A method and apparatus for detecting a channel jammed by narrowband jamming interference in a block oriented digital transmission system such as an orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT) system. A spectrum of a received data bearing signal is examined to identify areas of the spectrum that are likely corrupted by a narrowband jamming interference. The method identifies jammed channels by applying a boxcar filter, in order to identify narrow peaks in the spectrum that are substantially larger in magnitude than adjacent channels. channels identified as jammed or affected by a jamming signal, are listed in a jam mask used for screening out corrupted channels during data transmission.
|
19. A method for detecting narrowband jamming signals in a block oriented digital transmission system, comprising:
selecting a plurality of channels using a channel selector
filtering a set of data based on a first selected channel received from the channel selector for identifying a jammed channel;
computing an average power of selected channels different from the first selected channel
computing a threshold value that is larger than the computed average power;
comparing a power of the first selected channel with the threshold value and identifying the first selected channel as the jammed channel if the power of the first selected channel is greater than the threshold value;
identifying a predefined number of channels adjacent to the jammed channel that are not identified as jammed; and
storing data for identifying the jammed channel and the predetermined number of adjacent channels not identified as jammed in a jam mask memory.
27. A method for detecting narrowband jamming signals in a block oriented digital transmission system, comprising:
filtering a set of data from a selected channel received from a channel selector for identifying a jammed channel that transmits a signal having a signal power that exceeds a predetermined threshold with respect to an average power of selected channels using at least one window filter, wherein the filtering comprises computing a reference value from the set of data using a boxcar filter, computing a threshold value by multiplying the reference value by a threshold factor, and comparing a power of the selected channel with the threshold value and outputting a value having a first value if the power of the selected channel is greater than the threshold value and outputting a signal having a second value if the power of the selected channel is less than the threshold value;
identifying a predefined number of channels adjacent to the jammed channel that are not identified as jammed; and
storing data for identifying the jammed channel and the adjacent channels in a jam mask memory.
1. An apparatus for detecting a narrowband jamming signal in a block oriented digital transmission system, comprising:
a filtering unit adapted to receive data from a channel selector for identifying a channel that is jammed;
a masked channel selector adapted to receive an indication of a jammed channel from the filtering unit and to identify a predetermined number of channels adjacent to the jammed channel that are not identified as jammed;
a jam mask memory adapted to store information that identifies the jammed channel and the predetermined number of adjacent channels not identified as jammed; wherein the filtering unit comprises,
a filter adapted to receive data from the channel selector and adapted to provide an average power of selected channels different from a channel centered in the filter, and
a comparator adapted to receive, from the channel selector, a power of the channel centered in the in the filter, adapted to receive a threshold value that is larger than the average power of the selected channels, and adapted to provide a signal to the masked channel selector for identifying the channel centered in the filter as a jammed channel if the power of the channel centered in the filter is greater than the threshold value.
10. An apparatus for detecting a narrowband jamming signal in a block oriented digital transmission system, comprising:
a filtering unit adapted to receive data from a channel selector for identifying a channel that is jammed by a jamming signal having a signal power that exceeds a predetermined threshold with respect to an average power of selected channels:
a masked channel selector adapted to receive an indication of the jammed channel from the filtering unit and to identify a predetermined number of channels adjacent to the jammed channel that are not identified as jammed by the jamming signal:
a jam mask memory adapted to store information that identifies the jammed channel and the adiacent channels;
a boxcar filter having inputs connectable to the channel selector and an output for providing an average power of the selected channels;
a multiplier connected to the boxcar filter, for computing a reference value by multiplying the average power of the selected channels by a threshold factor; and
a comparator having a first input for receiving, from the channel selector, a first value of a channel centered in the boxcar filter, a second input for receiving, from the multiplier, the reference value and an output that feeds a signal to the masked channel selector for identifying the channel centered in the boxcar filter as a jammed channel if the first value is greater than the reference value.
2. An apparatus as claimed in
3. An apparatus as claimed in
4. An apparatus as claimed in
5. An apparatus as claimed in
6. An apparatus as claimed in
7. An apparatus as claimed in
8. An apparatus as claimed in
9. An apparatus as claimed in
11. An apparatus claimed in
12. An apparatus claimed in
13. An apparatus as claimed in
14. An apparatus as claimed in
15. An apparatus as claimed in
16. An apparatus as claimed in
17. An apparatus as claimed in
18. An apparatus as claimed in
20. A method as claimed in
21. A method as claimed in
22. A method as claimed in
23. A method as claimed in
24. A method as claimed in
25. A method as claimed in
26. A method as claimed in
28. A method as claimed in
29. A method as claimed in
30. A method as claimed in
31. A method as claimed in
32. A method as claimed in
33. A method as claimed in
|
This is the first application filed for the present invention.
The present invention relates to broadband data transmission and more particularly to a method for detecting a jammed channel in a block oriented transmission system.
Data transmission using a block oriented digital transmission system such as orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT) signaling involves dividing a predetermined bandwidth into several narrowband channels, each channel having its own frequency of transmission. The data transmission in each narrowband channel can be affected by interference from external noise sources. OFDM and DMT are used in home networks were data is transmitted on pre-existing alternating current (AC) power lines. A power line is a noisy transmission medium for data communication. Noise sources, such as electronic and electro-mechanical sources that are generated by brush electric motors in home appliances, dimmer switches, fluorescent and halogen lights, etc., create impulse noise related to a 50 or 60 Hz power cycle. In addition, power supplies create harmonics associated with their switching frequency. Also, external transmissions, such as impulse noises and radio frequency (RF) interference from such sources as short wave and amateur radio, and other bands, can affect the quality of the channel on the power line. These noise sources interfere with reception of data signals, usually resulting in signal corruption, resulting in data errors, especially if the power of the external interfering signal is higher than the power of the transmitted OFDM signal. Information about channels affected by RF interference or other jammer signals is useful, and can be used to discard data sent on jammed channels. Several methods for detecting jammed channels using the analysis of signals received by a receiver are known in the prior art. A window function is one of the simplest means for analyzing the received signal.
For example, U.S. Pat. No. 6,111,919 issued to Yonge, III, on Aug. 29, 2000, titled “SYNCHRONIZATION OF OFDM SIGNALS” discloses a method for temporarily aligning a received symbol that is transmitted via OFDM channels, with a reference symbol and/or an earlier received symbol. According to Yonge, received information is processed by applying a window function, such as Hanning, a Hamming or a Blackman window. The window function is applied for filtering the signal prior to applying a fast Fourier transform (FFT) to the received signal. However, Yonge, does not use the window filter for identifying jammed channels, nor does he teach maintaining a list of jammed channels during OFDM data transmission.
Therefore, there exists a need for a simple method and apparatus that is adapted to identify jammed channels in an OFDM or DMT data transmission system, where an interference can corrupt the data transmission.
It is an object of the present invention to provide an apparatus and a method for detecting a jammed channel in a block oriented digital communication system.
There is therefore provided, in accordance with an aspect of the invention, an apparatus for detecting a narrowband jamming signal in a block oriented digital transmission system, including a filtering unit connectable to a channel selector, adapted to receive a set of data from the channel selector for identifying a channel that is jammed by a jamming signal having a signal power that exceeds a predetermined threshold with respect to an average power of selected adjacent channels, a masked channel selector connected to the filtering unit adapted to receive an indication of the jammed channel from the filtering unit and to identify the jammed channel and a predetermined number of adjacent channels affected by the jamming signal, and a jam mask memory connected to the masked channel selector for storing information that identifies the jammed channel and adjacent channels.
In accordance with another aspect of the invention there is provided a method for detecting narrowband jamming signals in a block oriented digital transmission system, including steps of filtering a set of data from a selected channel received from a channel selector for identifying a jammed channel that transmits a signal having a signal power that exceeds a predetermined threshold with respect to an average power of selected adjacent channels using at least one rectangular window filter, identifying a jammed channel and a predefined number of adjacent channels, and storing data for identifying the jammed channel and the adjacent channels in a jam mask memory.
Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
Orthogonal frequency division multiplexing (OFDM) and discrete multi-tone (DMT) are block oriented digital communication systems where a block of complex information bearing symbols (an information block) is encoded onto a transmitted waveform that comprises a summation of sinusoidal signals. This waveform (referred to herein as a physical layer (PHY) symbol) lasts for a predetermined period of time. Subsequent information blocks are transmitted in subsequent PHY symbols. The component sinusoidal signals are often referred to as sub-carriers or tones. Before data can be transmitted between two network elements or channels, as is well known in the art, a sender network element transmits a channel estimate request in a highly robust mode, such as ROBO (ROBust OFDM) mode, and a media access control (MAC) address to a receiver element. Upon receipt of a channel estimate request, the receiver element analyses the received request, identifies a quality of data transmission in each channel, identifies channels that are subject to interference, and transmits back to the sender element a tone or channel map that provides a list of channels that can or cannot be used for data transmission.
In order to analyze a received signal the information bearing symbols are extracted from the signal by performing a discrete Fourier transformation (DFT) on the sampled PHY symbols and then performing an equalization which includes dividing each DFT output by a complex channel estimate.
Channels that are identified as being jammed are included in a jam mask, which is a list identifying channels that are affected by jamming signals. The example depicted in
The jam mask can be used in subsequent processing operations to mitigate the effects of the jamming signal. For example, it is well known that forward error correction (FEC) schemes provide error correction particularly when it is known beforehand which bits are likely to be in error. Such schemes include, for example, erasure or soft decision decoding methods. Any data encoded on channels that are listed in the jam mask are likely to have errors after decoding and can be input to a FEC decoder as an erasure or low reliability input, to improve the error correction performance. As another example, symbol synchronization for OFDM or DMT systems is often performed by processing the DFT outputs to a predetermined transmit signal. However, the presence of a large narrowband jammer can cause this process to fail. If channels affected by the jammer are identified and simply deleted from the processing, the synchronization will be successful.
The procedure for detecting jammed channels discussed above is effective for all channels of the spectrum except the edges of the DFT output power spectrum. In the example illustrated above, the 2-3-2 boxcar can not be applied to detect a jamming signal on the first three or last three channels of the spectrum (channels: 0, 1, 2, 81, 82, and 83) because the averaging window used to obtain the reference value extends past the ends of the spectrum. The boxcar filter calculation near the edges of the spectrum is adapted to pad a sufficient number of channels having zero power on both sides of the spectrum. In order to obtain the reference value, either n1 or n2 rather than n1+n2 is used as a divider.
A size of a jamming signal that will be detected is determined by a frequency selectivity of the DFT, the threshold factor, n1, n2, and n3
The frequency response of a rectangular window of duration N is
where j=√{square root over (−1)},
and e is a natural logarithm base.
The response of an N-point DFT to a sinusoidal signal cos(ω0n+θ) can be computed to be:
Consequently the rectangular window frequency response is a good indication of the frequency selectivity of DFT processing of a sinusoidal jamming signal. This frequency response in the vicinity of the main lobe is shown in
The frequency selectivity of the DFT output can be improved dramatically using a technique that takes advantage of a fact that DMT and OFDM systems are adapted to use a cyclic prefix. A cyclic prefix, as shown in
Let a single received PHY symbol (r(n))be indexed by the integers from −ng to N-1 where the samples that are indexed by negative integers represent the cyclic prefix.
where w(n) is any function of n into real values between 0 and 1. The pre-summed series (u(n)) is then used as the input to an N point DFT.
If we define a window function as
and compute the frequency response of this function:
then the DFT output is as defined in equation (2) so the frequency response of the window function controls the frequency selectivity of the DFT with cyclic pre-summing. One choice for w(n) is a raised cosine:
The frequency response corresponding to this option with ng=N/2 is plotted in
The 2-7-2 boxcar described above could be used in conjunction with a much smaller threshold factor to detect smaller jamming signals. However, this would have two undesirable effects. For smaller jamming signals it is not necessary to place seven channels in the channel jam mask. Also, there is a risk that a peak in the received spectrum could be narrow enough to be mistaken for a jamming signal if the threshold factor was set too low. For optimum detection of jammed channels the spectrum should be processed with several boxcar filters in conjunction with threshold factors that are based on the computed DFT output.
Although the invention has been discussed in the context of DMT and OFDM communication systems, it could be used to identify channels jammed by narrowband signals of any signal that includes multiple, discrete, carriers.
Although the invention has also been described using a DFT as a means for measuring a signal spectrum, the invention is also applicable to systems in which transmitted spectra are computed by other means.
The processing described above has dealt with a power of DFT outputs. However, an equivalent processing could be done with any other monotonic function of the power such as a logarithm or a square root of the power of DFT outputs.
The DFT unit 98 performs a calculation by converting a sampled waveform into a sequence of complex numbers that characterizes a spectrum of the sampled waveform. The output data of DFT unit 98 is fed at the same time to a symbol acquisition and timing circuit 100, a narrowband jamming signal detector 102 and a data demodulation and decoder module 104. The narrowband jamming signal detector 102 is designed to detect and maintain a list of jammed channels. The narrowband jamming signal detector 102 provides the information about a jammed channel 106 to symbol acquisition and timing circuit 100 and to the data demodulation and decoder module 104. The jammed channel list is used by another power network modem (not shown). The symbol acquisition and timing circuit 100 is adapted to analyze data received from the DFT unit 98 using information about the jammed channels to control the AGC filter 92 and the time domain window 96. After receiving a preamble, the symbol acquisition and timing circuit 100 sends an instruction using a connection 108 to the AGC filter 92 to freeze AGC gain of the AGC amplifier 88 to keep the AGC amplifier 90 from overcompensating during PHY symbol acquisition. At the same time, the symbol acquisition and timing circuit 100 sends, over a connection 110, an instruction that includes a value requesting a time delay, to the time domain window 96 for proper window alignment. The narrowband jamming signal detector 102, the symbol acquisition and timing circuit 100 and the data demodulation and decoder module 104 are coupled via respective connections 106, 112 and 114 to a media access controller 116 having a media access control (MAC) address that serves as a unique physical network address, for communicating with a host (not shown), to manage received and transmitted streams of data and to control the symbol acquisition and timing circuit 100 via connection 120 and the data demodulation and decoder module 104 via a connection 122. On receipt of a channel estimation response via the connection 114 from the data demodulation and decoding circuit 104, the media access controller 116 stores a tone map indicating which tones should be used for future transmissions to the responding station.
The media access controller 116, on receipt of a set of data from the data demodulation and decoder module 104 via connection 114, responds with an instruction via connection 122 respecting what to do with the received data, such as discard received data or continue data reception. In addition, the media access controller 116 controls the narrowband jamming signal detector 102 via connection 123. The media access controller 116 is also coupled to a transceiver digital signal processing (TX DSP) module 124 that is adapted to process data received via connection 126 from the host, using the MAC 116. The TX DSP module 124 processes the data and sends it to a digital-to-analog (D/A) converter 128. The output signal from the D/A converter 128 is fed to a line driver 130 which sends a signal via the power line network using a power line coupler 84.
If the value of the central channel 156 is greater than the threshold value 160, the comparator 158 sends a signal to a jam mask memory 172 to mark the selected channel 156 as a jammed channel.
The comparator 158 compares the reference value 160 and the value of the selected channel 156 and outputs either “True”, if the value of the selected channel is greater than the reference number (indicating that the selected channel is jammed channel) or “False” if the value of the selected channel is less than the reference number (indicating that the selected channel is not a jammed channel).
In order to simplify the embodiment of the present invention, instead of using frequency response of the DFT to identify adjacent channels affected by a jammer channel as described above, a masked channel selector 170 can be used. The masked channel selector 170 is coupled to the counter 144, the filter selector 146 and the comparator 158. The masked channel selector 170 is connected to a jam mask memory 172 and outputs information identifying a jammed channel and adjacent channels likely to be affected by the jammed channel. The masked channel selector 170 performs the following steps.
01.
IF Jam Detect = True
02
Write Jam mask memory (Counter)
03.
FOR A = 1 to Neighbor Parameter
04.
B = Counter
05.
Compute B − A
06.
IF B ≧ 0
07.
Write Jam mask memory (B)
08.
C = Counter
09.
Compute C + A
10.
IF C ≦ 83
11.
Write Jam Mask memory (C)
12.
NEXT (A)
13.
END IF
If the jam detect signal is “True” (step 01), the masked channel selector 170 writes in the jam mask memory 162 a current value of the counter 144, which is a sequential number representation of the jammed channel. Then a loop (steps 03-12) that repeats steps 04-11 is executed a number of times determined by a variable “Neighbor Parameter”. The Neighbor Parameter is a real number and its value depends on the characteristics of each window filter. In an embodiment of the invention, the Neighbor Parameter is set to: 1 for a 2-3-2 boxcar filter with the lowest threshold value, 2 for a 2-3-2 boxcar filter with a higher threshold value and 3 for a 2-5-2 boxcar filter with a still higher threshold value.
It shall be noted that in one embodiment of the invention, a window filter that uses different parameters is applied sequentially three times to the same DFT data stored in the channel selector 142. As described above the characteristics of the filter are determined by a threshold parameter and a size, variables n1, n2 and n3, for each rectangular window.
In an embodiment, the narrowband jamming signal detector 102 uses the following boxcar windows: 2-3-2 and 2-5-2. Identification of the jammed channels using different parameters for window filters permits detection of different respective jammed channels.
The embodiment(s) of the invention described above is(are) intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Fanson, John Louis, Taylor, Douglas Hamilton, Lynch, Bradley Robert
Patent | Priority | Assignee | Title |
10608999, | Dec 08 2016 | Celeno Communications (Israel) Ltd. | Establishing a secure uplink channel by transmitting a secret word over a secure downlink channel |
8355745, | Oct 15 2007 | NEC Corporation | Coefficient decision apparatus, radio communication system, coefficient decision method, and memory medium |
8385187, | Feb 08 2008 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE EPFL | Method for retrieving data from ultra wideband radio transmission signals and receiver implementing said method |
8874025, | Feb 22 2011 | Celeno Communications (Israel) Ltd. | Time-varying PHY-level wireless security |
8948683, | Feb 22 2011 | Celeno Communications (Israel) Ltd. | Multi-mode phy-level wireless security |
9014665, | Feb 22 2011 | Celeno Communications (Israel) Ltd. | Phy-level wireless security |
9295028, | Oct 21 2013 | AT&T Intellectual Property I, LP | Detection and mitigation of denial-of-service attacks in wireless communication networks |
9781156, | Oct 21 2013 | AT&T Intellectual Property I, L.P. | Detection and mitigation of denial-of-service attacks in wireless communication networks |
Patent | Priority | Assignee | Title |
3938149, | Jan 19 1967 | ITT Corporation | Frequency scan radar system with provision for interference elimination |
4544926, | May 11 1981 | ALENIA AERITALIA & SELENIA S P A | Adaptive jamming-signal canceler for radar receiver |
4768219, | Jul 18 1986 | Sony Corporation | Cordless telephone |
5930231, | Jun 30 1995 | Cisco Technology, Inc | Block spectrum receiver for a broadband communications system |
6088327, | Jun 07 1995 | Deutsche Thomson-Brandt GmbH | Method and circuit arrangement for improving carrier separation for the transmission of OFDM signals |
6111919, | Jan 20 1999 | Qualcomm Incorporated | Synchronization of OFDM signals |
6240129, | Jul 10 1997 | RPX Corporation | Method and windowing unit to reduce leakage, fourier transformer and DMT modem wherein the unit is used |
6269132, | Apr 26 1999 | Qualcomm Incorporated | Windowing function for maintaining orthogonality of channels in the reception of OFDM symbols |
6438367, | Nov 09 2000 | UNWIRED BROADBAND, INC | Transmission security for wireless communications |
6724840, | Apr 15 2000 | The Aerospace Corporation | Adaptive interference cancellation method |
6751187, | May 17 2001 | QUALCOMM INCORPORATED, A DELAWARE CORPORATION | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission |
7110434, | Mar 28 2002 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Cancellation of interference in a communication system with application to S-CDMA |
20020122499, | |||
20020127986, | |||
20030086366, | |||
20030185282, | |||
20030216122, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 20 2002 | FANSON, JOHN LOUIS | COGENCY SEMICONDUCTOR INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013042 | /0478 | |
Jun 20 2002 | TAYLOR, DOUGLAS HAMILTON | COGENCY SEMICONDUCTOR INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013042 | /0478 | |
Jun 20 2002 | LYNCH, BRADLEY ROBERT | COGENCY SEMICONDUCTOR INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013042 | /0478 | |
Jun 24 2002 | Intellon Corporation | (assignment on the face of the patent) | / | |||
Jan 28 2004 | COGENCY SEMICONDUCTOR, INC | Intellon Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014375 | /0510 | |
Dec 15 2009 | Intellon Corporation | ATHEROS POWERLINE LLC | MERGER SEE DOCUMENT FOR DETAILS | 024103 | /0834 | |
Dec 15 2009 | ATHEROS POWERLINE LLC | ATHEROS COMMUNICATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024103 | /0872 | |
May 24 2011 | ATHEROS COMMUNICATIONS, INC | Qualcomm Atheros, Inc | MERGER SEE DOCUMENT FOR DETAILS | 027301 | /0678 | |
Oct 22 2012 | Qualcomm Atheros, Inc | Qualcomm Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029555 | /0937 |
Date | Maintenance Fee Events |
Aug 05 2011 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 07 2015 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Oct 15 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 15 2015 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Oct 16 2015 | R2552: Refund - Payment of Maintenance Fee, 8th Yr, Small Entity. |
Sep 23 2019 | REM: Maintenance Fee Reminder Mailed. |
Mar 09 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 05 2011 | 4 years fee payment window open |
Aug 05 2011 | 6 months grace period start (w surcharge) |
Feb 05 2012 | patent expiry (for year 4) |
Feb 05 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 05 2015 | 8 years fee payment window open |
Aug 05 2015 | 6 months grace period start (w surcharge) |
Feb 05 2016 | patent expiry (for year 8) |
Feb 05 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 05 2019 | 12 years fee payment window open |
Aug 05 2019 | 6 months grace period start (w surcharge) |
Feb 05 2020 | patent expiry (for year 12) |
Feb 05 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |