The invention herein provides for the detection of certain calcium containing endospores, and particularly pertains to the detection of bacillus anthracis by first chelating calcium ions of said endospores and then reacting the chelated calcium ions with aequorin to generate a light pulse which can then be detected by a standard liquid scintillation spectrometer.
|
12. A product for detecting calcium containing endospores comprising: a reaction vessel, a chemiluminescent liquid, said chemiluminescent liquid contained within said reaction vessel, an air intake conduit, said air intake conduit comprising a terminal end, said terminal end submerged within said chemiluminescent liquid, said chemiluminescent liquid comprising aequorin and a calcium chelating agent, a photon counter, said photon counter positioned proximate said reaction vessel to sense photons of light immediately upon occurrence in said reaction vessel, whereby calcium containing endospores directed through said air intake conduit and into said chemiluminescent liquid will immediately react with said chemiluminescent liquid emitting photons of light for detection.
1. A product for detecting calcium containing endospores comprising: a reaction vessel, an air pump, an air intake conduit, said air pump communicating with said air intake conduit, a chemiluminescent liquid, said chemiluminescent liquid contained within said reaction vessel, said air intake conduit submerged within said chemiluminescent liquid, said chemiluminescent liquid comprising aequorin and a calcium chelating agent, a photon counter, said photon counter comprising a photomultiplier and a ratemeter, said photon counter positioned proximate said reaction vessel for sensing photons of light immediately upon occurrence in said reaction vessel, a computer, said photon counter connected to said computer, whereby calcium containing endospores directed into said reaction vessel will immediately react with said chemiluminescent liquid emitting photons of light for detection by said photon counter and reading by said computer.
10. A product for detecting calcium containing endospores comprising: a reaction vessel, an intake conduit, said intake conduit in fluid communication with said reaction vessel, a chemiluminescent liquid, said chemiluminescent liquid contained within said reaction vessel, an air pump, said air pump mounted proximate said intake conduit, said conduit submerged within said chemiluminescent liquid, a liquid scintillation spectrometer, said liquid scintillation spectrometer proximate said reaction vessel for immediately detecting photons of light as they occur in said reaction vessel, said scintillation spectrometer comprising a pair of photomultipliers, a ratemeter, said photomultipliers in electrical communication with said ratemeter, a chart recorder, said chart recorder in electrical communication with said ratemeter, a printer, said printer in electrical communication with said chart recorder, said chemiluminescent liquid comprising aequorin, a chelating agent, said chelating agent mixed with said aequorin, whereby endospores containing calcium forced by said air pump into said chemiluminescent liquid will immediately react with said aequorin to generate light pulses for detection by said liquid scintillation spectrometer.
3. The product of
5. The product of
9. The product of
11. The product of
13. The product of
14. The product of
|
This application is a divisional of application Ser. No. 10/035,277 filed Nov. 19, 2001, now U.S. Pat. No. 6,815,178.
The invention herein pertains to detection devices and methods, and particularly pertains to the detection of calcium containing endospores which are delivered from an airborne state to a reaction vessel.
Certain light emitting photoproteins, such as those isolated from the jellyfish Aequorea aequoorea, perform a natural reaction when allowed to mix with calcium ion, Ca++, with the resultant production of light or chemiluminescence. Such calcium reporter photoproteins are known as aequorin.
Many gram-positive bacteria such as those of the genera Clostridium and Bacillus form specialized “resting” cells called endospores. Endospores are highly durable dehydrated cells with thick walls and additional layers. They are formed internal to the bacterial cell membrane.
When released into the environment, endospores can survive extreme heat, lack of water and exposure to many toxic chemicals and radiation. Most of the water present in the spore cytoplasm is eliminated. Such endospores do not generally carry out metabolic reactions. A strikingly large amount of an organic acid called dipicolinic acid (found in the cytoplasm) is accompanied by a large number of calcium ions. Calcium ions (Ca++) are combined with the dipicolinic acid as seen below:
##STR00001##
The calcium-dipicolinic acid complex represents about ten percent of the dry weight of the endospore. As would be understood, such endospores can readily become airborne. If present in an area of human occupancy, such as an office building, home or the like, certain endospores can be life threatening when present through inadvertence, accident or deliberately introduced by bioterrorists.
Liquid scintillation spectrometers are commonly used to measure radioisotopes such as in medical research when used in an out of coincidence mode it senses both analog signals from two photomultiplier tubes to thereby act as a photon (light pulse) counter.
While various types of detection methods for certain deadly endospores such as bacillus anthracis (anthrax) are known, these methods generally consist of collecting specimens from office buildings, homes or the like and thereafter delivering them to a laboratory for analysis. While such laboratory analyses may be very accurate, they are time consuming in that the collection, delivery and analytical work can take several days. Thus, those unfortunate enough to be infected with deadly endospores such as anthrax may have their medical condition diagnosed too late to save their lives.
Therefore, in view of the need for a speedy and continuous method of detecting anthrax and other calcium containing endospores which may be, for example, airborne in public buildings, the present invention was conceived and one of its objectives is to provide a device and method whereby bacillus anthracis and other calcium containing endospores can be easily and inexpensively detected.
It is an objective of the invention to provide a device for detecting certain calcium containing endospores when used as weapons or when naturally occurring such as near cattle or other animals.
It is another objective of the present invention to provide a device and method for detecting certain calcium containing endospores which is easy to operate and requires little specialized training.
It is yet another objective of the present invention to provide a method for detecting calcium containing endospores which is relatively inexpensive to operate continuously for twenty-four hours a day.
It is still another objective of the present invention to provide a method of detecting calcium containing endospores utilizing a chelating agent and natural aequorin as derived from jellyfish.
It is still another objective of the present invention to provide a method of detection of calcium containing endospores utilizing a standard scintillation spectrometer.
Various other objectives and advantages of the present invention will become apparent to those skilled in the art as a more detailed description is set forth below.
The aforesaid and other objectives are realized by providing a scintillation spectrometer with a reaction vessel containing a chemiluminescent liquid. The reaction vessel is joined to an air pump by an intake conduit. The air pump delivers air from an office, room or the like through a conventional particulate filter capable of excluding particles greater than 20 μM, and into the chemiluminescent liquid. Calcium containing endospores such as bacillus anthracis then mix with the chemiluminescent liquid in which the calcium ions contained therein are first chelated. The chelated calcium ions then react with the chemiluminescent photoprotein aequorin in the chemiluminescent liquid and produce light. This chemiluminescent reaction emits photons of light which, in one embodiment are directed through the walls of the glass reaction vessel, through a light guide and into photomultiplier tubes where they are intensified. Analog signals resulting therefrom are then delivered to a ratemeter which in turn delivers corresponding electrical signals to a chart recorder and, if desired, to a printer.
In a second embodiment of the invention the spectrometer converts the light pulses to a digital signal which are sent to a personal computer (PC) whereby the signals can be read in real time on the PC monitor.
For detection of endospores of Bacillus anthracis capable of causing a disease, commonly known as anthrax, the preferred method is demonstrated in
As seen, calcium containing endospores are first directed through particulate filter 13 (capable of removing particle size of 20 μM) of air tube 14 by air pump 15 which then forces the filtered air through intake conduit 16 and on into reaction vessel 17. Terminal end 23 of intake conduit 16 is shown submerged in chemiluminescent liquid 18. Conventional particulate filter 13 excludes particles greater than 20 μM (1 μM=0.000001M).
As shown in
Next,
Reaction vessel 17, as manufactured by Fisher Scientific of Pittsburgh, Pa. 15275, is preferably made of quartz while borosilicate low potassium glass may also be used. Reaction vessel 17 preferably has a height of 61 mm and an outside diameter of 28 mm. Air pump 15 as shown preferably provides a 12.5 L/min air flow to reaction vessel 17 through Teflon (trademark of E.I. DuPont DeNemours and Co., Wilmington, Del.), intake conduit 16 which has a diameter of 4 mm. As would be further understood from
Ca++endospores+EDTA - - - - - >Ca++
Ca+++aequorin - - - - - >photons of light
Signals are sent from ratemeter 19 as illustrated schematically in
Standard scintillation spectrometer 11 as seen in
In an alternate embodiment, detection device 22 as shown in
While the preferred detection device 10 as shown in
The illustrations and examples provided herein are for explanatory purposes and are not intended to limit the scope of the appended claims.
Patent | Priority | Assignee | Title |
8697374, | Feb 28 2008 | 3M Innovative Properties Company | Antibodies to Clostridium difficile spores and uses thereof |
Patent | Priority | Assignee | Title |
3671450, | |||
4193963, | Sep 20 1974 | Petroleo Brasileiro S.A.-Petrobras | Apparatus for the determination of chemical compounds by chemiluminescence with ozone |
4604364, | Dec 21 1979 | Bioluminescent tracer composition and method of use in immunoassays | |
4665022, | Feb 17 1984 | The Regents of the University of California | Bioluminescent assay reagent and method |
5173264, | Mar 30 1989 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE DEPARTMENT OF ENERGY | High throughput liquid absorption preconcentrator sampling instrument |
5340714, | May 08 1992 | MONITOR DIAGNOSTICS, INC A CORP OF UTAH | Use of nonmetallic tetrapyrrole molecules and novel signal solutions in chemiluminescent reactions and assays |
5360728, | Dec 01 1992 | ECKENRODE, VIRGINIA K | Modified apoaequorin having increased bioluminescent activity |
5773710, | Mar 18 1994 | The Secretary of State for Defence in Her Britannic Majesty's Government | Cellular material detection apparatus and method |
5792621, | Jun 28 1995 | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, DEPARTMENT OF, UNITED STATES OF AMERICA, THE | Fiber-optic chemiluminescent biosensors for monitoring aqueous alcohols and other water quality parameters |
5837195, | Jul 13 1995 | Siemens Healthcare Diagnostics Inc | Luminometer |
5885529, | Jun 28 1996 | Siemens Healthcare Diagnostics Inc | Automated immunoassay analyzer |
6087183, | Mar 30 1989 | High-throughput liquid-absorption air-sampling apparatus and methods | |
6103534, | Sep 28 1999 | NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE | Cyclone aerosol sampler and biological aerosol chemiluminescent detection system employing the same |
6406667, | Feb 18 1998 | Siemens Healthcare Diagnostics Products GmbH | Chemiluminescent compositions for use in detection of multiple analytes |
6461570, | Mar 25 1999 | Tosoh Corporation | Analyzer |
6485962, | Apr 05 2000 | Echo Technologies | Methods for signal enhancement in optical microorganism sensors |
6767733, | Oct 10 2001 | PRITEST, INC | Portable biosensor apparatus with controlled flow |
6803238, | Dec 31 1996 | HIGH THROUGHPUT GENOMICS, INC | Methods for multiplexed biochemical analysis |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Mar 09 2011 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Mar 11 2015 | STOM: Pat Hldr Claims Micro Ent Stat. |
May 22 2015 | M3552: Payment of Maintenance Fee, 8th Year, Micro Entity. |
Jul 29 2019 | REM: Maintenance Fee Reminder Mailed. |
Jan 13 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 11 2010 | 4 years fee payment window open |
Jun 11 2011 | 6 months grace period start (w surcharge) |
Dec 11 2011 | patent expiry (for year 4) |
Dec 11 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 11 2014 | 8 years fee payment window open |
Jun 11 2015 | 6 months grace period start (w surcharge) |
Dec 11 2015 | patent expiry (for year 8) |
Dec 11 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 11 2018 | 12 years fee payment window open |
Jun 11 2019 | 6 months grace period start (w surcharge) |
Dec 11 2019 | patent expiry (for year 12) |
Dec 11 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |