A system that incorporates an interactive graphical user interface for visualizing clusters (categories) and segments (summarized clusters) of data. Specifically, the system automatically categorizes incoming case data into clusters, summarizes those clusters into segments, determines similarity measures for the segments, scores the selected segments through the similarity measures, and then forms and visually depicts hierarchical organizations of those selected clusters. The system also automatically and dynamically reduces, as necessary, a depth of the hierarchical organization, through elimination of unnecessary hierarchical levels and inter-nodal links, based on similarity measures of segments or segment groups. Attribute/value data that tends to meaningfully characterize each segment is also scored, rank ordered based on normalized scores, and then graphically displayed. The system permits a user to browse through the hierarchy, and, to readily comprehend segment inter-relationships, selectively expand and contract the displayed hierarchy, as desired, as well as to compare two selected segments or segment groups together and graphically display the results of that comparison. An alternative discriminant-based cluster scoring technique is also presented.
|
14. A computer-readable storage medium containing a plurality of categorized data records and a computer-implemented method of calculating and displaying a graphic representation of various characteristics and discriminating information for each category, comprising:
providing nodes that represent each base category;
providing nodes that represent combined categories, wherein combinations of similar categories are grouped together to form the combined categories;
utilizing a leaf node to form the bottom of the graphic representation;
utilizing a root node to form the top of the graphic representation
connecting nodes representing sub-categories of a combined category via arcs;
combining the two base categories that are the most similar into a combined category;
repeating process of combining similar categories until one combined category represents all records in a collection; and
allowing a node to be selected, wherein the system displays additional information about corresponding category, the additional information is at least one of number of records in the category or characteristic attributes of the category, and allowing an arc to be selected,
wherein the system displays information relating to categories connected by the arc, such as similarity value for the connected categories.
1. A computer-implemented system for automatically categorizing unknown incoming data and a category visualization (CV) system that displays a graphic representation of each category as a hierarchical map, comprising:
a node corresponding to each base category;
nodes corresponding to combinations of similar categories;
a leaf node corresponding to a base category, the leaf node is positioned as a cluster of nodes at a lowest level of the hierarchy wherein combinations of similar categories are positioned on top of the leaf node, forming successively higher levels of the hierarchy;
a root node corresponding to a category that contains all records in a collection, the root node forms top of the hierarchy;
a non-leaf node corresponding to each combined category, wherein similar base categories are combined into a combined category;
wherein each non-leaf node has two arcs that connect the non-leaf node to two nodes corresponding to sub-categories of the combined category; and
wherein if a node is selected, the system displays additional information about corresponding category, the additional information is at least one of number of records in the category or characteristic attributes of the category, and
wherein if an arc is selected, the system displays information relating to categories connected by the arc, such as similarity value for the connected categories.
2. The system of
3. The system of
4. The system of
5. The system of
where discrim(xi|G1,G2) is the measurement of how well the value of an attribute distinguishes the records of one combined category from the records of another combined category,
G1 is the first combined category,
G2 is the second combined category,
xi is the records in one of the combined categories,
p (xi|G1) is the probability that a record containing specific attributes is in combined category G1, and
p (xi|G2) is the probability that a record containing specific attributes is in combined category Gx1|G1.
6. The system of
7. The system of
where dist(h1, h2) is the distance and similarity between two categories,
X1, . . . , Xm is the attribute values,
h1, h2 is a count of a total number of records in categories 1 and 2,
p(x1Xm|h1) is a conditional probability that a record has attribute values x1, . . . Xm given that it is a record from category 1, and
p(x1Xm|h2) is a conditional probability that a record has attribute values x1, . . . Xm given that it is a record from category 2.
8. The system of
where dist(h1,h2) is the distance and similarity between two categories,
xi is the attribute values,
h1,h2 is a count of a total number of records in categories 1 and 2,
xi|h1) is a conditional probability that a record has attribute values xi given that it is a record from category 1, and
xi|h2) is a conditional probability that a record has attribute values x1 given that it is a record from category 2.
9. The system of
where dist(G1,G2) is the distance and similarity between two combined categories,
G1 is the first combined category,
G2 is the second combined category,
hj,hk is a count of a total number of records in combined categories 1 and 2, and
p(hj)p(hk) is a probability that a record is in each of the combined categories.
10. The system of
dist(G1,G2)=min{dist(hj)(hk)|hj∈G1,hk∈G2} where dist(G1,G2) is the minimum distance between two combined categories,
G1 is the first combined category,
G2 is the second combined category, and
h1,hk is a count of a total number of records in combined categories 1 and 2.
11. The system of
dist(G1,G2)=max{dist(hj)(hk)|hj∈G1,hk∈G2} where dist(G1,G2) is the maximum distance between two combined categories,
G1 is the first combined category,
G2 is the second combined category, and
h1, hk is a count of a total number of records in combined categories 1 and 2.
12. The system of
nodes that correspond to each attribute of the corresponding base categories; and
arcs that correspond to values of that attribute;
wherein each node, except the root node, represents a setting of attribute values as indicated by arcs in a path from a first node to the root node.
13. The system of
15. The system of
|
This application is a continuation of U.S. patent application Ser. No. 09/845,151, filed on Apr. 30, 2001, and entitled “APPARATUS AND ACCOMPANYING METHODS FOR VISUALIZING CLUSTERS OF DATA AND HIERARCHICAL CLUSTER CLASSIFICATIONS,” which is a continuation-in-part of co-pending U.S. patent application Ser. No. 09/104,751, filed on Jun. 25, 1998, and entitled “METHOD AND SYSTEM FOR VISUALIZATION OF CLUSTERS AND CLASSIFICATIONS”. The entireties of these applications are incorporated herein by reference.
1. Field of the Invention
The invention relates to a system that incorporates an interactive graphical user interface for graphically visualizing clusters (specifically segments) of data. Specifically, the system automatically categorizes incoming case data into clusters, summarizes those clusters into segments, determines similarity measures for those particular segments and then forms and visually depicts hierarchical organizations of those segments. The system also compares two user-selected segments or segment groups together and graphically displays normalized scored comparison results. Additionally, the system also automatically and dynamically reduces, as necessary, a depth of the hierarchical organization (total number of hierarchical levels) based on scored similarity measures of the selected clusters; and, based on normalized scores, provides and displays a relative ranking of the displayed segments, as well as displays summarized characteristics of any such segment.
2. Description of the Prior Art
Computer systems have long been used for data analysis. For example, data may include demographics of users and web pages accessed by those users. A web master (i.e., a manager of a web site) may desire to review web page access patterns of those users in order to optimize links between various web pages or to customize advertisements to the demographics of the users. However, it may be very difficult for the web master to analyze the access patterns of thousands of users involving possibly hundreds of web pages. However, this difficulty may be lessened if the users can be categorized by common demographics and common web page access patterns. Two techniques of data categorization—classification and clustering—can be useful when analyzing large amounts of such data. These categorization techniques are used to categorize data represented as a collection of records, each containing values for various attributes. For example, each record may represent a user, and the attributes describe various characteristics of that user. The characteristics may include the sex, income, and age of the user, or web pages accessed by the user.
Classification techniques allow a data analyst (e.g., web master) to group the records of a collection (dataset or population) into classes. That is, the data analyst reviews the attributes of each record, identifies classes, and then assigns each record to a class.
Clustering techniques provide an automated process for analyzing the records of the collection and identifying clusters of records that have similar attributes. For example, a data analyst may request a clustering system to cluster the records into five clusters. The clustering system would then identify which records are most similar. and place them into one of the five clusters. (See, e.g., the Duda et al textbook) Also, some clustering systems automatically determine the number of clusters.
Once the categories (e.g., classes and clusters) are established, the data analyst can use the attributes of the categories to guide decisions. For example, if one category represents users who are mostly teenagers, then a web master may decide to include advertisements directed to teenagers in the web pages that are accessed by users in this category. However, the web master may not want to include advertisements directed to teenagers on a certain web page if users in a different category who are senior citizens who also happen to access that web page frequently. Even though the categorization of the collection may reduce the amount of data from thousands of records, a data analyst still needs to review possibly 10 or 20 categories. The data analyst still needs to understand the similarity and dissimilarity of the records in the categories so that appropriate decisions can be made.
Currently, the Internet is revolutionizing commerce by providing a relatively low cost platform for vendors and a very convenient platform for consumers through which consumers, in the form of Internet users, and vendors can engage in commerce. Not only are certain vendors merely appearing through a so-called web presence, but existing traditional, so-called “bricks and mortar”, retail establishments are augmenting their sales mechanisms through implementation of electronic commerce web sites. To facilitate this commerce, various computer software manufacturers have developed and now have commercially available software packages which can be used to quickly implement and deploy, and easily operate a fully-functional electronic commerce web site. One such package is a “Commerce Server” software system available from the Microsoft Corporation of Redmond, Washington (which is also the present assignee hereof). In essence and to the extent relevant, the “Commerce Server” system provides a very comprehensive, scalable processing infrastructure through which customized business-to-consumer and business-to-business electronic commerce web sites can be quickly implemented. This infrastructure, implemented on typically a web server computer, provides user profiling, product cataloguing and content management, transaction processing, targeted marketing and merchandizing functionality, and analysis of consumer buying activities.
With the rapid and burgeoning deployment of electronic commerce web sites, web site owners have realized that voluminous consumer data gathered and provided through such a site, and particularly its electronic commerce server, provides a wealth of useful information. Through this information, on-line consumer buying patterns can be discerned and targeted advertising, even to the point of directed targeted advertising to a particular individual based on that person's particular buying habits and/or interests, can be rendered which, in turn, generally yields significantly higher response rates and improved user experiences over that resulting from traditional mass media advertising and at significantly lower costs to the vendor.
Yet, a practical difficulty has arisen. While categories (also known as classes) can be readily and automatically extracted from data, such as on-line consumer transaction data, through well-known conventional clustering techniques such as the “EM” algorithm, it has proven to be rather difficult to present category data in a simple meaningful and easily understood manner to a business manager who is making marketing or other decisions based on that data. Generally, in the past, category data was simply provided as textual lists, that typically listed a number of consumers in each category and an associated probabilistic or other numeric measure (collectively “metrics”) associated with each user and each category. These users and categories could then be compared against each other through assessing their metrics to discern trends or other information of interest.
However, textual data, particularly if it is voluminous, which is very often the case with consumer purchasing data, is extremely tedious for an analyst to quickly comprehend (i.e., “digest”) particularly when looking for trends or other relationships that are “hidden” in the data. Furthermore, while conventional clustering techniques, such as the “EM” algorithm, are rather effective in clustering the data, based on discerned relationships amongst different cases in the data (a case being a single record with all its associated attribute data, as discussed above), often times the resulting clusters are simply mathematical constructs in a flat list. The resulting clusters provide little, if any and often no, physically discernible basis in reality, i.e., the qualitative meaning and physical distinctions (apart from differences in mathematical metrics) between different clusters are unclear, if not very difficult, to comprehend. In essence, the question of “What do the clusters represent?” can become very difficult for the data analyst to answer. Hence, useful distinctions effectively become lost in the results, thus frustrating not only a data analyst who is then working with that data but also ultimately a business manager who, in an effort to reduce business risk, may need to make costly marketing and sales decisions, such as how to effectively market a given product and to whom and when, based on that data.
Given the difficulty associated with assessing text-based clustering results, various techniques have been developed in the art for visualizing clustered data, and particularly its classifications, in an attempt to facilitate and aid, e.g., the analyst or business manager in extracting useful relationships from the data.
One technique that exists in the art is described in published International patent application WO 90/04321 to S. R. Barber et al (published on Apr. 19, 1990). This technique relies on dynamically classifying data into non-exclusive pre-defined categories with those categories then being displayed as leaves in a semantic network. While this technique is certainly useful, it is not applicable to situations where the categories are not known beforehand—as often occurs with consumer data.
A basic need of any such visualization system is to provide cluster information in a manner that allows its viewer to readily appreciate essential differences between the cases in a cluster, i.e., those distinctions that characterize the data.
Thusfar, the visualization tools available in the art for depicting clusters and their inter-relationships have proven to be quite deficient in practice in meeting this need, particularly, though certainly not exclusively, when utilized in an electronic commerce setting.
In that regard, a visualization tool needs to automatically cluster data without prior knowledge of categories, i.e., the tool must discern the categories from the data itself.
Furthermore, data relationships are often far more complex than those depicted through a two-level network. Often, categories form parts of multi-level hierarchies, with the qualitative basis for those relationships only appearing evident when all or most of the hierarchy is finally extracted from the data and exposed. Furthermore, as noted, hierarchical distinctions, that are often quite granular, are the product of mathematical clustering techniques and from a qualitative standpoint, may be essentially meaningless; hence, necessitating a need to dynamically reduce a depth of the hierarchy to eliminate these distinctions and thus provide meaningful visual results to, e.g., the data analyst and business manager.
Moreover, to enhance understanding of what individual clusters mean and their inter-relationships, a user of the visualization system should also be able to readily browse through a hierarchy of displayed clusters, and, if desired, select individual clusters for comparison with each other—where, to facilitate browsing, the displayed clusters are organized based on their similarity to each other. That user should also be able to expand or contract the displayed hierarchy, as desired, to enhance understanding the relationships that exist amongst the various clusters. In that regard, these clusters should also be scored, through similarity metrics, and ranked accordingly, with the results being visually displayed in a meaningful graphical manner. Summarized data for each cluster should also be meaningfully displayed.
Thus, the present invention is directed at providing an interactive cluster visualization tool which properly addresses and satisfies these heretofore unfilled needs in the art. Such a tool is particularly, though certainly not exclusively, suited for use in servers designed to support electronic commerce.
Advantageously, the present invention overcomes the deficiencies associated with cluster visualization systems known in the art.
In accordance with the inventive teachings, one embodiment of the present invention provides a cluster (category) visualization (“CV”) system that, given a set of incoming data records, automatically determines proper categories for those records, without prior knowledge of any such categories; clusters the records accordingly into those categories; and thereafter presents a graphic display of the categories of a collection of those records referred to as “category graph.” The CV system may optionally display the category graph as a “similarity graph” or a “hierarchical map.” When displaying a category graph, the CV system displays a graphic representation of each category. The CV system displays the category graph as a similarity graph or a hierarchical map in a way that visually illustrates the similarity between categories. The display of a category graph allows a data analyst to better understand the similarity and dissimilarity between categories. A similarity graph includes a node for each category and an arc connecting nodes representing categories whose similarity is above a threshold. A hierarchical map is a tree structure that includes a node for each base category along with nodes representing combinations of similar categories.
The CV system calculates and displays various characteristic and discriminating information about the categories. In particular, the CV system displays information describing the attributes of a category that best discriminate the records of that category from another category. The CV system also displays information describing the attributes that are most characteristic of a category.
A second and increasingly sophisticated embodiment of the present invention not only provides automatic category determination and record clustering and display, but also provides a visualization tool that, for summarized cluster data in the form of segments, calculates similarity measures therebetween, and, based on those measures, forms and graphically depicts multi-level hierarchical organizations of those segments. The system also compares two user-selected segments or segment groups together and graphically displays normalized scored comparison results, and by so doing, readily enhances and facilitates user understanding of inter-relationships among a data population represented by the clusters.
Furthermore, since some clustering distinctions, which are the product of mathematical clustering techniques, may be rather granular from a quantitative perspective but essentially meaningless, from a qualitative standpoint, this embodiment automatically and dynamically changes the hierarchy, based on similarity measures, to eliminate these distinctions, by reducing, where appropriate, the number of hierarchical levels and inter-nodal links. By doing so, this embodiment provides meaningful results in a visual fashion that facilitates user discovery and understanding of inter-relationships then existing in the data population.
In addition, to further enhance user understanding of these inter-relationships, this second embodiment also permits a user to readily browse through the hierarchy of displayed segments, and expand or contract the hierarchy, as desired, to further expose the relationships amongst the various segments. In that regard, the displayed segments are scored, through similarity metrics with the results being visually displayed. Attribute/value data that tends to meaningfully characterize each segment is also scored, rank ordered based on normalized scores and then graphically displayed.
In accordance with a feature of the present invention, segments and segment groups can be scored, based on their similarity, through various different alternate techniques, with one such technique being discriminant-based. Advantageously, this particular technique statistically balances the similarity measure between two segments or segment groups with the strength of its support, i.e., amount of the underlying evidence (e.g., number of records (event observations) in each segment or segment group).
The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to multiple figures.
The present invention provides a category visualization (“CV”) system that presents a graphic display of the categories of a collection of records referred to as “category graph.” The CV system may optionally display the category graph as a “similarity graph” or a “hierarchical map.” When displaying a category graph, the CV system displays a graphic representation of each category. The CV system displays the category graph as a similarity graph or a hierarchical map in a way that visually illustrates the similarity between categories. The display of a category graph allows, e.g., a data analyst to better understand the similarity and dissimilarity between categories.
A similarity graph includes a node for each category and an arc connecting nodes representing categories that are similar. The CV system, in a first one of its embodiments, allows the data analyst to select a similarity threshold and then displays arcs between nodes representing pairs of categories whose similarity is above the similarity threshold. Similarity is a rating of how similar the records of one category are to the records of another category. A mathematical basis for similarity is provided below. As the data analyst changes the similarity threshold, the CV system adds and removes arcs between the nodes based on the decrease or increase of the similarity threshold. The CV system-also allows the data analyst to combine categories that are most similar and to split a combined category into its sub-categories. The CV system updates the display of the similarity graph to reflect the combining and splitting of categories.
A hierarchical map includes a node for each base category along with nodes representing combinations of similar categories. A base category is a category identified by a categorization process (e.g., classification and clustering), whereas a combined category has been assigned the records of two or more base categories. A leaf node representing each base category forms the bottom of the hierarchy, and a root node representing a category that contains all the records in the collection (population or dataset) forms the top of the hierarchy. Each non-leaf node represents a combined category. Each non-leaf node has two arcs that connect the non-leaf node to the two nodes representing the sub-categories of the combined categories represented by the non-leaf node. To form the hierarchy, the CV system starts with the base categories and combines the two base categories that are most similar to form a combined category. The CV system then combines the two categories (including combined categories, but not including any category that has already been combined) that are most similar. The CV system repeats this process until one combined category represents all the records in the collection.
The CV system allows a data analyst to interact with a category graph to obtain further information relating to the categories. In response to a data analyst selecting a displayed graphic representation, the CV system displays additional information about the represented category. For example, the CV system may display the number of records in the category or characteristic attributes of the category. In response to a data analyst selecting a displayed arc, the CV system displays information relating to the categories connected by the arc. For example, if the data analyst selects an arc in a similarity network, then the CV system may display the similarity value for the two categories represented by the nodes that the selected arc connects. The CV system also allows the user to de-emphasize (e.g., hide) the nodes representing certain categories so that data analysts may focus their attention on the other non-de-emphasized categories.
Although a mathematical basis for similarity is provided below in detail, similarity can be defined in many different ways. Conceptually, similarity refers to a rating of the differences between the attribute values of the records in one category and the attribute values of the records in another category. A high value for similarity indicates that there is little difference between the records in the two categories.
TABLE 1
Number
of
Category Name
Records
broad
18
web tools
15789
developer
6632
advanced office
3868
office
12085
ie
22621
enterprise
10162
office support
9516
ie support
6687
windows support
12618
Window 200 contains a display area 201 and a slider 202. The similarity network 220 within the display area contains a node for each category and an arc for each pair of categories whose similarity is above the similarity threshold. For example, node 203 representing category “ie support” and node 204 representing category “windows support” have a similarity that is above the similarity threshold and are thus connected by arc 206. However, the similarity between category “ie support” and category “enterprise” is below the similarity threshold. Therefore, the similarity network has no arc between node 205 representing category “enterprise” and node 203 representing category “ie support.”
The shading within the nodes of the similarity graph indicate the size (i.e., number of records) of the category that the node represents relative to the category with the most number of records. Since category “ie” contains more records than any other category, the CV system shades the entire node representing category “ie.” Since category “windows support” has a number of records that is approximately one-half the number of records in category “ie,” the CV system shades approximately one-half of the node representing category “windows support.” Alternatively, the shading of the nodes can represent the number of records in the category in relation to a total number of records in the collection. In such a case, the CV system would shade approximately 10% of the node representing a category that contains 10% of the records of the collection. The nodes of a category graph can also have various graphic shapes. The nodes of the similarity graph in this example are displayed as an oval containing the name of the category that the node represents. Alternatively, the nodes may be any shape such as a circle or a rectangle.
The CV system provides vertical slider 202, which alternatively may be displayed as a horizontal slider, to allow the data analyst to set the similarity threshold. As the data analyst moves the slider up and down, the similarity threshold increases or decreases, respectively.
Although the arcs of
Through manipulation of slider 202, the number of similarity arcs shown in a similarity network can range, with the slider at one end of its travel, from no arcs being shown to, with the slider at an opposing end of its travel, all pair-wise connections being shown. In practice, however, it is sometimes useful to limit an upper range of the slider so that not all arcs are shown. A useful upper limit for the slider is a point at which (1) the similarity network is connected (one can travel from any one node to any other) and (2) the number of arcs shown is a minimum. Furthermore, in practice, it is also useful to layout the similarity network in a manner that is pleasing to the eye. One preferred mode for doing so is to use a spring model as described in T.M.J. Fruchtermann et al, “Graph drawing by force-directed placement”, Software Practice and Experience, Vol. 21, No. 11, 1991, pages 1129-1164 (which is incorporated by reference herein), where an apparent attractive force between nodes depends on the similarity measure between those nodes and particularly is proportional to a similarity score between those nodes.
The CV system allows the data analyst to control combining and splitting of categories. In particular, the CV system allows the data analyst to combine categories that are most similar and to split categories that have been combined. The combining and splitting of categories allows the data analyst to focus on more or fewer categories, as needed.
To further help a data analyst focus on certain categories, the CV system allows a data analyst to de-emphasize a category.
Many of the user interface features of the similarity network have analogous features in the hierarchical map. For example,
When a data analyst moves a cursor over the nodes of a category graph, the CV system displays additional information for the node.
The CV system allows a data analyst to browse through a hierarchical map in either a top-down or bottom-up manner. The browsing displays the base categories and combined categories based on similarity. When browsing from the bottom up, the CV system displays nodes representing combined categories (along with child nodes) in the same order as those combined categories were generated when the hierarchical map was created. When browsing from the top down, the CV system displays the nodes representing combined categories in the reverse order. When browsing in a top-down manner, the CV system first displays the root node and its two child nodes because the root node represents the combined category that was generated last. The CV system displays “next” and “previous” buttons for browsing down and up the nodes in the hierarchy. Alternatively, the CV system provides a slider that allows the data analyst to move forward (“next”) and backward (“previous”) for browsing up and down the hierarchy of nodes. In response to the data analyst selecting the “next” button, the CV system displays child nodes representing the sub-categories of the displayed node but in a reverse order to that which the combined categories were generated. Also, in response to a data analyst selection of the “previous” button, the CV system removes the last child nodes displayed. When browsing in a bottom-up manner, the CV system first displays the node (and its child nodes) representing the combined category that was generated first. In response to the data analyst selection of “next node,” the CV system displays the node (and child nodes if not already displayed) representing the combined category that was next generated. Also, in response to a data analyst selection of the “previous” button, the CV system removes the node(s) displayed most recently. The CV system supports browsing a hierarchical map that is displayed in either tree or circular format.
When in browsing mode, the data analyst may select a node to display a list of various options for displaying information relating to the nodes.
TABLE 2
Node summary
Compare this node with parent
Compare this node with sibling
Compare this node to rest of the world
Compare this node with left child
Compare this node with right child
Compare the children of this node
A “node summary” includes more detailed information about the category that the node represents. For example, the node summary may include the number of records in the category and the percentage of the records that have various attribute values, which is referred to as “characteristic information”. The “compare” options display similarity and discriminating information between the selected category and other categories. The discriminating information indicates which attributes distinguish the record in the selected category from records in other categories.
The CV system displays additional information about categories when requested by a data analyst. This additional information includes characteristic and discriminating information.
The CV system provides for displaying certain information in a 3-D graphical form.
The CV system also provides for displaying categories in a decision tree format.
Similarity, as used in the present invention, corresponds to “distance” between the records (cases) in two categories (clusters). We will now present a mathematical basis for calculating such a distance.
In the following, X1, . . . , Xm refers to the variables representing the attributes and x1, . . . , xm refers to the state of a variable, that is, the attribute values. First, however, various probabilities are defined that are used to calculate the distance. The probability of a record in a collection having attribute values x1, . . . , xm is represented by a joint probability density function given by the following equation:
where: hj represents category j, where p (hj) represents the probability that any record is in category j;
where: size (hj) is a count of a total number of records in category j, and the αj are hyper-parameters (e.g., αj=1 for all j). For example, if category j contains 10,000 records and the collection contains 100,000 records, then p(hj)=0.1.
It may be assumed that the probability, that a record with attribute values x1, . . . , xm is in category j, is the product of the probabilities for each attribute value that a record in category j has that attribute value and is given by the following equation:
where: p(xi/hj) is the conditional probability that a record has the attribute value xi for attribute i given that it is in category j. This probability is given by the following equation:
where: size(xi,hj) is the number of records in category j with a value for attribute i that equals the attribute value xi, where the summation is over all values of attribute i and where αij are hyper-parameters (e.g., αij=1, for all i and j). For example, if category j contains 10,000 records and 100 of those records have a value of 1 for attribute i, then p(1/hj)=0.01. Equation (1a) can be re-written by substituting Equation (1c) as the following equation:
Through a first technique, distance, i.e., similarity, between two categories is given by the sum of the Kullback-Leibler (KL) distance between the records in the first category and the records in the second category and the KL distance between the records in the second category and the records in the first category. This distance is given by the symmetric divergence (see H. Jefferys, Theory of Probability, (© 1939, Oxford University Press)) as indicated in Equation 2(a) as follows:
dist(h1, h2)=KL(p(X1 . . . , Xm|h1),p(X1 , . . . , Xm|h2))+KL(p(X1, . . . Xm|h2),p(X1 , . . . Xm|h1)) (2a)
Equation (2a) reduces to the following equation:
Thus, the distance between the first and second categories is the sum, for all possible combinations, of attribute values, of a first probability that a record with that combination of attribute values is in the first category minus a second probability that a record with that combination of attribute values is in the second category multiplied by a logarithm of the first probability divided by the second probability. Since Equation (2b) requires a summation over all possible combinations of attribute values, the determination of the similarity using this formula is computationally expensive. When Equation (1c) is substituted into Equation (2d), the result is the following equation:
Advantageously, Equation (2c) requires only the summation over all possible values of each attribute, and not over all possible combinations of attributes, and is thus computationally much more efficient than Equation (2b).
Equation (2c) or, alternatively, Equation (2b) provides a way to calculate the similarity for a pair of base categories. Several different equations can be used to calculate the similarity between two combined categories. For example, when two categories are combined into a combined category, then the similarity between the combined category and every other category (combined or not combined) needs to be calculated for the display of a similarity graph. Equations (3a), (3b), and (3c) provide three different techniques for calculating the similarities with combined categories. The first technique averages the similarity between each pair of categories of the first and second combined categories and is given by the following equation:
where: G1 represents the first combined category and G2 represents the second combined category.
Thus, the distance is the summation of the distances between each pair of categories multiplied by the probabilities (the latter being given by Equation (1b)) that a record is in each of the categories. The second and third techniques calculate the distance as either the minimum or maximum distance between any two pairs of categories in the first and second combined categories and are given by the following equations:
dist(G1,G2)=min{dist(hj,hk)|hj∈G1,hk∈G2} (3b)
dist(G1,G2)=max{dist(hj,hk)|hj∈G1,hk∈G2} (3c)
Another technique for calculating the distance is by treating a combined category as a non-combined category having the records of the corresponding sub-categories. This technique results in Equation (4a) as follows:
where: p(x1, . . . , xm/G) is the conditional probability that a record has attribute values x1, . . . , xm given that it is a record from the combined category G. This probability is given by the following equation:
where: the denominator is the sum of the probabilities that any record is in each category G and the numerator is the sum for each category j in G of the probability that the record with attribute values x1, . . . , xm is in category j multiplied by the probability that a record in the collection is in category j.
Equation (4a), however, cannot be factored in the same way as Equation (2b). Hence, determining the distance between combined categories G1 and G2 is computationally expensive because a summation over all possible combinations of attribute values is needed. For example, if there are 10 attributes with approximately 5 possible attribute values each, then there are approximately 107 possible combinations of attribute values. Therefore, as one technique, the CV system approximates the distance using a Monte Carlo method such as simple sampling from G1 and G2 where s1, . . , sr denote the samples from G1, and where t1, . . . , ts denote the samples from G2 (each si and ti correspond to the observations x1, . . . , xn for all attributes). See, e.g., Shachter et al, “Simulation Approaches to General Probabilistic Inference in Belief Networks”, Uncertainty in Artificial Intelligence, 1990, Vol. 5, pp. 221-231—which is incorporated by reference herein. The CV system approximates the distance between two combined categories by taking the sample data sets and applying them to the following:
where: p(si|Gj) and p(ti|Gj) are computed using Equation (4b). The number of samples from G1 and G2 is taken in proportion to p(G1) and p(G2), where p(Gj) is the probability that a record is in the set of categories defined by Gj.
This Monte Carlo method can be used to calculate the distance between both base and combined categories when Equation (2b), without an independence assumption, is used to determine distance.
Another technique for calculating distance is to assume that the individual attributes are conditionally independent given G1, G2 and the set of clusters not in a union of G1 and G2, yielding Equation (5b) as follows:
As discussed above, attribute-value discrimination refers to how well the value of an attribute distinguishes the records of one category from the records of another category. One technique for calculating attribute-value discrimination is given by Equation (6a) as follows:
where: the probability that a record with a value of xi for attributes in combined category G1 is given by the following equation:
Attribute-value discrimination scores can be positive, negative or zero. If score discrim(xi|G1, G2) is positive, then an observation of the attribute value xi makes G1 more likely than G2. If the score discrim(xi|G1, G2) is negative, then the observation of the attribute-value xi makes G1 less likely than G2. If the score discrim(xi|G1, G2) is zero, then the observation of the attribute-value xi leaves the relative probabilities of G1 and G2 the same. The last case almost never occurs.
There are several possibilities for displaying the attribute values and their corresponding discrimination scores. For example, in one instance, all attribute values are displayed such that: (1) the attribute values with positive and negative scores appear in separate areas of the screen, and (2) the attribute values with the largest scores (in absolute value) appear higher in the list. Alternatively, the discrimination scores for all attribute values except distinguished values (e.g., xi=0) are displayed. Also, non-binary attributes may be binarized into attributes that have only values zero and non-zero before being displayed. The homogeneity of a category indicates how similar the records of the category are to one another. The homogeneity is given by Equation (7) as follows:
where: G represents a category or a combined category and where p(G|x1, . . . , xm) is the probability that category G contains the record with attribute values x1, . . . , xm (obtainable from Bayes rule).
As shown, the CV system executes on computer system 800 which includes a central processing unit, memory, and input/output devices. The CV system includes collection storage component 801, categorizer component 802, category storage component 803, user interface component 804 and analysis component 805. The collection storage component contains the attribute value for each attribute of each record in the collection. The categorizer component inputs the records of the collection storage component and identifies the various categories and stores the identification of the categories in the category storage component. The user interface component inputs data from the collection storage component and the category storage component and generates the various category graphs which are displayed on display 806. The user interface component invokes the analysis component to process the category storage information. The layout of the nodes can be determined by a variety of standard techniques for rendering graphs, including planar layouts, or any other scheme for minimizing edge crossings at display time.
This routine, implemented through looping, selects each possible pair of base categories and calculates the similarity in accordance with Equation (2c) or Equation (2b) without the independence assumption. Clearly, many other distances can be used for calculating the similarity of categories in lieu of that specified in either of these two equations. For example, one could use an average hamming distance between records in each category.
Specifically, through execution of step 901 shown in
In particular, routine 1000 (shown in
Specifically, through steps 1001-1003, routine 1000, using looping, displays nodes for the categories. In step 1001, the routine selects a category that has not yet been selected. In step 1002, if all the categories have already been selected, then routine 1000 continues at step 1004, else this routine continues at step 1003. In step 1003, routine 1000 displays a node representing the selected category and loops to step 1001 to select the next category. In steps 1004-1007, this routine loops displaying the arcs. In step 1004, the routine selects a pair of categories with a similarity above the similarity threshold. In step 1005, if all such pairs of categories have already been selected, then routine 1000 terminates, else this routine continues at step 1006. In step 1006, routine 1000 determines the thickness of the arc to be displayed between the selected pair of categories. In step 1007, the routine displays an arc of the determined thickness between the nodes representing the selected categories and loops to step 1004 to select another pair of categories.
As shown in
Specifically, as shown in
As shown, an Internet user stationed at client PC 1305 communicates through Internet 1320, via network connections 1315 and 1325, with server computer 1400 at a remote web site. This server implements, through Commerce Server system 1330, electronic commerce. Commerce Server system 1330 provides various functions that collectively implement infrastructure necessary to provide a comprehensive scalable, robust electronic business-to-business or business-to-consumer commerce web site; namely, user profiling, product cataloguing and content management, transaction processing, targeted marketing and merchandizing functionality, and analysis of consumer buying activities. These functions are provided, within system 1330, through web server 1340, transaction processor 1345, store 1350, which contains database 1360, and segment viewer 1500. Web server 1340 directly interacts, via Internet 1320 and network connections 1315 and 1325, with web browser 1307 situated within client PC 1307. Server 1340, as instructed by web browser 1307, downloads appropriate HTML web pages, stored in illustratively store 1350 (typically hard disk storage) and as symbolized by line 1343, to the browser for local display to the user situated at the client PC. This server also obtains responding cgi (common gateway interchange) messages sent by the browser and containing user-provided information of one sort or another in response to any of the displayed pages. Web server 1340 also specifies the pages accessed by the user to transaction processor 1345 and provides the transaction processor with the cgi responding messages it receives from the client PC. The transaction processor appropriately processes each transaction initiated by the user. In addition, the transaction processor updates database 1360 (also known as a “data warehouse”) situate within store 1350 to reflect each user that visited the site served by server 1340, which may include not only those that completed a transaction, including storing the transaction details, but also those that did not, as well as with any user information (such as age, gender, income, preferences, etc.) entered by that user in response to a web page provided by server 1340. For each such user, database 1360 contains dataset 100 that contains a record for each such user along with predefined attributes (illustratively numbered 1 through j) for that user, and the class (category or cluster) to which that record is categorized. As noted, each such record together with all its attributes is commonly referred to as a “case”. In addition, database 1360 also contains cluster data 1355 which specifies, e.g., clusters, segment and segment hierarchies.
In accordance with our invention, segment viewer 1500, which operates on case and cluster data stored within database 1360, automatically generates appropriate clusters of cases and associated segments; and in response to user commands provided over line 1367 from a user, such as a business manager or data analyst that accesses commerce server 1330, compares user selected segments, and generates, on line 1363, a graphical display, based on calculated scored similarity values, of segment hierarchy. Segments are clusters of cases that exhibit similar behavior, such as users on a given site, and have similar properties, such as age or gender. A segment consists of a summary of the database records (cases) that belong to it. The summary, for which a mathematical basis is described hereinbelow, is derived from properties in database 1360. Segment groups are collections of similar segments or other segment groups.
Furthermore, in accordance with our inventive teachings, similar segment groups can be merged together to form higher-level segment groups, with this operation iteratively continuing until a single, high-level segment group is formed representing all the cases in a dataset (an entire population). The segment groups form a hierarchy from which a user, such as a business manager or data analyst, can analyze trends and discover correlations within the case data at different levels of the segment hierarchy. Segment viewer 1500 graphically presents segments in hierarchical order, with a top-level segment group summarizing the entire population and lower-level groups and segments summarizing smaller and smaller subsets of the population. A percentage of the entire population contained within any given segment is also displayed in parentheses after a segment name.
Viewer 1500 also permits, through the commands received over line 1367, the segment hierarchy to be expanded or contracted to facilitate understanding the depicted relationships among the displayed clusters. Further, viewer 1500 also scores the displayed segments, based on similarity measures, and ranks and displays those segments based on normalized scores.
Through our present invention, a user of segment viewer 1500 can compare two segments or segment groups. In the context of electronic commerce, illustratively, one segment may correspond to those users who frequently visited a site implemented by Commerce Server 1330 (see
Since only the cluster visualization aspect, i.e., the system components that form segment viewer 1500 and produce display 1800, is germane to the present invention, we will omit any further discussion of any of the other functionality provided by Commerce Server system 1330.
As shown in
Incoming information can arise from two illustrative external sources: network supplied information, from the Internet (and/or other networked facility) through network connection 1325 to communications interfaces 1430, or from a dedicated input source, via path(es) 1405, to input interfaces 1410. Dedicated input can originate from a wide variety of data sources, none of which is particularly relevant here.
Input interfaces 1410 contain appropriate circuitry to provide necessary and corresponding electrical connections required to physically connect and interface each differing dedicated source of input information to server computer 1400. Under control of the operating system, application programs 1458 exchange commands and data with the external sources, such as web browser 1305 in client PC 1307 (see
Furthermore, input interfaces 1410 also electrically connect and interface user input device 1490, such as a keyboard and mouse, to server computer 1400. Display 1470, such as a conventional color monitor, and printer 1480, such as a conventional laser printer, are connected, via leads 1463 and 1467, respectively, to output interfaces 1440. The output interfaces provide requisite circuitry to electrically connect and interface the display and printer to the computer system. Through use of printer 1480, a user, e.g., data analyst or business manager, who can access the server computer can generate local hardcopy reports. Alternatively, this printer can be situated on, e.g., a local area network (not shown) to which server computer 1400 is also connected, via communication interfaces 1430.
Since the specific hardware components of server computer 1400 as well as all aspects of the software stored within memory 1456, apart from the modules that implement the present invention, are conventional and well-known, they will not be discussed in any further detail. Generally speaking, client PC 1305 has an architecture that is similar, at the high level depicted in
With this in mind, we will now turn to discussing the components of segment viewer 1500 and then provide the mathematical basis which underlies the hierarchical tree construction, segment summary, comparison and scoring operations performed by the segment viewer.
As shown, the segment viewer contains clustering process 1510, cluster hierarchy generation process 1520 which contains inter-segment distance determination process 1525 and segment scoring process 1530; segment comparison process 1540 and graphics interface 1550; and operates in conjunction with data stored within database 1360 residing in store 1350. Specifically, transaction processor 1345 writes event data into database 1360. This data, in conjunction with its attributes, forms case data 100. As noted, data for each event together with its attributes forms a separate record (case) within the database, and specifically within case data 100.
Clustering process 1510 automatically, and using a conventional clustering process, such as “EM” clustering, reads, as symbolized by lines 1503, data for the cases, in a dataset (population or collection) stored within case data 100 and automatically determines applicable mutually exclusive categories for these cases and then categorizes (classifies) each of those cases into those categories. This process stores the category for each case within case data 100 and specifically within a field associated with each corresponding record. As each case is categorized, i.e., placed into a corresponding cluster, process 1510 also forms a segment for each ensuing cluster. Alternatively, process 1520, rather than clustering process 1510, may form a segment from a corresponding cluster. As previously noted, a segment is a cluster of cases (having one or more cases) that exhibit similar behavior and have similar properties, and consists of a summary of the case(s) that belong to it. Process 1510 then stores, as symbolized by line 1507, the cluster and segment data, as data 1555, within database 1360.
Cluster hierarchy generation process 1520 determines inter-segment similarity, scores the similarity measures and implements hierarchical agglomerative clustering (HAC). In particular, similarity between each pair of segments is mathematically determined through inter-segment distances calculated by inter-segment distance determination process 1525; the mathematical details of which will be specifically addressed later.
Segment hierarchies are then formed based on scored similarity measures. To do so, process 1520 first considers all segments to be located at a common lowest hierarchical level and then automatically and selectively merges the segments, based on their scored similarity measures, through hierarchical agglomerative clustering to form a segment hierarchy. In particular, the segment similarity measures determined through distance determination process 1525 are applied, as symbolized by line 1527, to segment scoring process 1530 which, in turn, scores each segment (or segment group), here too the specific mathematical details of the scoring will be discussed later.
Thereafter, process 1520 then causes those segments that have the closest similarity measures to be merged together to form a next higher-level group. To do this, process 1520 instructs, as symbolized by line 1543, clustering process 1510 to re-cluster those segments into a single segment group and apply the results, as symbolized by line 1515 back to process 1520. Process 1520 then calculates, through distance determination process 1525, the similarity between this new segment group and all the remaining segments. This HAC operation iteratively continues until a single, high-level segment group, i.e., a root node, is formed that represents all the cases in the entire data population. HAC can be readily understood by defining as “horizon” (cluster set) and how HAC changes that horizon. Initially, all singleton clusters reside in a current horizon. After merging any two nodes in that horizon into a merged node, the merged node is added to the horizon and the two original, now merged, nodes are removed. Hence, the only pairs of nodes that are eligible for merging are those then remaining in the horizon.
As symbolized by line 1535, segment scoring process 1530 writes the scores of all segments and segment groups within data 1555 situated within database 1360. Once this process is completed, segment and segment group information is provided to graphics interface 1550 which forms a graphical display, of the form illustratively given by display 1800 shown in
Once the hierarchy has been established and displayed, a user of segment viewer 1500 can compare two segments or segment groups. To do so, the user selects a segment through appropriate interaction with the displayed graphical interface provided by process 1550. In response to user commands on line 1367 that specify such a selection, process 1550, as symbolized by line 1547, identifies both the selected segment or segment group and the comparison segment or segment group to segment comparison process 1540. As symbolized by line 1539, comparison process 1540 specifies the segments or segment groups to be compared to segment scoring process 1530. Process 1530, in turn, causes segment hierarchy generation process 1520 to provide data for these segments and segment groups, including summarized data, as symbolized by line 1529, to graphics interface process 1550 for display, within display 1800 as shown in
As noted, through graphics interface 1550, the user of segment viewer 1500 can selectively expand or contract the displayed hierarchy to gain a better appreciation of the inter-relationships among the individual segments and segment groups that occupy the hierarchy.
Furthermore, as noted above, some clustering distinctions, which are the product of mathematical clustering techniques, may be rather fine-grained from a quantitative perspective but are essentially meaningless, from a qualitative standpoint; hence, yielding an excessive number of segments. As such, the invention, through HAC process 1520 automatically and dynamically changes the hierarchy by eliminating appropriate numbers of node(s) and inter-segment links to reduce the number of levels (depth) in the hierarchy.
To appreciate this feature, consider
The segment group of each parent node in tree 1600 is formed, through HAC, as a result of the union of the segments or segment groups associated with the two nodes situated immediately below it. The latter two nodes are viewed as child nodes, the child nodes situated to the lower left and right of a parent node, such as nodes 16101 and 16102, respectively, for parent node 1620 are correspondingly referred to as left and right child nodes. Hence, as symbolized by inter-nodal links 1611 and 1613, segments C1 and C2 (associated with nodes 16101 and 16102, respectively) have been merged through HAC to form parent node 1620. Parent node 1630 has been illustratively formed through HAC by merging, as represented by inter-nodal links 1623 and 1615, segment group associated with parent node 1620 and segment C3 associated with node 16103. Root node 1640 has been formed, at least in part, through the merger, as symbolized by inter-nodal link 1635, of the segment group associated with parent node 1630. In order to convert four-level tree 1600 to its proper size of three levels, node(s) at one level and associated inter-nodal links must be removed; hence, segment and segment groups associated with those nodes merged into parent nodes at a next higher level, with the hierarchy being re-arranged accordingly.
To determine which nodes to remove, the distances between the segments associated with the child nodes (e.g., nodes 16101 and 16102 for segments C1 and C2, respectively) for the first level of parent nodes are first determined. Then, the score for the second level of parent nodes (e.g., node 1630) is similarly determined based on its child nodes. After scores for two parent levels are so determined, the parent nodes with maximum scores are deleted. Links are connected between the child nodes of each removed parent node and the remaining node situated above the deleted parent node. For example, as shown in
Having now described the implementational and associated display aspects of segment viewer 1500, we will now describe the specific mathematical basis which underlies the various operations performed by the segment viewer. The basis will be separately described for each of the basic operations provided by the segment viewer: segment tree construction, segment set summary and segment set comparison. We will then provide a mathematical basis for our inventive alternate discriminant-based scoring technique.
First, assume each case has n attributes.
A. Hierarchical Tree Construction
Given a set of segments C1, C2, . . . , Ck and desired tree depth t, a hierarchical tree is constructed on top of these k segments as follows:
1. Construct an initial tree of arbitrary depth on top of segments C1, . . . , Ck via Hierarchical Agglomerative Clustering (HAC).
where: dj (Ci,j, Ch,j) is the distance between the distributions modeling attribute j in clusters i and h, respectively.
If attribute j is modeled as BinGaussian, BinMultinomial or Binomial distribution, then:
where: KL is computed through Equation (10) as follows (assuming p1>p2):
KL(p1,p2)=(p1−p2)log(p1/p2) (10)
Alternatively, if attribute j is modeled as a Gaussian distribution, which can occur if the attribute is “age” of an Internet site user, then:
dj(Ci,j,Ch,j)=KL(p(xj=NULL|Ci),p(xj=NULL|Ch))0.5(KL(p11,p12)+KL(p21,p22) (11)
where: μij, σi j are mean and standard deviation of attribute j in cluster Ci, respectively; and
Here, G(t;0,1) is a value of a normal Gaussian function (with mean=0, and standard deviation=1) at t.
If attribute j is modeled by a Multinomial distribution, let sj be the number of possible states for attribute j:
Let left denote the left child of the parent node and right denote the right child of the parent node. The distance from the parent node to the cluster represented by node c in the tree is given by Equation (17) as follows:
Here, w(left) and w(right) are a number of data points represented by the left and right child nodes, respectively.
2. Remove internal nodes of the tree so that resulting tree has depth≦t and the leaf nodes correspond to segments.
The segment set summary operation identifies attribute-value pairs which characterize the records belonging to a set of segments. Note that a set of segments can be viewed as collectively a single segment derived from the records that would belong to the individual segments that form the set.
The segment set comparison operation compares two sets of segments and identifies attribute-value pairs which differentiate between the records belonging to each of the different sets of segments.
1. Segment Set Summary
Let S be a set of segments. The value of a given event (a given attribute/value pair) is computed with respect to the segments in set S. If segment set S contains one segment, then that set contains a single leaf node; alternatively, if this set contains an internal node in the tree, then this node may have been formed as the union of several segments. A general formula for assigning a value for scoring a given event=attribute/value pair begins by computing a probability of the event occurring in the segments in set S and the probability of the event occurring in the segments that are not in set S, as given by Equations (19) and (20) as follows:
Here, w(C) denotes the number of records belonging to segment C.
For Event=[Attrj=v] for a discrete-valued attribute j, the value of probevent(C) is simply p([Attrj=v]|C). This is also true for binary, binomial and multinomial valued attributes inasmuch as all of these types of attributes have discrete values.
However, for continuous-valued attributes j, the following events are considered:
The score for a given event (attribute/value pair), i.e., Score(Event), is given by Equation (24) as follows:
Score (Event)=SScore(ProbInS(Event),ProbNotInS(Event)) (24)
The function SScore, as given by Equation (25) below, takes two numbers 0≦p2<p1≦1 such that p1/p2 is likely to be less than 10 and returns a value in the range [0,1] that would increase with p1 and decrease with p2.
SScore(p1, p2))=1−e(−0.05(p1/p2)−1) (25)
If ProbInS (Event)<ProbNotInS(Event), then SScore is not used and the Event is not presented to the user as a summary event.
Only those events with the highest Score(Event) are shown to the user as events, as having characteristics, which most accurately summarize the records in a given set (S) of segments.
2. Segment Set Comparison
The segment set comparison operation is similar to the segment set summary operation.
Let S1 be the first set of segments and S2 be the second set of segments. The goal of segment set comparison is to identify events which discriminate between the records of Si and the records of S2.
The general formula for scoring a given event =attribute/value pair begins by computing the probability of the event occurring in the segments in set S1 and the probability of the event occurring in the segments in set S2, as given by Equations (26) and (27) as follows:
Here, w(C) denotes the number of records belonging to segment C.
For Event=[Attrj=v] for a discrete-valued attribute j, the value of probevent(C) is simply p([Attrj=v]|C).
For continuous-valued attributes j, the procedure differs from that given above for the segment set summary operation. The procedure to use is as follows.
First, let μs1j, σs1j be the mean and standard deviation, respectively of continuous-attribute j over the records in S1. Let μs2j, σs2j be the mean and standard deviation, respectively, of continuous-attribute j over the records in S2.
Second, determine the values of xj where the height of the Gaussian modeling xj in S1 is equal to the height of the Gaussian modeling xj in S2 by solving the following quadratic equation: At2+Bt+C=0, where, through the following Equations (28)-(30):
The solution(s) is given by Equations (31) and (32) as follows:
Set tMax=max(t1,t2) and tMin=min(t1,t2).
Then, the events corresponding to continuous-valued attributes are:
For the events listed above, the corresponding value for probevent (C) is given by one of the following Equations (33)-(35), again based on the specified range of its attribute value:
The score for a given event (attribute/value pair) is then computed according to either Equation (36) or (37) as follows:
If ProbInS1(Event)>ProbInS2(Event), then Score(Event)=SScore(ProbInS1(Event),ProbInS2(Event)) (36)
If ProbInS2(Event)>ProbInSl(Event), then Score(Event)=−SScore(ProbInS2(Event),ProbInS1(Event)) (37)
Those attributes, such as one, two or other predefined number of attributes, with most positive Score(Event) values (indicated by left-directed bars, e.g., bar 18801, in column 1880 in
We now present an alternate scoring technique that is discriminative based. As noted above, this technique statistically balances two aspects: (1) a degree of correlation between two variables, namely, (a) a binary variable corresponding to cluster membership and (b) a binary variable corresponding to whether an observable variable takes on a particular value or not; and (2) an amount of evidence (i.e., the number of records) supporting that correlation. The underlying mathematical steps for implementing this scoring technique are as follows.
This technique computes a discriminative score for cluster (group) c1 versus cluster (group) c2 given observation X=x, where c1 and c2 are mutually exclusive.
First, form variable X′: X=x versus X′=not x; and form variable C′: CÁ versus CÂ.
Next, get actual event occurrence counts for a 2×2 contingency table for variables X′ and C′. Assume that these counts are a, b, c, d in left to right, top to bottom order. With this, the question then becomes are these variables dependent or not on each other?
To assess this dependency, let:
If S′ is less than zero, then X′ and C′ are likely to be independent of each other. Hence, X′ should not be shown on bar chart in columns 1880 or 1890 in
A direction of the score is separately determined, that is, does X=x make c1 or c2 more likely?
The resulting scores for the displayed events then need to be normalized. The scores could be normalized for a given c1/c2 comparison as follows: find the X′ that has the highest magnitude and re-normalize all scores so that this highest magnitude is one. Unfortunately, with this re-normalization, a top magnitude for any comparison will always be one. As such, global normalization would be preferred. Since it is not efficient to try all combinations of c1 versus c2, one can find the largest magnitude among the comparisons ci versus not ci for every atomic cluster ci, and then use this magnitude for normalization across all possible comparisons. Occasionally, a magnitude value may exceed one, in which case that magnitude should be clipped to one.
Although various embodiments which incorporate the teachings of the present invention have been shown and described in considerable detail herein, those skilled in the art can readily devise many other embodiments that still utilize these teachings.
Heckerman, David E., Meek, Christopher A., Chickering, David M., Bradley, Paul S.
Patent | Priority | Assignee | Title |
10007915, | Jan 24 2011 | Visa International Service Association | Systems and methods to facilitate loyalty reward transactions |
10025834, | Dec 16 2013 | WELLS FARGO BANK, N A | Methods and systems for analyzing entity performance |
10037314, | Mar 14 2013 | WELLS FARGO BANK, N A | Mobile reports |
10037383, | Nov 11 2013 | WELLS FARGO BANK, N A | Simple web search |
10042524, | Oct 18 2013 | WELLS FARGO BANK, N A | Overview user interface of emergency call data of a law enforcement agency |
10043516, | Sep 23 2016 | Apple Inc | Intelligent automated assistant |
10049675, | Feb 25 2010 | Apple Inc. | User profiling for voice input processing |
10055864, | Jun 20 2008 | New BIS Safe Luxco S.à r.l | Data visualization system and method |
10061366, | Nov 17 2015 | Microsoft Technology Licensing, LLC | Schedule-based energy storage device selection |
10079014, | Jun 08 2012 | Apple Inc. | Name recognition system |
10083690, | May 30 2014 | Apple Inc. | Better resolution when referencing to concepts |
10102369, | Aug 19 2015 | WELLS FARGO BANK, N A | Checkout system executable code monitoring, and user account compromise determination system |
10108612, | Jul 31 2008 | Apple Inc. | Mobile device having human language translation capability with positional feedback |
10120545, | Jan 03 2014 | WELLS FARGO BANK, N A | Systems and methods for visual definition of data associations |
10127021, | Dec 29 2014 | WELLS FARGO BANK, N A | Storing logical units of program code generated using a dynamic programming notebook user interface |
10135723, | Aug 10 2012 | International Business Machines Corporation | System and method for supervised network clustering |
10135863, | Nov 06 2014 | WELLS FARGO BANK, N A | Malicious software detection in a computing system |
10157200, | Dec 29 2014 | WELLS FARGO BANK, N A | Interactive user interface for dynamic data analysis exploration and query processing |
10158148, | Feb 18 2015 | Microsoft Technology Licensing, LLC | Dynamically changing internal state of a battery |
10162887, | Jun 30 2014 | WELLS FARGO BANK, N A | Systems and methods for key phrase characterization of documents |
10180929, | Jun 30 2014 | WELLS FARGO BANK, N A | Systems and methods for identifying key phrase clusters within documents |
10180977, | Mar 18 2014 | WELLS FARGO BANK, N A | Determining and extracting changed data from a data source |
10191926, | Nov 05 2014 | WELLS FARGO BANK, N A | Universal data pipeline |
10198515, | Dec 10 2013 | WELLS FARGO BANK, N A | System and method for aggregating data from a plurality of data sources |
10216801, | Mar 15 2013 | WELLS FARGO BANK, N A | Generating data clusters |
10223707, | Aug 19 2011 | Visa International Service Association | Systems and methods to communicate offer options via messaging in real time with processing of payment transaction |
10223748, | Jul 30 2015 | WELLS FARGO BANK, N A | Systems and user interfaces for holistic, data-driven investigation of bad actor behavior based on clustering and scoring of related data |
10228747, | Feb 09 2015 | Microsoft Technology Licensing, LLC | Battery parameter-based power management for suppressing power spikes |
10229284, | Feb 21 2007 | WELLS FARGO BANK, N A | Providing unique views of data based on changes or rules |
10230746, | Jan 03 2014 | WELLS FARGO BANK, N A | System and method for evaluating network threats and usage |
10248294, | Sep 15 2008 | WELLS FARGO BANK, N A | Modal-less interface enhancements |
10262047, | Nov 04 2013 | WELLS FARGO BANK, N A | Interactive vehicle information map |
10263421, | Feb 26 2015 | Microsoft Technology Licensing, LLC | Load allocation for multi-battery devices |
10264014, | Mar 15 2013 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive investigation based on automatic clustering of related data in various data structures |
10275778, | Apr 09 2014 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive investigation based on automatic malfeasance clustering of related data in various data structures |
10296617, | Oct 05 2015 | WELLS FARGO BANK, N A | Searches of highly structured data |
10303715, | May 16 2017 | Apple Inc | Intelligent automated assistant for media exploration |
10311144, | May 16 2017 | Apple Inc | Emoji word sense disambiguation |
10311871, | Mar 08 2015 | Apple Inc. | Competing devices responding to voice triggers |
10313833, | Jan 31 2013 | WELLS FARGO BANK, N A | Populating property values of event objects of an object-centric data model using image metadata |
10318630, | Nov 21 2016 | WELLS FARGO BANK, N A | Analysis of large bodies of textual data |
10324609, | Jul 21 2016 | WELLS FARGO BANK, N A | System for providing dynamic linked panels in user interface |
10332518, | May 09 2017 | Apple Inc | User interface for correcting recognition errors |
10346410, | Aug 28 2015 | WELLS FARGO BANK, N A | Malicious activity detection system capable of efficiently processing data accessed from databases and generating alerts for display in interactive user interfaces |
10354268, | May 15 2014 | Visa International Service Association | Systems and methods to organize and consolidate data for improved data storage and processing |
10354652, | Dec 02 2015 | Apple Inc. | Applying neural network language models to weighted finite state transducers for automatic speech recognition |
10356032, | Dec 26 2013 | WELLS FARGO BANK, N A | System and method for detecting confidential information emails |
10356243, | Jun 05 2015 | Apple Inc. | Virtual assistant aided communication with 3rd party service in a communication session |
10360702, | Oct 03 2014 | WELLS FARGO BANK, N A | Time-series analysis system |
10360705, | May 07 2013 | WELLS FARGO BANK, N A | Interactive data object map |
10362133, | Dec 22 2014 | WELLS FARGO BANK, N A | Communication data processing architecture |
10372879, | Dec 31 2014 | WELLS FARGO BANK, N A | Medical claims lead summary report generation |
10381016, | Jan 03 2008 | Apple Inc. | Methods and apparatus for altering audio output signals |
10387834, | Jan 21 2015 | WELLS FARGO BANK, N A | Systems and methods for accessing and storing snapshots of a remote application in a document |
10390213, | Sep 30 2014 | Apple Inc. | Social reminders |
10395654, | May 11 2017 | Apple Inc | Text normalization based on a data-driven learning network |
10402054, | Feb 20 2014 | WELLS FARGO BANK, N A | Relationship visualizations |
10403011, | Jul 18 2017 | WELLS FARGO BANK, N A | Passing system with an interactive user interface |
10403278, | May 16 2017 | Apple Inc | Methods and systems for phonetic matching in digital assistant services |
10403283, | Jun 01 2018 | Apple Inc. | Voice interaction at a primary device to access call functionality of a companion device |
10410637, | May 12 2017 | Apple Inc | User-specific acoustic models |
10417266, | May 09 2017 | Apple Inc | Context-aware ranking of intelligent response suggestions |
10417344, | May 30 2014 | Apple Inc. | Exemplar-based natural language processing |
10417405, | Mar 21 2011 | Apple Inc. | Device access using voice authentication |
10419954, | Apr 11 2018 | Cisco Technology, Inc. | Two stage clustering of wireless access points |
10423582, | Jun 23 2011 | WELLS FARGO BANK, N A | System and method for investigating large amounts of data |
10431204, | Sep 11 2014 | Apple Inc. | Method and apparatus for discovering trending terms in speech requests |
10437450, | Oct 06 2014 | WELLS FARGO BANK, N A | Presentation of multivariate data on a graphical user interface of a computing system |
10437612, | Dec 30 2015 | WELLS FARGO BANK, N A | Composite graphical interface with shareable data-objects |
10437840, | Aug 19 2016 | WELLS FARGO BANK, N A | Focused probabilistic entity resolution from multiple data sources |
10438226, | Jul 23 2014 | Visa International Service Association | Systems and methods of using a communication network to coordinate processing among a plurality of separate computing systems |
10438595, | Sep 30 2014 | Apple Inc. | Speaker identification and unsupervised speaker adaptation techniques |
10444940, | Aug 17 2015 | WELLS FARGO BANK, N A | Interactive geospatial map |
10444941, | Aug 17 2015 | WELLS FARGO BANK, N A | Interactive geospatial map |
10445429, | Sep 21 2017 | Apple Inc. | Natural language understanding using vocabularies with compressed serialized tries |
10447712, | Dec 22 2014 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures |
10452678, | Mar 15 2013 | WELLS FARGO BANK, N A | Filter chains for exploring large data sets |
10453229, | Mar 15 2013 | WELLS FARGO BANK, N A | Generating object time series from data objects |
10453443, | Sep 30 2014 | Apple Inc. | Providing an indication of the suitability of speech recognition |
10459619, | Mar 16 2015 | WELLS FARGO BANK, N A | Interactive user interfaces for location-based data analysis |
10460602, | Dec 28 2016 | WELLS FARGO BANK, N A | Interactive vehicle information mapping system |
10474326, | Feb 25 2015 | WELLS FARGO BANK, N A | Systems and methods for organizing and identifying documents via hierarchies and dimensions of tags |
10474753, | Sep 07 2016 | Apple Inc | Language identification using recurrent neural networks |
10482097, | Mar 15 2013 | WELLS FARGO BANK, N A | System and method for generating event visualizations |
10482874, | May 15 2017 | Apple Inc | Hierarchical belief states for digital assistants |
10484407, | Aug 06 2015 | WELLS FARGO BANK, N A | Systems, methods, user interfaces, and computer-readable media for investigating potential malicious communications |
10489391, | Aug 17 2015 | WELLS FARGO BANK, N A | Systems and methods for grouping and enriching data items accessed from one or more databases for presentation in a user interface |
10496705, | Jun 03 2018 | Apple Inc | Accelerated task performance |
10497365, | May 30 2014 | Apple Inc. | Multi-command single utterance input method |
10504518, | Jun 03 2018 | Apple Inc | Accelerated task performance |
10521466, | Jun 11 2016 | Apple Inc | Data driven natural language event detection and classification |
10529332, | Mar 08 2015 | Apple Inc. | Virtual assistant activation |
10540061, | Dec 29 2015 | WELLS FARGO BANK, N A | Systems and interactive user interfaces for automatic generation of temporal representation of data objects |
10545655, | Aug 09 2013 | WELLS FARGO BANK, N A | Context-sensitive views |
10552994, | Dec 22 2014 | WELLS FARGO BANK, N A | Systems and interactive user interfaces for dynamic retrieval, analysis, and triage of data items |
10552998, | Dec 29 2014 | WELLS FARGO BANK, N A | System and method of generating data points from one or more data stores of data items for chart creation and manipulation |
10553215, | Sep 23 2016 | Apple Inc. | Intelligent automated assistant |
10567477, | Mar 08 2015 | Apple Inc | Virtual assistant continuity |
10572487, | Oct 30 2015 | PALANTIR TECHNOLOGIES INC. | Periodic database search manager for multiple data sources |
10572496, | Jul 03 2014 | Palantir Technologies Inc | Distributed workflow system and database with access controls for city resiliency |
10580409, | Jun 11 2016 | Apple Inc. | Application integration with a digital assistant |
10592604, | Mar 12 2018 | Apple Inc | Inverse text normalization for automatic speech recognition |
10593346, | Dec 22 2016 | Apple Inc | Rank-reduced token representation for automatic speech recognition |
10607244, | Oct 19 2009 | Visa U.S.A. Inc. | Systems and methods to provide intelligent analytics to cardholders and merchants |
10628842, | Aug 19 2011 | Visa International Service Association | Systems and methods to communicate offer options via messaging in real time with processing of payment transaction |
10635276, | Oct 07 2013 | WELLS FARGO BANK, N A | Cohort-based presentation of user interaction data |
10636424, | Nov 30 2017 | Apple Inc | Multi-turn canned dialog |
10643611, | Oct 02 2008 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
10650398, | Jun 16 2014 | Visa International Service Association | Communication systems and methods to transmit data among a plurality of computing systems in processing benefit redemption |
10657328, | Jun 02 2017 | Apple Inc | Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling |
10657961, | Jun 08 2013 | Apple Inc. | Interpreting and acting upon commands that involve sharing information with remote devices |
10657966, | May 30 2014 | Apple Inc. | Better resolution when referencing to concepts |
10664490, | Oct 03 2014 | WELLS FARGO BANK, N A | Data aggregation and analysis system |
10678860, | Dec 17 2015 | Palantir Technologies, Inc. | Automatic generation of composite datasets based on hierarchical fields |
10684703, | Jun 01 2018 | Apple Inc | Attention aware virtual assistant dismissal |
10692504, | Feb 25 2010 | Apple Inc. | User profiling for voice input processing |
10698594, | Jul 21 2016 | WELLS FARGO BANK, N A | System for providing dynamic linked panels in user interface |
10698938, | Mar 18 2016 | WELLS FARGO BANK, N A | Systems and methods for organizing and identifying documents via hierarchies and dimensions of tags |
10699071, | Aug 08 2013 | WELLS FARGO BANK, N A | Systems and methods for template based custom document generation |
10699717, | May 30 2014 | Apple Inc. | Intelligent assistant for home automation |
10706220, | Aug 25 2011 | WELLS FARGO BANK, N A | System and method for parameterizing documents for automatic workflow generation |
10706434, | Sep 01 2015 | Palantir Technologies Inc | Methods and systems for determining location information |
10714095, | May 30 2014 | Apple Inc. | Intelligent assistant for home automation |
10719188, | Jul 21 2016 | WELLS FARGO BANK, N A | Cached database and synchronization system for providing dynamic linked panels in user interface |
10719527, | Oct 18 2013 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores |
10719621, | Feb 21 2007 | WELLS FARGO BANK, N A | Providing unique views of data based on changes or rules |
10726832, | May 11 2017 | Apple Inc | Maintaining privacy of personal information |
10728277, | Nov 06 2014 | WELLS FARGO BANK, N A | Malicious software detection in a computing system |
10732803, | Sep 24 2013 | WELLS FARGO BANK, N A | Presentation and analysis of user interaction data |
10733375, | Jan 31 2018 | Apple Inc | Knowledge-based framework for improving natural language understanding |
10733982, | Jan 08 2018 | Apple Inc | Multi-directional dialog |
10733993, | Jun 10 2016 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
10743133, | Jan 31 2013 | WELLS FARGO BANK, N A | Populating property values of event objects of an object-centric data model using image metadata |
10747952, | Sep 15 2008 | WELLS FARGO BANK, N A | Automatic creation and server push of multiple distinct drafts |
10754822, | Apr 18 2018 | Palantir Technologies Inc | Systems and methods for ontology migration |
10755051, | Sep 29 2017 | Apple Inc | Rule-based natural language processing |
10755703, | May 11 2017 | Apple Inc | Offline personal assistant |
10769385, | Jun 09 2013 | Apple Inc. | System and method for inferring user intent from speech inputs |
10789945, | May 12 2017 | Apple Inc | Low-latency intelligent automated assistant |
10789959, | Mar 02 2018 | Apple Inc | Training speaker recognition models for digital assistants |
10791176, | May 12 2017 | Apple Inc | Synchronization and task delegation of a digital assistant |
10795723, | Mar 04 2014 | WELLS FARGO BANK, N A | Mobile tasks |
10798116, | Jul 03 2014 | WELLS FARGO BANK, N A | External malware data item clustering and analysis |
10805321, | Jan 03 2014 | WELLS FARGO BANK, N A | System and method for evaluating network threats and usage |
10810274, | May 15 2017 | Apple Inc | Optimizing dialogue policy decisions for digital assistants using implicit feedback |
10817513, | Mar 14 2013 | WELLS FARGO BANK, N A | Fair scheduling for mixed-query loads |
10818288, | Mar 26 2018 | Apple Inc | Natural assistant interaction |
10838697, | Dec 29 2014 | WELLS FARGO BANK, N A | Storing logical units of program code generated using a dynamic programming notebook user interface |
10839144, | Dec 29 2015 | WELLS FARGO BANK, N A | Real-time document annotation |
10847142, | May 11 2017 | Apple Inc. | Maintaining privacy of personal information |
10853338, | Nov 05 2014 | WELLS FARGO BANK, N A | Universal data pipeline |
10853378, | Aug 25 2015 | PALANTIR TECHNOLOGIES, INC ; Palantir Technologies Inc | Electronic note management via a connected entity graph |
10860634, | Aug 06 2018 | Walmart Apollo, LLC | Artificial intelligence system and method for generating a hierarchical data structure |
10866685, | Sep 03 2014 | WELLS FARGO BANK, N A | System for providing dynamic linked panels in user interface |
10871887, | Apr 28 2014 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive access of, investigation of, and analysis of data objects stored in one or more databases |
10873603, | Feb 20 2014 | WELLS FARGO BANK, N A | Cyber security sharing and identification system |
10877638, | Oct 18 2013 | WELLS FARGO BANK, N A | Overview user interface of emergency call data of a law enforcement agency |
10885021, | May 02 2018 | Palantir Technologies Inc | Interactive interpreter and graphical user interface |
10892996, | Jun 01 2018 | Apple Inc | Variable latency device coordination |
10901583, | Jan 03 2014 | WELLS FARGO BANK, N A | Systems and methods for visual definition of data associations |
10904611, | Jun 30 2014 | Apple Inc. | Intelligent automated assistant for TV user interactions |
10909331, | Mar 30 2018 | Apple Inc | Implicit identification of translation payload with neural machine translation |
10922404, | Aug 19 2015 | WELLS FARGO BANK, N A | Checkout system executable code monitoring, and user account compromise determination system |
10928918, | May 07 2018 | Apple Inc | Raise to speak |
10929436, | Jul 03 2014 | WELLS FARGO BANK, N A | System and method for news events detection and visualization |
10942702, | Jun 11 2016 | Apple Inc. | Intelligent device arbitration and control |
10944859, | Jun 03 2018 | Apple Inc | Accelerated task performance |
10956406, | Jun 12 2017 | WELLS FARGO BANK, N A | Propagated deletion of database records and derived data |
10976892, | Aug 08 2013 | WELLS FARGO BANK, N A | Long click display of a context menu |
10977279, | Mar 15 2013 | WELLS FARGO BANK, N A | Time-sensitive cube |
10977679, | May 15 2014 | Visa International Service Association | Systems and methods to organize and consolidate data for improved data storage and processing |
10984780, | May 21 2018 | Apple Inc | Global semantic word embeddings using bi-directional recurrent neural networks |
10984798, | Jun 01 2018 | Apple Inc. | Voice interaction at a primary device to access call functionality of a companion device |
10997363, | Mar 14 2013 | WELLS FARGO BANK, N A | Method of generating objects and links from mobile reports |
11004092, | Nov 24 2009 | Visa U.S.A. Inc. | Systems and methods for multi-channel offer redemption |
11004244, | Oct 03 2014 | WELLS FARGO BANK, N A | Time-series analysis system |
11009970, | Jun 01 2018 | Apple Inc. | Attention aware virtual assistant dismissal |
11017411, | Nov 24 2009 | Visa U.S.A. Inc. | Systems and methods for multi-channel offer redemption |
11023513, | Dec 20 2007 | Apple Inc. | Method and apparatus for searching using an active ontology |
11025565, | Jun 07 2015 | Apple Inc | Personalized prediction of responses for instant messaging |
11030581, | Dec 31 2014 | WELLS FARGO BANK, N A | Medical claims lead summary report generation |
11048473, | Jun 09 2013 | Apple Inc. | Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant |
11048706, | Aug 28 2015 | WELLS FARGO BANK, N A | Malicious activity detection system capable of efficiently processing data accessed from databases and generating alerts for display in interactive user interfaces |
11055734, | Jul 23 2014 | Visa International Service Association | Systems and methods of using a communication network to coordinate processing among a plurality of separate computing systems |
11069336, | Mar 02 2012 | Apple Inc. | Systems and methods for name pronunciation |
11069347, | Jun 08 2016 | Apple Inc. | Intelligent automated assistant for media exploration |
11080012, | Jun 05 2009 | Apple Inc. | Interface for a virtual digital assistant |
11080296, | Sep 09 2015 | WELLS FARGO BANK, N A | Domain-specific language for dataset transformations |
11087759, | Mar 08 2015 | Apple Inc. | Virtual assistant activation |
11100174, | Nov 11 2013 | WELLS FARGO BANK, N A | Simple web search |
11119630, | Jun 19 2018 | Palantir Technologies Inc | Artificial intelligence assisted evaluations and user interface for same |
11127397, | May 27 2015 | Apple Inc. | Device voice control |
11138180, | Sep 02 2011 | WELLS FARGO BANK, N A | Transaction protocol for reading database values |
11138279, | Dec 10 2013 | PALANTIR TECHNOLOGIES INC. | System and method for aggregating data from a plurality of data sources |
11145294, | May 07 2018 | Apple Inc | Intelligent automated assistant for delivering content from user experiences |
11150917, | Aug 26 2015 | WELLS FARGO BANK, N A | System for data aggregation and analysis of data from a plurality of data sources |
11152002, | Jun 11 2016 | Apple Inc. | Application integration with a digital assistant |
11182204, | Oct 22 2012 | WELLS FARGO BANK, N A | System and method for batch evaluation programs |
11204787, | Jan 09 2017 | Apple Inc | Application integration with a digital assistant |
11217255, | May 16 2017 | Apple Inc | Far-field extension for digital assistant services |
11231904, | Mar 06 2015 | Apple Inc. | Reducing response latency of intelligent automated assistants |
11252248, | Dec 22 2014 | WELLS FARGO BANK, N A | Communication data processing architecture |
11257504, | May 30 2014 | Apple Inc. | Intelligent assistant for home automation |
11275753, | Oct 16 2014 | WELLS FARGO BANK, N A | Schematic and database linking system |
11281657, | Jan 30 2020 | Walmart Apollo, LLC | Event-driven identity graph conflation |
11281993, | Dec 05 2016 | Apple Inc | Model and ensemble compression for metric learning |
11301477, | May 12 2017 | Apple Inc | Feedback analysis of a digital assistant |
11314370, | Dec 06 2013 | Apple Inc. | Method for extracting salient dialog usage from live data |
11341178, | Jun 30 2014 | WELLS FARGO BANK, N A | Systems and methods for key phrase characterization of documents |
11348582, | Oct 02 2008 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
11350253, | Jun 03 2011 | Apple Inc. | Active transport based notifications |
11386266, | Jun 01 2018 | Apple Inc | Text correction |
11392550, | Jun 23 2011 | WELLS FARGO BANK, N A | System and method for investigating large amounts of data |
11405466, | May 12 2017 | Apple Inc. | Synchronization and task delegation of a digital assistant |
11495218, | Jun 01 2018 | Apple Inc | Virtual assistant operation in multi-device environments |
11501369, | Jul 30 2015 | WELLS FARGO BANK, N A | Systems and user interfaces for holistic, data-driven investigation of bad actor behavior based on clustering and scoring of related data |
11599369, | Mar 08 2018 | Palantir Technologies Inc | Graphical user interface configuration system |
11625529, | Dec 29 2015 | PALANTIR TECHNOLOGIES INC. | Real-time document annotation |
11640620, | May 15 2014 | Visa International Service Association | Systems and methods to organize and consolidate data for improved data storage and processing |
7676463, | Nov 15 2005 | KLDiscovery Ontrack, LLC | Information exploration systems and method |
8046362, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical record linkage calibration for reflexive and symmetric distance measures at the field and field value levels without the need for human interaction |
8090733, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical measure and calibration of search criteria where one or both of the search criteria and database is incomplete |
8135679, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical record linkage calibration for multi token fields without the need for human interaction |
8135680, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical record linkage calibration for reflexive, symmetric and transitive distance measures at the field and field value levels without the need for human interaction |
8135681, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Automated calibration of negative field weighting without the need for human interaction |
8135719, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical record linkage calibration at the field and field value levels without the need for human interaction |
8190616, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical measure and calibration of reflexive, symmetric and transitive fuzzy search criteria where one or both of the search criteria and database is incomplete |
8195670, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Automated detection of null field values and effectively null field values |
8214364, | May 21 2008 | Daedalus Blue LLC | Modeling user access to computer resources |
8229221, | Aug 04 2009 | Microsoft Technology Licensing, LLC | Image processing using masked restricted boltzmann machines |
8250078, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical record linkage calibration for interdependent fields without the need for human interaction |
8266168, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Database systems and methods for linking records and entity representations with sufficiently high confidence |
8275770, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Automated selection of generic blocking criteria |
8285725, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | System and method for identifying entity representations based on a search query using field match templates |
8301994, | Sep 12 2008 | Adobe Inc | Synchronizing multiple hierarchal data structures |
8316047, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Adaptive clustering of records and entity representations |
8484168, | Apr 24 2008 | LexisNexis Risk & Information Analytics Group, Inc. | Statistical record linkage calibration for multi token fields without the need for human interaction |
8484211, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Batch entity representation identification using field match templates |
8489617, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC. | Automated detection of null field values and effectively null field values |
8495076, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC. | Statistical measure and calibration of search criteria where one or both of the search criteria and database is incomplete |
8495077, | Apr 24 2008 | LEXISNEXIS RISK SOLUTIONS FL INC. | Database systems and methods for linking records and entity representations with sufficiently high confidence |
8572052, | Apr 24 2008 | LexisNexis Risk Solution FL Inc. | Automated calibration of negative field weighting without the need for human interaction |
8572070, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Statistical measure and calibration of internally inconsistent search criteria where one or both of the search criteria and database is incomplete |
8595058, | Oct 15 2009 | VISA U S A | Systems and methods to match identifiers |
8605092, | Apr 30 2009 | International Business Machines Corporation | Method and apparatus of animation planning for a dynamic graph |
8606630, | Oct 09 2009 | Visa U.S.A. Inc. | Systems and methods to deliver targeted advertisements to audience |
8626705, | Nov 05 2009 | Visa International Service Association | Transaction aggregator for closed processing |
8639691, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | System for and method of partitioning match templates |
8639705, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Technique for recycling match weight calculations |
8661026, | Jul 02 2008 | LEXISNEXIS RISK SOLUTIONS FL INC | Entity representation identification using entity representation level information |
8676639, | Oct 29 2009 | Visa International Service Association | System and method for promotion processing and authorization |
8843391, | Oct 15 2009 | Visa U.S.A. Inc. | Systems and methods to match identifiers |
8898485, | Jul 15 2009 | Microsoft Technology Licensing, LLC | Power transfer between devices |
8917274, | Mar 15 2013 | WELLS FARGO BANK, N A | Event matrix based on integrated data |
8972404, | Dec 27 2011 | GOOGLE LLC | Methods and systems for organizing content |
9009171, | May 02 2014 | WELLS FARGO BANK, N A | Systems and methods for active column filtering |
9015171, | Feb 04 2003 | LEXISNEXIS RISK DATA MANAGEMENT INC | Method and system for linking and delinking data records |
9020971, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC | Populating entity fields based on hierarchy partial resolution |
9021260, | Jul 03 2014 | WELLS FARGO BANK, N A | Malware data item analysis |
9021384, | Nov 04 2013 | WELLS FARGO BANK, N A | Interactive vehicle information map |
9031860, | Oct 09 2009 | VISA U S A INC | Systems and methods to aggregate demand |
9031979, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC. | External linking based on hierarchical level weightings |
9037606, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC | Internal linking co-convergence using clustering with hierarchy |
9043359, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC. | Internal linking co-convergence using clustering with no hierarchy |
9043696, | Jan 03 2014 | WELLS FARGO BANK, N A | Systems and methods for visual definition of data associations |
9043894, | Nov 06 2014 | WELLS FARGO BANK, N A | Malicious software detection in a computing system |
9058695, | Jun 20 2008 | NEW BIS SAFE LUXCO S A R L | Method of graphically representing a tree structure |
9116975, | Oct 18 2013 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores |
9123086, | Jan 31 2013 | WELLS FARGO BANK, N A | Automatically generating event objects from images |
9141882, | Oct 19 2012 | NETWORKED INSIGHTS, INC | Clustering of text units using dimensionality reduction of multi-dimensional arrays |
9189505, | Aug 09 2010 | LexisNexis Risk Data Management, Inc. | System of and method for entity representation splitting without the need for human interaction |
9202249, | Jul 03 2014 | WELLS FARGO BANK, N A | Data item clustering and analysis |
9223773, | Aug 08 2013 | WELLS FARGO BANK, N A | Template system for custom document generation |
9256664, | Jul 03 2014 | WELLS FARGO BANK, N A | System and method for news events detection and visualization |
9298678, | Jul 03 2014 | WELLS FARGO BANK, N A | System and method for news events detection and visualization |
9335897, | Aug 08 2013 | WELLS FARGO BANK, N A | Long click display of a context menu |
9335911, | Dec 29 2014 | WELLS FARGO BANK, N A | Interactive user interface for dynamic data analysis exploration and query processing |
9342835, | Oct 09 2009 | VISA U S A | Systems and methods to deliver targeted advertisements to audience |
9344447, | Jul 03 2014 | WELLS FARGO BANK, N A | Internal malware data item clustering and analysis |
9367872, | Dec 22 2014 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures |
9380431, | Jan 31 2013 | WELLS FARGO BANK, N A | Use of teams in a mobile application |
9383911, | Sep 15 2008 | WELLS FARGO BANK, N A | Modal-less interface enhancements |
9384262, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC. | Internal linking co-convergence using clustering with hierarchy |
9411859, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC | External linking based on hierarchical level weightings |
9418456, | Jun 20 2008 | NEW BIS SAFE LUXCO S À R L | Data visualization system and method |
9449035, | May 02 2014 | WELLS FARGO BANK, N A | Systems and methods for active column filtering |
9454281, | Sep 03 2014 | WELLS FARGO BANK, N A | System for providing dynamic linked panels in user interface |
9454785, | Jul 30 2015 | WELLS FARGO BANK, N A | Systems and user interfaces for holistic, data-driven investigation of bad actor behavior based on clustering and scoring of related data |
9465510, | May 31 2012 | N-CUBIC Limited | Data visualisation system |
9483162, | Feb 20 2014 | WELLS FARGO BANK, N A | Relationship visualizations |
9501505, | Aug 09 2010 | LexisNexis Risk Data Management, Inc. | System of and method for entity representation splitting without the need for human interaction |
9501851, | Oct 03 2014 | WELLS FARGO BANK, N A | Time-series analysis system |
9514200, | Oct 18 2013 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores |
9552615, | Aug 12 2014 | WELLS FARGO BANK, N A | Automated database analysis to detect malfeasance |
9557882, | Aug 09 2013 | WELLS FARGO BANK, N A | Context-sensitive views |
9558352, | Nov 06 2014 | WELLS FARGO BANK, N A | Malicious software detection in a computing system |
9589299, | Dec 22 2014 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures |
9619557, | Jun 30 2014 | WELLS FARGO BANK, N A | Systems and methods for key phrase characterization of documents |
9646396, | Mar 15 2013 | WELLS FARGO BANK, N A | Generating object time series and data objects |
9691085, | Apr 30 2015 | Visa International Service Association | Systems and methods of natural language processing and statistical analysis to identify matching categories |
9696782, | Feb 09 2015 | Microsoft Technology Licensing, LLC | Battery parameter-based power management for suppressing power spikes |
9727560, | Feb 25 2015 | WELLS FARGO BANK, N A | Systems and methods for organizing and identifying documents via hierarchies and dimensions of tags |
9727622, | Dec 16 2013 | WELLS FARGO BANK, N A | Methods and systems for analyzing entity performance |
9734217, | Dec 16 2013 | WELLS FARGO BANK, N A | Methods and systems for analyzing entity performance |
9748765, | Feb 26 2015 | Microsoft Technology Licensing, LLC | Load allocation for multi-battery devices |
9767172, | Oct 03 2014 | WELLS FARGO BANK, N A | Data aggregation and analysis system |
9779525, | Mar 15 2013 | WELLS FARGO BANK, N A | Generating object time series from data objects |
9785317, | Sep 24 2013 | WELLS FARGO BANK, N A | Presentation and analysis of user interaction data |
9785328, | Oct 06 2014 | WELLS FARGO BANK, N A | Presentation of multivariate data on a graphical user interface of a computing system |
9785773, | Jul 03 2014 | WELLS FARGO BANK, N A | Malware data item analysis |
9793570, | Dec 04 2015 | Microsoft Technology Licensing, LLC | Shared electrode battery |
9817563, | Dec 29 2014 | WELLS FARGO BANK, N A | System and method of generating data points from one or more data stores of data items for chart creation and manipulation |
9823818, | Dec 29 2015 | WELLS FARGO BANK, N A | Systems and interactive user interfaces for automatic generation of temporal representation of data objects |
9836508, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC. | External linking based on hierarchical level weightings |
9836524, | Dec 14 2009 | LEXISNEXIS RISK SOLUTIONS FL INC. | Internal linking co-convergence using clustering with hierarchy |
9841282, | Jul 27 2009 | VISA U S A INC | Successive offer communications with an offer recipient |
9852195, | Mar 15 2013 | WELLS FARGO BANK, N A | System and method for generating event visualizations |
9852205, | Mar 15 2013 | WELLS FARGO BANK, N A | Time-sensitive cube |
9857958, | Apr 28 2014 | WELLS FARGO BANK, N A | Systems and user interfaces for dynamic and interactive access of, investigation of, and analysis of data objects stored in one or more databases |
9864493, | Oct 07 2013 | WELLS FARGO BANK, N A | Cohort-based presentation of user interaction data |
9865248, | Apr 05 2008 | Apple Inc. | Intelligent text-to-speech conversion |
9870205, | Dec 29 2014 | WELLS FARGO BANK, N A | Storing logical units of program code generated using a dynamic programming notebook user interface |
9870389, | Dec 29 2014 | WELLS FARGO BANK, N A | Interactive user interface for dynamic data analysis exploration and query processing |
9880696, | Sep 03 2014 | WELLS FARGO BANK, N A | System for providing dynamic linked panels in user interface |
9880987, | Aug 25 2011 | WELLS FARGO BANK, N A | System and method for parameterizing documents for automatic workflow generation |
9886467, | Mar 19 2015 | WELLS FARGO BANK, N A | System and method for comparing and visualizing data entities and data entity series |
9891808, | Mar 16 2015 | WELLS FARGO BANK, N A | Interactive user interfaces for location-based data analysis |
9898335, | Oct 22 2012 | WELLS FARGO BANK, N A | System and method for batch evaluation programs |
9898509, | Aug 28 2015 | WELLS FARGO BANK, N A | Malicious activity detection system capable of efficiently processing data accessed from databases and generating alerts for display in interactive user interfaces |
9898528, | Dec 22 2014 | WELLS FARGO BANK, N A | Concept indexing among database of documents using machine learning techniques |
9909879, | Jul 27 2009 | Visa U.S.A. Inc. | Successive offer communications with an offer recipient |
9921734, | Aug 09 2013 | WELLS FARGO BANK, N A | Context-sensitive views |
9923925, | Feb 20 2014 | WELLS FARGO BANK, N A | Cyber security sharing and identification system |
9939862, | Nov 13 2015 | Microsoft Technology Licensing, LLC | Latency-based energy storage device selection |
9946738, | Nov 05 2014 | WELLS FARGO BANK, N A | Universal data pipeline |
9947020, | Oct 19 2009 | Visa U.S.A. Inc. | Systems and methods to provide intelligent analytics to cardholders and merchants |
9953445, | May 07 2013 | WELLS FARGO BANK, N A | Interactive data object map |
9965534, | Sep 09 2015 | WELLS FARGO BANK, N A | Domain-specific language for dataset transformations |
9965937, | Jul 03 2014 | WELLS FARGO BANK, N A | External malware data item clustering and analysis |
9966060, | Jun 07 2013 | Apple Inc. | System and method for user-specified pronunciation of words for speech synthesis and recognition |
9984133, | Oct 16 2014 | WELLS FARGO BANK, N A | Schematic and database linking system |
9986419, | Sep 30 2014 | Apple Inc. | Social reminders |
9996229, | Oct 03 2013 | WELLS FARGO BANK, N A | Systems and methods for analyzing performance of an entity |
9996595, | Aug 03 2015 | WELLS FARGO BANK, N A | Providing full data provenance visualization for versioned datasets |
9998485, | Jul 03 2014 | WELLS FARGO BANK, N A | Network intrusion data item clustering and analysis |
Patent | Priority | Assignee | Title |
4903305, | May 12 1986 | Dragon Systems, Inc. | Method for representing word models for use in speech recognition |
5506986, | Jul 14 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Media management system using historical data to access data sets from a plurality of data storage devices |
5537586, | Apr 30 1992 | Thomson Reuters Global Resources | Enhanced apparatus and methods for retrieving and selecting profiled textural information records from a database of defined category structures |
5742816, | Sep 15 1995 | BHW INFO EDCO COM, LLC | Method and apparatus for identifying textual documents and multi-mediafiles corresponding to a search topic |
5758072, | Mar 23 1989 | International Business Machines Corp. | Interactive computer network and method of operation |
5768578, | Feb 28 1994 | Alcatel Lucent | User interface for information retrieval system |
5787414, | Jun 03 1993 | Kabushiki Kaisha Toshiba | Data retrieval system using secondary information of primary data to be retrieved as retrieval key |
5832484, | Jul 02 1996 | SYBASE, Inc.; SYBASE, INC , A CORP OF DE | Database system with methods for parallel lock management |
5835905, | Apr 09 1997 | Xerox Corporation | System for predicting documents relevant to focus documents by spreading activation through network representations of a linked collection of documents |
5850516, | Dec 23 1996 | BT AMERICAS INC | Method and apparatus for analyzing information systems using stored tree database structures |
5856928, | Mar 13 1992 | Gene and protein representation, characterization and interpretation process | |
5873099, | Oct 15 1993 | GLOBAL CROSSING TELECOMMUNICATIONS, INC | System and method for maintaining redundant databases |
5903892, | Apr 30 1997 | INSOLVENCY SERVICES GROUP, INC ; Procter & Gamble Company, The | Indexing of media content on a network |
5911139, | Mar 28 1997 | MICRO FOCUS LLC | Visual image database search engine which allows for different schema |
5913205, | Mar 29 1996 | MICRO FOCUS LLC | Query optimization for visual information retrieval system |
5915250, | Mar 28 1997 | MICRO FOCUS LLC | Threshold-based comparison |
5920873, | Dec 06 1996 | International Business Machines Corporation | Data management control system for file and database |
5953725, | Jul 12 1996 | International Business Machines Incorporated | Networked multimedia information system |
5963948, | Nov 15 1996 | Method for generating a path in an arbitrary physical structure | |
5970421, | Nov 19 1997 | Target Strike, Inc. | Method for determining spatial coherences among features of an object |
5991756, | Nov 03 1997 | OATH INC | Information retrieval from hierarchical compound documents |
6006230, | Jan 15 1997 | SYBASE, INC | Database application development system with improved methods for distributing and executing objects across multiple tiers |
6038559, | Mar 16 1998 | HERE GLOBAL B V | Segment aggregation in a geographic database and methods for use thereof in a navigation application |
6088717, | Feb 29 1996 | OneName Corporation | Computer-based communication system and method using metadata defining a control-structure |
6094654, | Dec 06 1996 | International Business Machines Corporation | Data management system for file and database management |
6134541, | Oct 31 1997 | International Business Machines Corporation; IBM Corporation | Searching multidimensional indexes using associated clustering and dimension reduction information |
6374367, | Nov 26 1997 | Hewlett Packard Enterprise Development LP | Apparatus and method for monitoring a computer system to guide optimization |
WO9004231, | |||
WO9531788, | |||
WO9534884, | |||
WO9628787, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 02 2001 | HECKERMAN, DAVID E | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015133 | /0353 | |
May 02 2001 | CHICKERING, DAVID M | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015133 | /0353 | |
May 02 2001 | MEEK, CHRISTOPHER A | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015133 | /0353 | |
May 23 2001 | BRADLEY, PAUL S | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015133 | /0353 | |
Mar 24 2004 | Microsoft Corporation | (assignment on the face of the patent) | / | |||
Oct 14 2014 | Microsoft Corporation | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034541 | /0477 |
Date | Maintenance Fee Events |
Jul 21 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 05 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 07 2019 | REM: Maintenance Fee Reminder Mailed. |
Mar 23 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 19 2011 | 4 years fee payment window open |
Aug 19 2011 | 6 months grace period start (w surcharge) |
Feb 19 2012 | patent expiry (for year 4) |
Feb 19 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 19 2015 | 8 years fee payment window open |
Aug 19 2015 | 6 months grace period start (w surcharge) |
Feb 19 2016 | patent expiry (for year 8) |
Feb 19 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 19 2019 | 12 years fee payment window open |
Aug 19 2019 | 6 months grace period start (w surcharge) |
Feb 19 2020 | patent expiry (for year 12) |
Feb 19 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |