In one embodiment, a device for enabling communications signals over a medium voltage power line includes a first modem, a second modem, a third modem, and one or more switches. The first modem is electrically coupled to a medium voltage power line and is adapted to receive communications signals from the medium voltage power line. The second modem is electrically coupled to the medium voltage power line and is adapted to transmit communications signals to the medium voltage power line. The third modem is electrically coupled to a low voltage power line and is adapted to transmit communications signals to the low voltage power line. The one or more switches are coupled to the first modem, the second modem, and the third modem, and they are operable to transfer communications signals between two or more of the first modem, the second modem, and the third modem.
|
3. A device for enabling communications signals over a medium voltage power line, the device comprising:
a first modem electrically coupled to a medium voltage power line and adapted to receive communications signals from the medium voltage power line;
a second modem electrically coupled to the medium voltage power line and adapted to transmit communications signals to the medium voltage power line;
a third modem electrically coupled to a low voltage power line and adapted to transmit communications signals to the low voltage power line; and
one or more switches coupling the first modem, the second modem, and the third modem, and operable to transfer communications signals between two or more of the first modem, the second modem, and the third modem.
13. A method for enabling communications signals over a medium voltage power line, the method comprising:
using a first modem, receiving communications signals from a medium voltage power line and demodulating the communications signals received from the medium voltage power line;
identifying a destination for a first portion of the communications signals received from the medium voltage power line;
using a second modem, modulating the first portion of the communications signals and transmitting the modulated first portion of the communications signals to the medium voltage power line;
identifying a destination for a second portion of the communications signals received from the medium voltage power line; and
using a third modem, modulating the second portion of the communications signals and transmitting the modulated second portion of the communications signals to a low voltage power line.
1. A device for enabling broadband communications signals over a medium voltage power line, the device comprising:
a first modem electrically coupled to a medium voltage power line and adapted to receive broadband communications signals from the medium voltage power line;
a second modem electrically coupled to the medium voltage power line and adapted to transmit broadband communications signals to the medium voltage power line;
a third modem electrically coupled to a low voltage power line and adapted to transmit broadband communications signals to the low voltage power line;
one or more switches coupling the first modem, the second modem, and the third modem, and operable to transfer broadband communications signals between two or more of the first modem, the second modem, and the third modem;
a coupler electrically coupled to the third modem and the low voltage power line and operable to transmit communications signals from the third modem to the low voltage power line;
a wireless access point operable to communicate wireless communications signals to and from one or more of the first modem, the second modem, and the third modem; and
a housing that physically surrounds the first modem, the second modem, the third modem, the one or more switches, the coupler, and the wireless access point;
wherein the broadband communications signals comprise a transfer rate of at least 1.5 megabits per second in at least one direction.
2. The device of
4. The device of
5. The device of
6. The device of
8. The device of
9. The device of
11. The device of
12. The device of
the first modem is further adapted to transmit communications signals to the medium voltage power line;
the second modem is further adapted to receive communications signals from the medium voltage power line; and
the third modem is further adapted to receive communications signals from the low voltage power line.
14. The method of
using a wireless access point, receiving communications signals from a wireless communications device;
identifying a destination for the communications signals received from the wireless communications device; and
transmitting at least a portion of the signals received from the wireless communications device to one or more of the low voltage power line and the medium voltage power line.
15. The method of
using a wireless access point, receiving control commands from a wireless communications device, the control commands directed to modifying one or more parameters of one or more of:
the first modem;
the second modem;
the third modem; and
communications signal traffic between two or more of the first modem, the second modem, and the third modem; and
executing the received control commands from the wireless communications device.
16. The method of
18. The method of
19. The method of
21. The method of
using a simple network management protocol (SNMP) agent:
receiving an SNMP command requesting information related to one or more of:
the first modem;
the second modem;
the third modem; and
communications signal traffic between two or more of the first modem, the second modem, and the third modem; and
processing the SNMP command; and
executing the SNMP command by transmitting the requested information.
22. The method of
using the third modem, receiving communications signals from the low voltage power line and demodulating the communications signals received from the low voltage power line;
using one or more of the first modem and the second modem, modulating at least a portion of the communications signals received from the low voltage power line and transmitting the modulated portion of the communications signals to the medium voltage power line.
|
This invention relates generally to communications networks and in particular to a system and method for enabling communications signals using a medium voltage power line.
Power systems utilize a variety of electrical devices and connectors to deliver electricity from a power station or generator to customers. Some power systems utilize a three-tiered approach that utilizes high voltage power lines with voltages in the range from approximately 60 kV to 100 kV, medium voltage power lines with voltages in the range from approximately 4 kV to 60 kV, and low voltage power lines with voltages in the range from approximately 90V to 600V.
In these three-tiered power systems, high voltage power lines typically connect a power station or generator to a substation. The substation serves a particular area such as a neighborhood or community and includes a transformer to step-down the voltage from high voltage to medium voltage. Typically, multiple sets of medium voltage power lines connect the substation to local distribution transformers. The distribution transformers typically serve the customers in close proximity to the distribution transformer and step-down the voltage from medium voltage to low voltage for use by the customers.
The power lines used to deliver electricity to customers have also been used to transmit and receive communications signals. For example, power lines have been used by utility companies to transmit and receive low bandwidth communications signals to monitor equipment and to read meters. Power lines have also been used to provide broadband communications for customers. For example, using existing technologies, low voltage power lines have been used to transmit communications signals to a wireless access point, which is further used to transmit the communications signals to a metropolitan area network (MAN). As another example, using existing technologies, low voltage power lines within a customer premises have been used to transmit communications signals for use by devices within the customer premises. As yet another example, using existing technologies, communications signals have been coupled to medium voltage power lines and delivered to a wireless access point, which then wirelessly transmits the communications signals to one or more customer devices having a wireless receiver.
In one embodiment, a device for enabling communications signals over a medium voltage power line includes a first modem, a second modem, a third modem, and one or more switches. The first modem is electrically coupled to a medium voltage power line and is adapted to receive communications signals from the medium voltage power line. The second modem is electrically coupled to the medium voltage power line and is adapted to transmit communications signals to the medium voltage power line. The third modem is electrically coupled to a low voltage power line and is adapted to transmit communications signals to the low voltage power line. The one or more switches are coupled to the first modem, the second modem, and the third modem, and they are operable to transfer communications signals between two or more of the first modem, the second modem, and the third modem.
Particular embodiments of the present invention may provide one or more technical advantages. For example, certain embodiments of the present invention may provide a device that is operable to regenerate at least a portion of a communications signal on a medium voltage power line and to communicate at least a portion of a communications signal to a low voltage power line. As another example, certain embodiments of the present invention may provide a device that can be used to support the transmission of communications signals over power lines at a reduced cost. As yet another example, certain embodiments of the present invention may provide for remote control over one or more devices used to support the transmission of communications signals over power lines. In addition, certain embodiments may provide one or more other technical advantages some, none, or all of which may be readily apparent to those skilled in the art from the figures, descriptions, and claims included herein.
To provide a more complete understanding of the present invention and the features and advantages thereof, reference is made to the following description taken in conjunction with the accompanying drawings, in which:
Head-end unit 12 couples power-line communication network 10 to one or more external networks or content sources. In certain embodiments, head-end unit 12 includes hardware for coupling to one or more external networks and hardware for coupling to a medium voltage power line 18. In a particular embodiment, head-end unit includes hardware for transmitting and/or receiving communications signals, including a radio frequency (RF) carrier signal with digital information, on a medium voltage power line 18. Medium voltage power lines 18 represent transmission power lines operable to connect a substation to one or more distribution transformers. In certain embodiments, medium voltage power lines 18 may be overhead power transmission lines. In particular embodiments, medium voltage power lines 18 may deliver an alternating current (AC) of electricity between approximately 4 and 60 kilovolts. In certain embodiments, head-end unit 12 also includes hardware and/or software for transmitting and receiving communications signals to and from one or more external networks and communications network 10. For example, head-end unit 12 may couple communications network 10 to an Internet backbone through the use of a wireless and/or wireline connection, such as a fiber-optic connection. As another example, head-end unit 12 may couple power-line communications network 10 to a cable distribution network, to a voice-communications network, or to a wireless metropolitan area network (MAN). In certain embodiments, head-end unit may include a modem to interface with a medium voltage power line 18 and an optical transceiver to interface with a fiber-optic communication medium. Thus, head-end unit 12 represents any appropriate hardware and/or controlling logic for coupling communications network 10 to one or more external networks or content sources.
Regenerator units 14 may receive communications signals from medium voltage power line 18, regenerate the communications signals, and then transmit at least a portion of the communications signals back to medium voltage power line 18. Thus, a regenerator unit 14 represents any appropriate hardware and/or controlling logic for regenerating communications signals on medium voltage power line 18. In certain embodiments, regenerator unit 14 may include two or more modems and a switch. An example embodiment of regenerator unit 14 is discussed further in relation to
Customer access units 16 operate to receive communications signals from medium voltage power line 18 and transmit at least a portion of the communications signals on a low voltage power line. Thus, a customer access unit 16 represents any appropriate hardware and/or controlling logic for receiving communications signals from medium voltage power line 18 and transmitting communications signals to low voltage power line 24. In certain embodiments, customer access unit 16 may include two or more modems and a switch. An example embodiment of customer access unit 16 is discussed further in relation to
Medium voltage power line 18 represents a transmission power line operable to connect a substation to one or more distribution transformers. In certain embodiments, medium voltage power line 18 may be an overhead power transmission line. In particular embodiments, medium voltage power line 18 may deliver an alternating current (AC) of electricity between approximately 4 and 60 kilovolts.
In operation, communications signals are coupled to power-line communications network 10 through head-end unit 12. These communications signals are carried along medium voltage power lines 18 to one or more customer access units 16. As the communications signals travel along medium voltage power lines 18, the communications signals become attenuated. To minimize the effects of these attenuations, one or more regenerator units 14 may be utilized to regenerate the communications signals and, in certain embodiments, bypass any transformers that would degrade or destroy the communications signals. For example, in a particular embodiment, regenerator units 14 may be located approximately every half-mile along medium voltage line 18 to regenerate the communications signals. Once the communications signals reach customer access units 16, they are transmitted to low voltage distribution power lines for delivery to one or more customers (as well as being communicated past customer access units 16, as appropriate). In certain embodiments, communications signals transmitted over medium voltage power lines 18 may be bi-directional. For example, communications signals transmitted over medium voltage power lines 18 may generally travel from head-end unit 12 toward customer access units 16 and also from customer access units 16 toward head-end unit 12. In certain embodiments, the bi-directional functionality may be achieved through frequency domain multiplexing, through a half-duplex transmission protocol, or through other appropriate techniques. In certain embodiments, communications network 10 may operate to enable multiple end-users to transmit and/or receive broadband communications signals. For example, the broadband communications signals may represent upstream and/or downstream traffic at transmission rates of at least 200 Kbps.
Although, certain aspects and functions of the present invention are described in terms of receiving and/or transmitting communications signals, in certain embodiments, these functions may be reversed, as may be appropriate, without departing from the spirit and scope of the present invention.
In the embodiment shown, customer access unit 16 is located in close proximity to distribution transformer 26. Distribution transformer 26 generally operates to step-down the voltage from a medium voltage power line 18 to a low voltage power line 24. Low voltage power line 24 represents a distribution power line operable to connect distribution transformer 26 to one or more customers 28. In certain embodiments, low voltage power line 24 may deliver an alternating current (AC) of electricity between approximately 90 and 600 volts. Customer 28 may represent one or more residential or commercial customers of a power utility. Customer 28 may receive both power and communication signals though low voltage power line 24.
Housing 100 operates to create an enclosed area containing the elements of regenerator unit 14. In certain embodiments, housing 100 may operate to protect the elements of regenerator unit 14 and to simplify the installation of regenerator unit 14 by keeping the elements of regenerator unit 14 together with the appropriate internal connections. In certain embodiments, housing 100 may also provide structural support for the elements of regenerator unit 14 and may provide electrical insulation between certain elements of regenerator unit 14. In certain embodiments, housing may represent a weather proof, sealed container to enclose moisture sensitive elements of regenerator unit 14. For example, housing 100 may include a hinged aluminum case with one or more rubber seals and threaded closures. In a particular embodiment, housing 100 may have dimensions of less than 12 inches in height, width, and depth. For example, housing 100 may be a weatherproof Scientific-Atlanta CATV Line Extender Housing. However, any appropriate container may be used to contain the elements of regenerator 14 and/or the elements of regenerator unit 14 may be contained individually or in other combinations.
Modems 102 are electrically coupled to medium voltage power line 18. In certain embodiments, modems 102 are electrically coupled to a coupler which, in turn, is coupled to medium voltage power line 18. The coupler may couple to medium voltage power line 18 using inductive coupling, capacitive coupling, conductive coupling, a combination thereof, or any other appropriate technique. In a particular embodiment, each modem 102 is coupled to a coupler through the use of a coaxial cable and the coupler, in turn, is coupled to medium voltage power line 18 through the use of a metal oxide varistor (MOV) lighting arrester and its capacitive coupling properties. An MOV arrester serves as a high-pass filter that can withstand medium voltages. Thus, the high frequency communications signals pass through the MOV arrester, while the low frequency medium voltage current does not. The use of an MOV arrester to couple to a medium voltage power line 18 is cost effective and convenient because many existing power systems already contain MOV lightning arresters attached to medium voltage power lines 18.
In certain embodiments, each modem 102 included in regenerator unit 14 may be connected to a separate coupler. For example, regenerator unit 14 may couple to medium voltage power line 18 through the use of two MOV arresters separated by several feet with small ferrite donuts placed around the medium voltage power line 18 in between the two MOV arresters. In alternative embodiments, multiple modems 102 included in regenerator unit 14 may be connected to the same coupler. For example, two modems 102 included in a regenerator unit 14 may be connected to a single MOV arrester via a signal combiner.
In operation, modems 102 demodulate communications signals received from medium voltage power line 18 and/or modulate communications signals for transmission on medium voltage power line 18. Thus modems 102 represent any appropriate hardware and/or controlling logic for modulating and/or demodulating communications signals. In certain embodiments, modems 102 receive and transmit RF signals. For example, modems 102 may represent a HomePlug Powerline Alliance (HPA) compliant modem or a Universal Powerline Association (UPA) compliant modem. In certain embodiments, modems 102 may transmit and receive communications signals through a coaxial connection using an F-connector. In a particular embodiment, modems 102 may represent a NetGear modems. Although, in certain embodiments, multiple modems 102 may be the same, this is not necessary.
Switch 104 may couple to modems 102 and wireless access point 106. In operation, switch 104 operates to receive and transmit digital communications signals among the elements of regenerator unit 14. Thus, switch 104 may represent any appropriate hardware and/or controlling logic for directing the flow of digital communications signals among multiple elements of regenerator unit 14. For example, in certain embodiments, switch 104 may be a router, a hub, or an Ethernet switch. In certain embodiments, switch 104 may have an IP address that is unique within power-line communications network 10.
In embodiments of regenerator unit 14 including wireless access point 106, wireless access point 106 operates to transmit and/or receive wireless communications signals. Thus wireless access point 106 represents any appropriate hardware and/or controlling logic for transmitting and/or receiving wireless communications signals. In certain embodiments, wireless access point 106 may transmit and/or receive wireless communications signals using an IEEE 802.11 standard protocol. In a particular embodiment, wireless access point may be a D-Link wireless access point coupled to switch 104 through the use of 10/100 base-T connectors.
In operation, regenerator unit 14 receives communications signals from medium voltage power line 18 via a coupler, demodulates the received communications signals, re-modulates at least a portion of the received communications signals, and transmits the re-modulated communications signals to medium voltage power line 18. Thus, in certain embodiments, regenerator unit 14 operates to allow communications signals to travel greater distances along medium voltage power line 18 without becoming attenuated. Accordingly, regenerator unit 14 may operate to receive communications signals from a medium voltage power line 18, amplify the communications signals and/or filter out certain types of signal noise, and then re-transmit the communications signals back on the medium voltage power line 18. In certain embodiments, wireless access point 106 may operate to provide wireless access to one or more wireless devices. For example, wireless access point 106 may operate to create a wireless “hot spot,” by providing wireless Internet access to one or more wireless devices. In particular embodiments, wireless access point 106 may operate to allow for monitoring and/or modifying the operation of regenerator unit 14.
Housing 100, switch 104, and wireless access point 106 included in customer access unit 16 may be the same or substantially similar to housing 100, switch 104, and wireless access point 106 described above with regard to regenerator unit 14. For example, housing 100 may operate to protect the elements of customer access unit 16 and may operate to simplify the installation of customer access unit 16 by keeping the elements of customer access unit 16 together with the appropriate internal connections. In certain embodiments, housing 100 may also provide structural support for the elements of customer access unit 16 and may provide electrical insulation between certain elements of customer access unit 16. As another example, switch 104 may represent any appropriate hardware and/or controlling logic for directing the flow of digital communications signals among multiple elements of customer access unit 16. In certain embodiments, switch 104 may be a router, a hub, or an Ethernet switch.
Modems 102 included in customer access unit 116 may be the same or substantially similar to modems 102 described above with regard to regenerator unit 14, with the exception that modem 102b may electrically couple to low voltage power line 24. In operation, modem 102a demodulates signals received from medium voltage power line 18 and/or modulates communications signals for transmission on medium voltage power line 18; and modem 102b demodulates signals received from low voltage power line 24 and/or modulates communications signals for transmission on low voltage power line 24. Thus modems 102 represents any appropriate hardware and/or controlling logic for modulating and/or demodulating communications signals. In certain embodiments, modem 102a may be electrically coupled to a medium voltage power line 18 through a coupler using inductive coupling, capacitive coupling, conductive coupling, a combination thereof, or any other appropriate technique. In a particular embodiment, customer access unit 16 is coupled to a coupler through the use of a coaxial cable and the coupler, in turn, is coupled to medium voltage power line 18 through the use of a metal oxide varistor (MOV) lightning arrester.
Coupler 110 may electrically couple elements of customer access unit 16 to low voltage power line 24. Although, in certain embodiments, coupler 110 may be included within housing 100, in other embodiments, coupler 110 may be located outside of housing 100. Coupler 110 may couple modem 102b to low voltage power line 24 using inductive coupling, capacitive coupling, conductive coupling, a combination thereof, or any other appropriate technique. For example, coupler 110 may include multiple inductors and multiple capacitors. Coupler 110 operates to electrically transfer modulated communications signals transmitted by modem 102b to low voltage power line 24 for transmission to customer 28. Thus coupler 110 represents any appropriate hardware and/or controlling logic for electrically coupling modem 102b to low voltage power line 24 to transmit communications signals.
Control module 112 operates to control the operation of certain aspects of customer access unit 16. In certain embodiments, control module 112 may serve as a firewall, a router, and/or an agent. For example, control module 112 may collect and store information related to the quantity and type of communication signals received and transmitted by customer access unit 16. As another example, control module 112 may prevent particular portions of communications signals received by customer access unit 16 from being transmitted by customer access unit 16. In certain embodiments, control module 112 may operate to couple the elements of customer access unit 16 associated with portions of two logical networks. In certain embodiments, control module 112 may couple elements of customer access unit 16 associated with a wide area network (WAN) and with a local area network (LAN). For example, control module 112 may couple modem 102a associated with a WAN, such as a WAN formed at least in part by communications network 10, to modem 102b associated with a LAN, such as a LAN associated with customer 28. In certain embodiments, control module 112 may serve to control and/or limit the flow of communications signals between the WAN and the LAN. In certain embodiments, control unit 112 may operate to provide remote control and/or remote monitoring of certain aspects of customer access unit 16. For example, control module 112 may operate to provide remote control and/or remote monitoring through the use of simple network management protocol (SNMP) or through a terminal emulation program such as Telnet. In certain embodiments, control module 112 may operate as an SNMP agent to allow a remote administrator to monitor and/or control one or more parameters related to modems 102 and/or the communications signal traffic within customer access unit 16. In certain embodiments, control module 112 may include encryption algorithms to restrict access to the control features and or to restrict access from the WAN to the LAN.
In operation, customer access unit 16 may receive communications signals from a medium voltage power line 18 via the coupler, demodulate the received communications signals, re-modulate at least a portion of the received communications signals, and transmit the re-modulated communications signal to low voltage power line 24.
Although customer access unit 16 has been described as receiving communications signals from medium voltage power line 18 and transmitting communications signals to low voltage power line 24, customer access unit 16 may also receive communications signals from low voltage power line 24 and transmit communications signals to medium voltage power line 18. In certain embodiments, wireless access point 106 may operate to create a wireless “hot spot,” by providing wireless Internet access to one or more wireless devices. In particular embodiments, wireless access point 106 may operate to allow for monitoring and/or modifying the operation of customer access unit 16.
Housing 100, switch 104, wireless access point 106, coupler 110, and control module 112 included in regenerator/customer-access-unit 32 may be the same or substantially similar to the same elements described above with regard to regenerator unit 14 and customer access unit 16. Modem 102a may operate to electrically couple to a medium voltage power line 18 and modem 102b may operate to electrically couple to a low voltage power line 24. In certain embodiments modem 102a may be the same or substantially similar to modem 102 described with respect to regenerator unit 14. Similarly, in certain embodiments, modem 102b may be the same or substantially similar to modem 102b described with respect to customer access unit 18. Thus modem 102, included in regenerator/customer-access-unit 32 represents any appropriate hardware and/or controlling logic for modulating and/or demodulating communications signals.
In certain embodiments, each modem 102a included in regenerator/customer-access-unit 32 may be connected to a separate coupler. For example, regenerator/customer-access-unit 32 may couple to medium voltage power line 18 through the use of two MOV arresters separated by several feet with small ferrite donuts placed around the medium voltage power line 18 in between the two MOV arresters. In alternative embodiments, multiple modems 102a included in regenerator/customer-access-unit 32 may be connected to the same coupler. For example, two modems 102a included in a regenerator/customer-access-unit 32 may be connected to a single MOV arrester via a signal combiner.
In operation, regenerator/customer-access-unit 32 may operate to regenerate communications signals on a medium voltage power line 18 and/or provide customer 28 with access to communications network 10. In certain embodiments, regenerator/customer-access-unit 32 may function as either a regenerator unit 14 or a customer access unit 16. In a particular embodiment, regenerator/customer access unit may function as both a regenerator unit 14 and a customer access unit 16. For example, regenerator/customer access unit 32 may receive communications signals from medium voltage power line 18, selectively communicate a portion of the received communications signals to low voltage power line 24, and selectively communicate a portion of the received communications signals to medium voltage power line 18. In certain embodiments, regenerator/customer-access-unit 32 may also receive wireless signals through the use of a wireless access point 106. For example, wireless signals received by a wireless access point 106 may include instructions for monitoring and/or modifying the operation of regenerator/customer-access-unit 32. As another example, wireless signals received by wireless access point 106 may be transmitted to a medium voltage power line 18 by a modem 102a or may be transmitted to a low voltage power line 24 by modem 102b. In certain embodiments, wireless access point 106 may operate to create a wireless “hot spot,” by providing wireless Internet access to one or more wireless devices.
At step 212, a destination for a second portion of the communications signals received from medium voltage power line 18 is identified. Although the second portion may be distinct from the first portion, in certain embodiments, all or a fraction of the second portion may be included in the first portion. For example, all of the communications signals included within the first portion may also be included within the second portion. Furthermore, in certain embodiments, the first and second portions may include all of the communications signals received from medium voltage power line 18. At step 214, the second portion of communications signals are modulated. In certain embodiments, modem 102b may modulate the second portion of communications signals for transmission over low voltage power line 24. At step 216, the modulated second portion of communications signals are transmitted to low voltage power line 24. In certain embodiments, the modulated signals may be transmitted to low voltage power line 24 through the use of coupler 110, included within regenerator/customer-access-unit 32.
Thus, method 200 represents a series of steps for enabling communications signals using medium voltage power lines 18. Method 200 represents one mode of operation, and power-line communication system 30 contemplates example devices using suitable techniques, elements, and applications, for performing this method of operation. Many of the steps in the flowchart may take place simultaneously, and in certain embodiments, some of the steps in the flowchart may be taken a different order than shown. For example, in certain embodiments, steps 212, 214, and 216 may occur before, or substantially simultaneous with, the occurrence of steps 206, 208, and 210. In addition, the devices may use any appropriate methods with additional or fewer steps to transmit communications signals using medium voltage power lines 18. Moreover, other devices of system 30 may perform similar techniques to support the transmittal of communications signals over medium voltage power lines 18.
Although the present invention has been described with several embodiments, a plenitude of changes, substitutions, variations, alterations, and modifications may be suggested to one skilled in the art, and it is intended that the invention encompass all such changes, substitutions, variations, alterations, and modifications as fall within the spirit and scope of the appended claims.
Patent | Priority | Assignee | Title |
10009063, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
10009065, | Dec 05 2012 | AT&T Intellectual Property I, LP | Backhaul link for distributed antenna system |
10009067, | Dec 04 2014 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for configuring a communication interface |
10009901, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
10020587, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Radial antenna and methods for use therewith |
10020844, | Dec 06 2016 | AT&T Intellectual Property I, LP | Method and apparatus for broadcast communication via guided waves |
10027397, | Dec 07 2016 | AT&T Intellectual Property I, L P | Distributed antenna system and methods for use therewith |
10027398, | Jun 11 2015 | AT&T Intellectual Property I, LP | Repeater and methods for use therewith |
10033107, | Jul 14 2015 | AT&T Intellectual Property I, LP | Method and apparatus for coupling an antenna to a device |
10033108, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
10044409, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
10050697, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
10051483, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for directing wireless signals |
10051629, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
10051630, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
10063280, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
10069185, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
10069535, | Dec 08 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
10074886, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration |
10074890, | Oct 02 2015 | AT&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
10079661, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having a clock reference |
10090594, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
10090601, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium |
10090606, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
10091787, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
10096881, | Aug 26 2014 | AT&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium |
10103422, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for mounting network devices |
10103801, | Jun 03 2015 | AT&T Intellectual Property I, LP | Host node device and methods for use therewith |
10135145, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
10135146, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
10135147, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
10136434, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
10139820, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
10142010, | Jun 11 2015 | AT&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
10142086, | Jun 11 2015 | AT&T Intellectual Property I, L P | Repeater and methods for use therewith |
10144036, | Jan 30 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
10148016, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for communicating utilizing an antenna array |
10154493, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
10168695, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
10170840, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
10178445, | Nov 23 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Methods, devices, and systems for load balancing between a plurality of waveguides |
10194437, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
10205655, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
10224634, | Nov 03 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Methods and apparatus for adjusting an operational characteristic of an antenna |
10224981, | Apr 24 2015 | AT&T Intellectual Property I, LP | Passive electrical coupling device and methods for use therewith |
10225025, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
10225842, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method, device and storage medium for communications using a modulated signal and a reference signal |
10243270, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
10243784, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
10264586, | Dec 09 2016 | AT&T Intellectual Property I, L P | Cloud-based packet controller and methods for use therewith |
10291311, | Sep 09 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
10291334, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
10298293, | Mar 13 2017 | AT&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
10305190, | Dec 01 2016 | AT&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
10312567, | Oct 26 2016 | AT&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
10320586, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
10326494, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus for measurement de-embedding and methods for use therewith |
10326689, | Dec 08 2016 | AT&T Intellectual Property I, LP | Method and system for providing alternative communication paths |
10340573, | Oct 26 2016 | AT&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
10340600, | Oct 18 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
10340601, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
10340603, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
10340983, | Dec 09 2016 | AT&T Intellectual Property I, L P | Method and apparatus for surveying remote sites via guided wave communications |
10341142, | Jul 14 2015 | AT&T Intellectual Property I, L P | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
10348391, | Jun 03 2015 | AT&T Intellectual Property I, LP | Client node device with frequency conversion and methods for use therewith |
10349418, | Sep 16 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion |
10355367, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Antenna structure for exchanging wireless signals |
10359749, | Dec 07 2016 | AT&T Intellectual Property I, L P | Method and apparatus for utilities management via guided wave communication |
10361489, | Dec 01 2016 | AT&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
10374316, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
10382976, | Dec 06 2016 | AT&T Intellectual Property I, LP | Method and apparatus for managing wireless communications based on communication paths and network device positions |
10389029, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
10389037, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
10396887, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
10411356, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
10439675, | Dec 06 2016 | AT&T Intellectual Property I, L P | Method and apparatus for repeating guided wave communication signals |
10446936, | Dec 07 2016 | AT&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
10498044, | Nov 03 2016 | AT&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
10530505, | Dec 08 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for launching electromagnetic waves along a transmission medium |
10535928, | Nov 23 2016 | AT&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
10547348, | Dec 07 2016 | AT&T Intellectual Property I, L P | Method and apparatus for switching transmission mediums in a communication system |
10601494, | Dec 08 2016 | AT&T Intellectual Property I, L P | Dual-band communication device and method for use therewith |
10637149, | Dec 06 2016 | AT&T Intellectual Property I, L P | Injection molded dielectric antenna and methods for use therewith |
10650940, | May 15 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
10665942, | Oct 16 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for adjusting wireless communications |
10679767, | May 15 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
10694379, | Dec 06 2016 | AT&T Intellectual Property I, LP | Waveguide system with device-based authentication and methods for use therewith |
10727599, | Dec 06 2016 | AT&T Intellectual Property I, L P | Launcher with slot antenna and methods for use therewith |
10755542, | Dec 06 2016 | AT&T Intellectual Property I, L P | Method and apparatus for surveillance via guided wave communication |
10777873, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
10784670, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
10797781, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
10811767, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
10812174, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
10819035, | Dec 06 2016 | AT&T Intellectual Property I, L P | Launcher with helical antenna and methods for use therewith |
10916969, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
10938108, | Dec 08 2016 | AT&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
11032819, | Sep 15 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
11256831, | Nov 12 2019 | System and method for secure electric power delivery | |
7633966, | Apr 19 2000 | Mosaid Technologies Incorporated | Network combining wired and non-wired segments |
7636373, | Apr 19 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Network combining wired and non-wired segments |
7715441, | Apr 19 2000 | Taiwan Semiconductor Manufacturing Company, Ltd | Network combining wired and non-wired segments |
7715534, | Mar 20 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
7778514, | Jul 15 2005 | International Broadband Electric Communications, Inc. | Coupling of communications signals to a power line |
7852874, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
7873058, | Dec 21 2005 | Mosaid Technologies Incorporated | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
7876767, | Apr 19 2000 | Taiwan Semiconductor Manufacturing Company, Ltd | Network combining wired and non-wired segments |
7881462, | Feb 16 2004 | Taiwan Semiconductor Manufacturing Company, Ltd | Outlet add-on module |
7933297, | Apr 19 2000 | Taiwan Semiconductor Manufacturing Company, Ltd | Network combining wired and non-wired segments |
7978726, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
7990908, | Nov 13 2002 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Addressable outlet, and a network using the same |
8289991, | Apr 19 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Network combining wired and non-wired segments |
8304740, | May 19 2008 | EMR RESOURCES LLC | Mobile frame structure with passive/active sensor arrays for non-invasive identification of hazardous materials |
8330115, | Dec 01 2005 | ADVANCED MEASUREMENT TECHNOLOGY INC | High performance neutron detector with near zero gamma cross talk |
8363797, | Mar 20 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
8364326, | Feb 22 2011 | Asoka USA Corporation | Set of sensor units for communication enabled for streaming media delivery with monitoring and control of power usage of connected appliances |
8466426, | Dec 01 2005 | ADVANCED MEASUREMENT TECHNOLOGY INC | Fabrication of a high performance neutron detector with near zero gamma cross talk |
8644166, | Jun 03 2011 | Asoka USA Corporation | Sensor having an integrated Zigbee® device for communication with Zigbee® enabled appliances to control and monitor Zigbee® enabled appliances |
8755946, | Feb 22 2011 | Asoka USA Corporation | Method and apparatus for using PLC-based sensor units for communication and streaming media delivery, and for monitoring and control of power usage of connected appliances |
8848725, | Apr 19 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Network combining wired and non-wired segments |
8855277, | Mar 20 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
8867506, | Apr 19 2000 | Taiwan Semiconductor Manufacturing Company, Ltd | Network combining wired and non-wired segments |
8867523, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8873575, | Apr 19 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Network combining wired and non-wired segments |
8873586, | Apr 19 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Network combining wired and non-wired segments |
8885659, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8885660, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8908673, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8982903, | Apr 19 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Network combining wired and non-wired segments |
8982904, | Apr 19 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Network combining wired and non-wired segments |
9063528, | Feb 22 2011 | Asoka USA Corporation | Set of sensor units for communication enabled for streaming media delivery with monitoring and control of power usage of connected appliances |
9094105, | Jun 02 2011 | Method for using power lines for wireless communication | |
9119127, | Dec 05 2012 | AT&T Intellectual Property I, LP | Backhaul link for distributed antenna system |
9154966, | Nov 06 2013 | AT&T Intellectual Property I, LP | Surface-wave communications and methods thereof |
9209902, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9257842, | Feb 22 2011 | Asoka USA Corporation | Set-top-box having a built-in master node that provides an external interface for communication and control in a power-line-based residential communication system |
9300359, | Jun 03 2011 | Asoka USA Corporation | Sensor having an integrated Zigbee® device for communication with Zigbee® enabled appliances to control and monitor Zigbee® enabled appliances |
9312919, | Oct 21 2014 | AT&T Intellectual Property I, LP | Transmission device with impairment compensation and methods for use therewith |
9369179, | Nov 30 2013 | Method for using power lines for wireless communication | |
9461706, | Jul 31 2015 | AT&T Intellectual Property I, LP | Method and apparatus for exchanging communication signals |
9467870, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
9479266, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9490869, | May 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
9503189, | Oct 10 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
9509415, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
9520945, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
9525210, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9525524, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
9531427, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
9544006, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
9564947, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
9565470, | Feb 22 2011 | Asoka USA Corporation | Set-top-box having a built-in master node that provides an external interface for communication and control in a power-line-based residential communication system |
9571209, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
9577306, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9577307, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9596001, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
9608692, | Jun 11 2015 | AT&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
9608740, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
9615269, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
9627768, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9628116, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
9628854, | Sep 29 2014 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for distributing content in a communication network |
9640850, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
9653770, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
9654173, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
9661505, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
9667317, | Jun 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
9674711, | Nov 06 2013 | AT&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
9680670, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
9685992, | Oct 03 2014 | AT&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
9692101, | Aug 26 2014 | AT&T Intellectual Property I, LP | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
9699785, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
9705561, | Apr 24 2015 | AT&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
9705571, | Sep 16 2015 | AT&T Intellectual Property I, L P | Method and apparatus for use with a radio distributed antenna system |
9705610, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
9712350, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
9722318, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
9729197, | Oct 01 2015 | AT&T Intellectual Property I, LP | Method and apparatus for communicating network management traffic over a network |
9735833, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for communications management in a neighborhood network |
9736789, | Feb 22 2011 | Asoka USA Corporation | Power line communication-based local hotspot with wireless power control capability |
9742462, | Dec 04 2014 | AT&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
9748626, | May 14 2015 | AT&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
9749013, | Mar 17 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
9749053, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
9749083, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
9755697, | Sep 15 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
9762289, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
9768833, | Sep 15 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
9769020, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
9769128, | Sep 28 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
9780834, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
9787412, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
9788326, | Dec 05 2012 | AT&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
9793951, | Jul 15 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
9793954, | Apr 28 2015 | AT&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
9793955, | Apr 24 2015 | AT&T Intellectual Property I, LP | Passive electrical coupling device and methods for use therewith |
9794003, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9800327, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
9806818, | Jul 23 2015 | AT&T Intellectual Property I, LP | Node device, repeater and methods for use therewith |
9820146, | Jun 12 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
9831912, | Apr 24 2015 | AT&T Intellectual Property I, LP | Directional coupling device and methods for use therewith |
9836957, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
9838078, | Jul 31 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
9838896, | Dec 09 2016 | AT&T Intellectual Property I, L P | Method and apparatus for assessing network coverage |
9847566, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
9847850, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
9853342, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
9860075, | Aug 26 2016 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Method and communication node for broadband distribution |
9865911, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
9866276, | Oct 10 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
9866309, | Jun 03 2015 | AT&T Intellectual Property I, LP | Host node device and methods for use therewith |
9871282, | May 14 2015 | AT&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
9871283, | Jul 23 2015 | AT&T Intellectual Property I, LP | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
9871558, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9876264, | Oct 02 2015 | AT&T Intellectual Property I, LP | Communication system, guided wave switch and methods for use therewith |
9876570, | Feb 20 2015 | AT&T Intellectual Property I, LP | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9876571, | Feb 20 2015 | AT&T Intellectual Property I, LP | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9876584, | Dec 10 2013 | AT&T Intellectual Property I, L.P. | Quasi-optical coupler |
9876587, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
9876605, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
9882257, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
9882277, | Oct 02 2015 | AT&T Intellectual Property I, LP | Communication device and antenna assembly with actuated gimbal mount |
9882657, | Jun 25 2015 | AT&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
9887447, | May 14 2015 | AT&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
9893795, | Dec 07 2016 | AT&T Intellectual Property I, LP | Method and repeater for broadband distribution |
9904535, | Sep 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
9906269, | Sep 17 2014 | AT&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
9911020, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for tracking via a radio frequency identification device |
9912027, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
9912033, | Oct 21 2014 | AT&T Intellectual Property I, LP | Guided wave coupler, coupling module and methods for use therewith |
9912381, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
9912382, | Jun 03 2015 | AT&T Intellectual Property I, LP | Network termination and methods for use therewith |
9912419, | Aug 24 2016 | AT&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
9913139, | Jun 09 2015 | AT&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
9917341, | May 27 2015 | AT&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
9927517, | Dec 06 2016 | AT&T Intellectual Property I, L P | Apparatus and methods for sensing rainfall |
9929755, | Jul 14 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
9930668, | May 31 2013 | AT&T Intellectual Property I, L.P. | Remote distributed antenna system |
9935703, | Jun 03 2015 | AT&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
9947982, | Jul 14 2015 | AT&T Intellectual Property I, LP | Dielectric transmission medium connector and methods for use therewith |
9948333, | Jul 23 2015 | AT&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
9948354, | Apr 28 2015 | AT&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
9948355, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
9954286, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
9954287, | Nov 20 2014 | AT&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
9960808, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
9967002, | Jun 03 2015 | AT&T INTELLECTUAL I, LP | Network termination and methods for use therewith |
9967173, | Jul 31 2015 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, LP | Method and apparatus for authentication and identity management of communicating devices |
9973299, | Oct 14 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
9973416, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
9973940, | Feb 27 2017 | AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
9991580, | Oct 21 2016 | AT&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
9997819, | Jun 09 2015 | AT&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
9998870, | Dec 08 2016 | AT&T Intellectual Property I, L P | Method and apparatus for proximity sensing |
9998932, | Oct 02 2014 | AT&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
9999038, | May 31 2013 | AT&T Intellectual Property I, L P | Remote distributed antenna system |
Patent | Priority | Assignee | Title |
1730412, | |||
4142178, | Apr 25 1977 | ABB POWER T&D COMPANY, INC , A DE CORP | High voltage signal coupler for a distribution network power line carrier communication system |
4438519, | May 04 1981 | General Electric Company | Methods, and apparatus, for transmitting high-bit-rate digital data in power line communication media having high harmonic noise content |
4471399, | Mar 11 1982 | PULSAR TECHNOLOGIES, INC | Power-line baseband communication system |
4845466, | Aug 17 1987 | NXP B V | System for high speed digital transmission in repetitive noise environment |
5351272, | May 18 1992 | SATIUS HOLDING, INC | Communications apparatus and method for transmitting and receiving multiple modulated signals over electrical lines |
5684826, | Feb 08 1996 | ACEX Technologies, Inc.; ACEX TECHNOLOGIES, INC | RS-485 multipoint power line modem |
5777769, | Dec 28 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Device and method for providing high speed data transfer through a drop line of a power line carrier communication system |
5856776, | Nov 24 1993 | REMOTE METERING SYSTEMS LTD | Method and apparatus for signal coupling at medium voltage in a power line carrier communications system |
5864284, | Mar 06 1997 | IBEC HOLDINGS, INC | Apparatus for coupling radio-frequency signals to and from a cable of a power distribution network |
5892430, | Apr 25 1994 | Foster-Miller, Inc. | Self-powered powerline sensor |
5892431, | May 20 1997 | OPTIMUS ACQUISITION LLC; ALPHA TECHNOLOGIES SERVICES, INC | Power multiplexer for broadband communications systems |
5929750, | Oct 22 1992 | AMPERION, INC | Transmission network and filter therefor |
5933071, | Feb 21 1997 | AMPERION, INC | Electricity distribution and/or power transmission network and filter for telecommunication over power lines |
5937342, | Jan 28 1997 | PCTEL MARYLAND, INC | Wireless local distribution system using standard power lines |
5949327, | Aug 26 1994 | Norweb PLC | Coupling of telecommunications signals to a balanced power distribution network |
6037678, | Oct 03 1997 | RPX CLEARINGHOUSE LLC | Coupling communications signals to a power line |
6040759, | Feb 17 1998 | IBEC HOLDINGS, INC | Communication system for providing broadband data services using a high-voltage cable of a power system |
6144292, | Oct 22 1992 | AMPERION, INC | Powerline communications network employing TDMA, FDMA and/or CDMA |
6243571, | Sep 21 1998 | Gula Consulting Limited Liability Company | Method and system for distribution of wireless signals for increased wireless coverage using power lines |
6278357, | Feb 04 1999 | Electric Power Research Institute, Inc | Apparatus and method for implementing digital communications on a power line |
6282405, | Oct 22 1992 | AMPERION, INC | Hybrid electricity and telecommunications distribution network |
6396392, | May 23 2000 | SATIUS HOLDING, INC | High frequency network communications over various lines |
6396393, | Dec 28 1999 | Sony Corporation | Transmitting device, receiving device, and receiving method |
6452482, | Dec 30 1999 | Ericsson Inc | Inductive coupling of a data signal to a power transmission cable |
6492897, | Aug 04 2000 | System for coupling wireless signals to and from a power transmission line communication system | |
6493201, | Jan 21 2000 | Cooper Technologies Company | Spark gap retrofit module for surge arrester |
6496104, | Mar 15 2000 | CURRENT TECHNOLOGIES, L L C | System and method for communication via power lines using ultra-short pulses |
6646447, | Apr 20 2000 | Ambient Corporation | Identifying one of a plurality of wires of a power transmission cable |
6683531, | May 04 2000 | Trench Limited | Coupling device for providing a communications link for RF broadband data signals to a power line and method for installing same |
6785532, | Aug 01 1996 | RPX CLEARINGHOUSE LLC | Power line communications |
6809633, | Mar 29 2001 | Ericsson Inc | Coupling broadband modems to power lines |
6844810, | Oct 17 2002 | Ericsson Inc | Arrangement of a data coupler for power line communications |
6854059, | Jun 07 2000 | LAKESTAR SEMI INC ; Conexant Systems, Inc | Method and apparatus for medium access control in powerline communication network systems |
6876289, | May 29 2003 | Hubbell Incorporated | Arrester disconnector assembly having a capacitor |
6885674, | May 28 2002 | Amperion, Inc. | Communications system for providing broadband communications using a medium voltage cable of a power system |
6897764, | Dec 30 1999 | Ericsson Inc | Inductive coupling of a data signal for a power transmission cable |
6965302, | Apr 14 2000 | Current Technologies, LLC | Power line communication system and method of using the same |
6980089, | Aug 09 2000 | UNWIRED BROADBAND, INC | Non-intrusive coupling to shielded power cable |
20010038329, | |||
20010045888, | |||
20010053207, | |||
20020002040, | |||
20020097953, | |||
20020105413, | |||
20020109585, | |||
20020171535, | |||
20030039257, | |||
20030054793, | |||
20030160684, | |||
20030190110, | |||
20030210135, | |||
20030224784, | |||
20030228005, | |||
20030234713, | |||
20040003934, | |||
20040056734, | |||
20040135676, | |||
20040142599, | |||
20040223617, | |||
20040227621, | |||
20040227622, | |||
20040246107, | |||
20050001693, | |||
20050007241, | |||
20050017825, | |||
20050030118, | |||
20050076149, | |||
20050111533, | |||
20050111553, | |||
WO2004068638, | |||
WO182497, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 27 2005 | ZITTING, BRENT R | INTERNATIONAL BROADBAND ELECTRIC COMMUNICATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016756 | 0070 | |
Jun 28 2005 | International Broadband Electric Communications, Inc. | (assignment on the face of the patent) |
Date | Maintenance Fee Events |
Jun 15 2011 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 28 2015 | REM: Maintenance Fee Reminder Mailed. |
Jan 15 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 15 2011 | 4 years fee payment window open |
Jul 15 2011 | 6 months grace period start (w surcharge) |
Jan 15 2012 | patent expiry (for year 4) |
Jan 15 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 15 2015 | 8 years fee payment window open |
Jul 15 2015 | 6 months grace period start (w surcharge) |
Jan 15 2016 | patent expiry (for year 8) |
Jan 15 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 15 2019 | 12 years fee payment window open |
Jul 15 2019 | 6 months grace period start (w surcharge) |
Jan 15 2020 | patent expiry (for year 12) |
Jan 15 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |