885093, | Mar 14 2007 | Sony Corporation | Image pickup apparatus, image pickup method, exposure control method, and program |
9020257, | Oct 08 2009 | International Business Machines Corporation | Transforming a digital image from a low dynamic range (LDR) image to a high dynamic range (HDR) image |
Patent | Priority | Assignee | Title |
4647975, | Oct 30 1985 | Senshin Capital, LLC | Exposure control system for an electronic imaging camera having increased dynamic range |
5194960, | Mar 05 1990 | Konica Corporation | Optical image signal control device |
5745175, | Oct 02 1995 | FLASHPOINT TECHNOLOGY, INC | Method and system for providing automatic focus control for a still digital camera |
5801773, | Oct 29 1993 | Canon Kabushiki Kaisha | Image data processing apparatus for processing combined image signals in order to extend dynamic range |
5828793, | May 06 1996 | Massachusetts Institute of Technology | Method and apparatus for producing digital images having extended dynamic ranges |
5917546, | Mar 24 1995 | Sony Corporation | Imaging apparatus |
5929908, | Feb 03 1995 | Canon Kabushiki Kaisha | Image sensing apparatus which performs dynamic range expansion and image sensing method for dynamic range expansion |
6765619, | Apr 04 2000 | PIXIM, INC | Method and apparatus for optimizing exposure time in image acquisitions |
6833864, | Jul 09 1998 | FUJIFILM Corporation | Image capturing apparatus and method for obtaining images with broad brightness range |
6839087, | Jul 16 1999 | PENTAX Corporation | Exposure controller of a digital camera |
6850642, | Jan 31 2000 | Aptina Imaging Corporation | Dynamic histogram equalization for high dynamic range images |
6903770, | Jul 27 1998 | XACTI CORPORATION | Digital camera which produces a single image based on two exposures |
20020012064, | |||
EP387817, | |||
EP930780, | |||
EP982938, | |||
JP11205661, | |||
JP638092, | |||
JP7298142, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 16 2001 | HORIUCHI, KAZUHITO | OLYMPUS OPTICAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012502 | /0026 | |
Oct 23 2001 | Olympus Corporation | (assignment on the face of the patent) | / | |||
Oct 14 2003 | OLYMPUS OPTICAL CO , LTD | Olympus Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 017348 | /0418 | |
Apr 01 2016 | Olympus Corporation | Olympus Corporation | CHANGE OF ADDRESS | 039344 | /0502 |
Date | Maintenance Fee Events |
Apr 20 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 06 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 08 2019 | REM: Maintenance Fee Reminder Mailed. |
Dec 23 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 20 2010 | 4 years fee payment window open |
May 20 2011 | 6 months grace period start (w surcharge) |
Nov 20 2011 | patent expiry (for year 4) |
Nov 20 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 20 2014 | 8 years fee payment window open |
May 20 2015 | 6 months grace period start (w surcharge) |
Nov 20 2015 | patent expiry (for year 8) |
Nov 20 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 20 2018 | 12 years fee payment window open |
May 20 2019 | 6 months grace period start (w surcharge) |
Nov 20 2019 | patent expiry (for year 12) |
Nov 20 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |