A cable area network (CAN) bus termination (100) is provided by an interface 104 operably coupling a cable detection input pin (3), a switch (120) and a termination resistance (130) to detect the presence and absence of one or more cables (108). The termination resistance (130) is automatically enabled to create terminations at end nodes and is automatically disabled to provide a daisy-chain connection between interim nodes of a multi-cable system.
|
1. A CAN bus termination circuit, comprising:
a cable detection input pin, a switch and a termination resistance operably coupled to detect the presence and absence of one or more cables and to automatically anable and disable the termination resistance to the one or more cables in response thereto.
13. A communication system, comprising:
a plurality of cable area network (CAN) components;
a plurality of cables daisy-chaining the plurality of CAN components such that two end nodes are separated by a plurality of interim nodes, the plurality of cables being provided with terminations by an electrical switching circuit that automatically enables termination resistances to the two end nodes while disabling termination resistances to the interim nodes, wherein the electrical switching circuit includes a cable detection pin.
12. A cable area network (CAN) bus termination circuit, comprising:
first and second interfaces for receiving a least one cable connector;
a switch coupled to the first and second interfaces; and
a termination resistance being selectively controlled by the switch so as to couple to the first and second interfaces when one cable connector is attached to one of the first and second interfaces, and the termination resistance being disabled by the switch when two cable connectors are coupled to the first and second interfaces.
16. A communication system, comprising:
a plurality of cable area network (CAN) components;
a plurality of cables daisy-chaining the plurality of CAN components such that two end nodes are separated by a plurality of interim nodes, the plurality of cables being provided with terminations by an electrical switching circuit that automatically enables termination resistances to the two end nodes while disabling termination resistances to the interim nodes, wherein the two end nodes require no information from any of the interim nodes.
17. A communication system, comprising:
a plurality of cable area network (CAN) components:
a plurality of cables daisy-chaining the plurality of CAN components such that two end nodes are separated by a plurality of interim nodes, the plurality of cables being provided with terminations by an electrical switching circuit that automatically enables termination resistances to the two end nodes while disabling termination resistances to the interim nodes, wherein the two end nodes are provided with termination resistances without sensing any activity of the interim nodes.
8. A cable area network (CAN) bus termination, comprising:
an interface for receiving at least one cable connector;
a circuit coupled to the interface; and
the circuit automatically providing a resistive termination by default in the absence of a cable connect or being coupled to the interface, and the circuit automatically providing a resistive termination in response to a single cable connector being coupled to the interface, and the circuit automatically providing a series connection between two connectors being coupled to the interface, wherein the interface comprises a single interface for receiving a Y-split cable.
11. A cable area network (CAN) bus termination, comprising:
an interface for receiving at least one cable connector;
a circuit coupled to the interface; and
the circuit automatically providing a resistive termination by default in the absence of a cable connect or being coupled to the interface, and the circuit automatically providing a resistive termination in response to a single cable connector being coupled to the interface, and the circuit automatically providing a series connection between two connectors being coupled to the interface, wherein the interface comprises first and second interface portions for receiving connectors of two straight cables.
2. The CAN bus termination circuit of
10. The CAN bus termination of
14. The communication system of
15. The communication system of
|
This invention relates in general to communication systems and more particularly to CAN bus auto-termination circuits and methods for use in communication systems.
The Controller Area Network (CAN) protocol is a serial communication protocol for communicating between various electronic devices or nodes. In accordance with CAN protocol (ISO 11898), multiple different electronic devices or nodes can be coupled to a single serial bus. Identifier bits are provided in CAN frames to allow messages and data to be directed to certain nodes on the CAN bus, and not to other nodes on the CAN bus. For example, if a device associated with an automobile dashboard sends a frame onto the CAN bus requesting that the headlights be turned on, the device on the CAN bus responsible for the brake lights can determine that the frame is intended for another device and not act upon the frame. The device controlling the headlights, however, receives and acts upon the frame by turning on the headlights.
Since the CAN signals are propagated on a common bus, reflected signals can compromise the integrity of the system. To address signal reflection concerns, resistors are typically incorporated into the CAN bus circuit at the ends of the CAN bus. Resistors are also typically provided to satisfy driver requirements of a resistive load. For example, in the ISO11898, the drivers require 60 ohms of resistive load. This requires finding the last nodes (each end) on a CAN bus and adding a termination resistor only to the ends of the nodes (ISO898 recommends approximately 120 ohm+/−10%). Because CAN bus nodes are connected in parallel, it is not always an easy task to find the last node, especially when an undetermined number of nodes are present.
Both mechanical and electrical approaches have been used to attempt to address CAN termination. Most mechanical approaches tend to use expensive relays and customer depression switches. As an example of a mechanical approach, some Ethernet boxes include a physical switch that engages or disengages when attaching a cable. Although this allows for cable detection, this mechanical approach does not adequately resolve auto-termination, since most of the boxes require a phone-jack plug containing a resistor in order to terminate the node. Another mechanical approach is to put the termination resistors inside a plug which attaches to the end of a cable, thus mechanically terminating only the nodes to which the plug is attached. This mechanical approach, however, can lead to issues if an individual inadvertently disconnects the plug thus defeating the purpose of the termination to the bus and making, for example, an entire remote-mount radio system unreliable. In the automotive industry, such terminations are not typically accessible to the consumer for just that reason.
An existing electrical approach to auto-termination described in U.S. Pat. No. 6,587,968 involves monitoring an electrical operating parameter of CAN data communication activity. However, this two stage circuit approach is rather complicated and is dependent on active signal detection in order to accomplish auto-termination. The power-on signal requirement means that each node is responsible for regenerating a power-on signal for the next node. This approach has a limitation in that a threshold is necessary in order to determine node presence, through techniques such as current monitoring. If the threshold varies, due to events such as temperature or part tolerance variations, or if a node is unable to power-up and draw current, then the method of cable detection can be compromised. As remote mount radios and accessories become more prevalent the need to adopt an auto-termination circuit becomes highly desirable.
Accordingly, there is a need for an improved termination circuit and technique for a CAN bus.
The features of the present invention, which are believed to be novel, are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify like elements, and in which:
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward.
The present invention may be embodied in several forms and manners. The description provided below and the drawings show exemplary embodiments of the invention. Those of skill in the art will appreciate that the invention may be embodied in other forms and manners not shown below. The invention shall have the full scope of the claims and shall not be limited by the embodiments shown below. It is further understood that the use of relational terms, if any, such as first, second, top and bottom, front and rear and the like are used solely for distinguishing one entity or action from another, without necessarily requiring or implying any such actual relationship or order between such entities or actions.
Briefly in accordance with the present invention, there is provided herein an apparatus that provides a passive CAN auto-termination system. The auto-termination system includes a CAN interface that operably couples a cable detection input pin, a switch and a termination resistance to detect the presence and absence of one or more cables. The termination resistance is automatically enabled to create terminations at end nodes and is automatically disabled to provide a daisy-chain connection between interim nodes of a multi-cable system. The terms termination resistance and resistive termination are used interchangeably throughout the detailed description. The CAN auto-termination technique of the present invention provides automatic termination regardless of a node's current drain or “ON” status thereby providing a robust and reliable auto-termination system.
In accordance with the present invention, CAN bus auto-termination circuit 100 includes a cable detection input pin, shown here as pin 3, a switch 120 and a termination resistance 130 operably coupled to detect the presence and absence of one or more cable connectors 106 and to automatically enable and disable the termination resistance 130 to the one or more cables in response thereto. In order to make a passive system, the integration of a simple logic level (high, low) provides for auto-termination at the nodes A, B upon cable contact, throughout the nodes operation. While termination resistance 130 is shown as two resistors, a single resistor could be used instead if desired. As shown in
Each CAN termination circuit includes two identical interface portions—portions 104a, 104b for node 100 and portions 204a, 204b for node 200. Thus, cable 108 can be connected to either interface of a given node. Pin 4 of all of the interfaces 104a, 104b and 204a, 204b is coupled to ground potential. Cable 108 includes a loop 118, 218 at each connector end 106, 206 that causes the cable detect pin 3 to be grounded once the cable 108 is attached to an interface of the circuit board. Interface traces on the substrate 102 couple pin 1 of interface portion 104a in series with pin 1 of interface portion 104b. Interface traces on the substrate 102 couple pin 2 of interface portion 104b in series with pin 2 of interface portion 104b. Interface portions 204a, 204b are similarly constructed using a switch 220 and termination resistance 230. Termination resistance 230 is shown with two resistors but as mentioned previously a single resistor could also be used if desired. The termination resistance 130 is coupled between pins 1 and 2 when a cable is detected at only one interface portion 104a or 104b (or if no cable is detected at all as a default). Termination resistance 130 is disabled when two cables are attached to the interface portions 104a, 104b as shown in
In accordance with the present invention, the CAN bus termination circuit 100 includes switch 120, such as a logic gate, transistor, multiplexer, electrical or optical relay, or other electronic switching device, the switch selectively controlling termination resistance 130 so as to couple the first and second interfaces 104a, 104b when one cable connector 106 is attached to one of the first and second interfaces as shown in
In the multi-cable system of
Referring to
In accordance with the embodiment of
The interface embodiment shown in
The auto-termination approach of the present invention provides an inexpensive solution as compared to mechanical relays and depression switches. The end node(s) require no information from any internal nodes nor do the end nodes require any activity of the internal nodes (i.e. no sensing). As cable area networks are expanded to applications such as remote mount radios, the auto-termination circuit makes it easier to use third party accessories. The use of a physical plug is eliminated thus avoiding the potential hazards associated when user's removing plugs and defeating the integrity of the CAN communication's system. The auto-termination technique operating in accordance with the present invention allows for high-speed data communication requiring terminations to be daisy chained within a communication system.
Accordingly, there has been provided a cable area network (CAN) bus termination formed of an interface that utilizes a cable detection input pin, a switch and a termination resistance to detect the presence and absence of one or more cables. The automatic enabling/disabling of the termination resistance in response to cables being connected and disconnected allows for end nodes to be terminated and interim nodes to be daisy-chained allows for infinite combinations of multiple nodes. The auto-termination approach of the present invention provides a simple electrical solution to the normally mechanical approach of terminating differential data lines. A consumer system that depends on termination at the end nodes can now be serviced or re-installed without the worry of termination plugs being placed at the correct nodes.
While the preferred embodiments of the invention have been illustrated and described, it will be clear that the invention is not so limited. Numerous modifications, changes, variations, substitutions and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present invention as defined by the appended claims.
Garrafa, Carlos A., Browder, Charles E., Houston, Timothy R.
Patent | Priority | Assignee | Title |
7855573, | Dec 14 2009 | Caterpillar Trimble Control Technologies LLC | Controller area network active bus terminator |
7881430, | Jul 28 2006 | General Electric Company | Automatic bus management |
8495162, | Jul 10 2007 | Canon Kabushiki Kaisha | Communication system, communication apparatus and communication method of communication system |
8597054, | Mar 07 2011 | Schneider Electric IT Corporation | CAN bus automatic line termination |
Patent | Priority | Assignee | Title |
5434516, | Jul 09 1993 | Future Domain Corporation | Automatic SCSI termination circuit |
6516366, | Nov 09 1994 | PMC-SIERRA, INC | Serial bus for connecting two integrated circuits with storage for input/output signals |
6587968, | Jul 16 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | CAN bus termination circuits and CAN bus auto-termination methods |
6970953, | Jan 04 2002 | HEWLETT-PACKARD DEVELOPMENT COMPANY L P | System and method for terminating a bus |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 29 2005 | Motorola, Inc. | (assignment on the face of the patent) | / | |||
Nov 29 2005 | HOUSTON, TIMOTHY R | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017293 | /0623 | |
Nov 29 2005 | BROWDER, CHARLES E | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017293 | /0623 | |
Nov 29 2005 | GARRAFA, CARLOS A | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017293 | /0623 | |
Jan 04 2011 | Motorola, Inc | MOTOROLA SOLUTIONS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 026081 | /0001 |
Date | Maintenance Fee Events |
May 23 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 26 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 19 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 25 2010 | 4 years fee payment window open |
Jun 25 2011 | 6 months grace period start (w surcharge) |
Dec 25 2011 | patent expiry (for year 4) |
Dec 25 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 25 2014 | 8 years fee payment window open |
Jun 25 2015 | 6 months grace period start (w surcharge) |
Dec 25 2015 | patent expiry (for year 8) |
Dec 25 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 25 2018 | 12 years fee payment window open |
Jun 25 2019 | 6 months grace period start (w surcharge) |
Dec 25 2019 | patent expiry (for year 12) |
Dec 25 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |