A method for forming mram cell structures wherein the topography of the cell is substantially flat and the distance between a bit line and a magnetic free layer, a word line and a magnetic free layer or a word line and a bit line and a magnetic free layer is precise and well controlled. The method includes the formation of an MTJ film stack over which is formed both a capping and sacrificial layer. The stack is patterned by conventional means, then is covered by a layer of insulation which is thinned by CMP to expose a remaining portion of the sacrificial layer. The remaining portion of the sacrificial layer can be precisely removed by an etching process, leaving only the well dimensioned capping layer to separate the bit line from the magnetic free layer and the capping layer. The bit line and an intervening layer of insulation separate the free layer from a word line in an equally precise and controlled manner.
|
8. An array of mram cells, wherein accessing bit lines and word lines are advantageously formed over a flat topography and maintain a well controlled distance to a magnetic free layer in each of said mram cells, comprising:
a plurality of mram cells uniformly disposed in a regular two-dimensional array of uniformly spaced cells formed in parallel linear ranks, each cell including a free layer and each cell being capped by a capping layer of well controlled thickness;
an array of parallel bit lines formed in a first direction over said mram cells, wherein one bit line is formed over each rank of cells; and wherein
the overall topography of each cell is flat and the vertical separation between each bit line and a magnetic free layer within the cell vertically below said bit line is well controlled to within +/−1% of said vertical separation by the formation of said capping layer.
1. An mram cell structure in which the overall topography is flat and in which the distance between a bit line and a magnetic free layer, a word line and a magnetic free layer or a bit line and a word line and a magnetic free layer is well controlled, comprising:
a substrate;
a magnetic tunneling junction (MTJ) formed on the substrate, said MTJ including a magnetic free layer;
a capping layer formed on said MTJ, the vertical separation between an upper surface of said capping layer and an upper surface of said free layer being the thickness of said capping layer and said thickness being precisely defined and well controlled;
a first layer of insulation formed surrounding said MTJ, the upper surface of said insulation layer and the upper surface of said capping layer being rendered substantially coplanar and forming a common surface having a flat topography and the thickness of said capping layer being unchanged during said rendering as a result of a protective sacrificial layer that is completely removed;
a bit line formed on said common surface and extending across said capping layer, wherein the vertical separation between said bit line and said magnetic free layer is well controlled to within +/−1% of said vertical separation;
a second layer of insulation formed surrounding said bit line, an upper surface of said second layer being substantially co-planar with an upper surface of said bit line.
2. The mram cell structure of
a third layer of insulation of well controlled thickness formed on said upper surface of said second layer of insulation and disposed over said bit line; and
a word line formed over said third layer of insulation, the word line being thereby insulated from the bit line and the vertical separation between said word line and said free layer being thereby well controlled to within +/−1% of said separation.
4. The mram cell structure of
a seed layer formed on said substrate;
an antiferromagnetic pinning layer formed on said seed layer;
a ferromagnetic pinned layer formed on said pinning layer;
a tunneling barrier layer formed on said pinned layer;
a ferromagnetic free layer formed on said barrier layer.
5. The mram cell structure of
6. The mram of
7. The mram of
9. The array of
layer of insulation formed over said array of parallel bit lines, said layer being of uniform and well controlled thickness; and
a parallel array of word lines formed transversely to said first direction over said layer of insulation, said array of word lines being thereby vertically separated from said array of bit lines and crossing transversely over said bit lines and whereby each word line in said array is formed over a rank of mram cells and is vertically separated from said cells and whereby
the vertical separation between each word line and the magnetic free layer in a cell directly below said word line is controlled to within +/−1% of said vertical separation by the formation of the capping layer.
|
This is a division of patent application Ser. No. 10/732,013, filing date Dec. 10, 2003, now U.S. Pat. No. 6,969,895, MRAM Cell With Flat Topography And Controlled Bit Line To Free Layer Distance And Method Of Manufacture, assigned to the same assignee as the present invention, which is herein incorporated by reference in its entirety.
1. Field of the Invention
This invention relates generally to the fabrication of MRAM device structures and particularly to a structure having a flat topography and a controlled distance between the free layer of the magnetic junction and the bit line, the word line or both.
2. Description of the Related Art
A magnetic random access memory (MRAM) cell generally consists of a magnetic junction portion that is formed between at least two current carrying lines and surrounded by an insulating layer. The magnetic junction portion of the cell is capable of storing information as a result of it having different resistance states. The different resistance states can be set by a write operation and identified by a read operation by means of multiple current carrying lines (in a simple configuration, a bit line and a word line) that contact the junction at opposite ends. More specifically, if the magnetic junction portion of the cell is a magnetic tunneling junction, it consists basically of two magnetic layers separated by a thin insulating layer. The insulating layer is sufficiently thin that a current through it can be established by quantum mechanical tunneling by conduction electrons. The tunneling probability and, therefore, the resistance of the junction, can be controlled by the relative directions of the magnetizations of the two magnetic layers, one of which is typically fixed in direction (pinned layer) and the other of which is free to be changed in direction by the magnetic field of the current (the free layer).
The storage element (junction) and electrical lines are usually deposited as sheet films and are patterned by a photolithographic bi-layer lift-off process. This is a four step process consisting (A) of the formation of a bi-layer mask on the sheet to be patterned, (B) the use of the mask as a stencil to etch away unneeded portions of the sheet with an ion-beam etch (IBE) and to leave behind a portion having the shape of the stencil, (C) the use of the mask as a deposition mask to refill the removed portion of the sheet with a dielectric material and (D) the stripping away of the mask and any residue upon it. This process exposes the upper surface of the junction for contacting the electrical lines, leaves insulating material surrounding the junction and produces a substantially planarized upper surface for the entire fabrication. The process, which is known in the art, can be illustrated in the following figures.
(A) and (B): Referring to prior art
(C): Referring to
(D): Referring to
One approach to relieving the topographical variations is to planarize the surfaces by a method such as chemical-mechanical polishing (CMP). This process, which is conventional in the art, is described by reference to
Referring first to prior art
Referring next to prior art
Referring next to prior art
The disadvantageous effects of non-uniformly formed device surfaces is particularly severe when such devices are to be directly integrated into associated microelectronic circuitry. Durlam et al. (U.S. Pat. No. 6,174,737 B1) disclose an MRAM device with associated CMOS circuitry and they note (column 1, line 62) the necessity of forming flat surfaces to “prevent the characteristics of an MRAM device from degrading.” Durlam et al. teach the use of CMP processes (column 2, line 32) to produce a flat surface. They also teach the enclosure of word and bit lines in permalloy covers to enhance their magnetic field production.
Pan et al. (U.S. Pat. No. 6,548,849 B1) teach a method for forming an MRAM device surrounded by a magnetic yoke whose purpose is to reduce the current required to change states in the junction. Although this method addresses issues relating to power consumption in MRAM structures, it does not address the basic formation problems of smooth upper device surfaces and controllable distances between current carrying lines and the free layer of the device.
A first object of this invention is to provide a method for forming MRAM cell structures that avoids the uncontrollable variations in surface topography that result from conventional lift-off processes used in patterning the cell.
A second object of this invention is to provide a method for forming MRAM cell structures that avoids the uncontrollable variations in surface topography that result from conventional CMP processes used in planarizing the cell and surrounding insulation layers.
A third object of this invention is to provide a method for forming MRAM cell structures that allows controllability of the distance between the current carrying word line and the free layer of the cell element, the bit line and the free layer of the cell element or both the word and bit lines and the free layer of the cell element.
A fourth object of the present invention is to provide a method of forming MRAM cells that are too small to be formed by conventional processes.
A fifth object of the present invention is to provide an MRAM cell structure or a plurality of such structures, in which the distance from the bit line to the free layer, the word line to the free layer or both word and bit lines to the free layer is well controlled and the surface topography of the cell is flat.
In accord with the objects of this invention there is provided a cell junction layer structure in which a capping layer and a sacrificial layer are sequentially formed over the magnetically active tunnel junction layers. The layers are deposited as a film on a substrate and are patterned using any of a number of methods known in the art, such as RIE or plasma etch in conjunction with photolithographic masking processes. Subsequent to the patterning, the patterned structure and its surroundings are covered by a deposited layer of insulation. A CMP process then planarizes the patterned structure and the surrounding insulating layer, the CMP thereby removing all insulation from the upper surface of the patterned structure as well as a portion of the sacrificial layer, but not extending to the depth of the capping layer. The remaining sacrificial layer is then removed with precision by an etch process such as RIE or plasma etching. The choice of materials for the capping layer, the sacrificial layer and the insulating layer is determined by a requirement for selectivity of the CMP process, so that it stops within the sacrificial layer, as well as an etch selectivity so that the etch removes the remaining sacrifical layer without removing the capping layer. A preferred combination of materials is Al2O3 as the insulating layer, Ru or Cu as the capping layer and Ta, W, SiO2 or Si3N4 as the sacrificial layer. Other combinations include SiO2 as the insulating layer, Al, Cu, SiC or Si3N4 as the sacrificial layer and Ru or Ta as the capping layer. As a result of this process, the vertical distance (separation) between the bit line and the free layer is the thickness of the capping layer, which is well controlled within the deposition process to within +/−1%. This is an order of magnitude improvement over prior art processes in which CMP adversely affects the final thickness of the upper junction layer. It is to be noted that in the preferred embodiment of the invention the capping layer directly contacts the free layer, but even if there were intervening layers, their thickness is also precisely and well controlled by the deposition processes, so the objects of the invention would still be achieved. Although a small step may remain in the surface topography due to etching away the sacrificial layer slightly beneath the surface of the insulating layer, this may be smoothed during the next processing step which is the formation of the bit line to contact the surface of the element. In any event, the size of the step is negligible compared to surface topographical irregularities within the prior art. When a word line is finally formed over the bit line, its separation from the magnetic free layer is equally well controlled by the controlled thickness of the capping layer, the bit line and the insulation layer between the bit and word lines, all of which results from the control provided by the deposition process.
The objects, features and advantages of the present invention are understood within the context of the Description of the Preferred Embodiment, as set forth below. The Description of the Preferred Embodiment is understood within the context of the accompanying figures, wherein:
The preferred embodiment of the present invention is a method of forming an MRAM cell (or an array of such cells) having a magnetic tunnel junction (MTJ) cell element, so that the cell topography is flat and the distance between the word line and the free layer within the element, the distance between the bit line and the free layer within the cell element or the distances between both the word and bit lines and the free layer within the cell element is well controlled. There is also provided the MRAM cell so formed.
Referring first to
Referring next to
Referring next to
Referring next to
Referring next to
As is understood by a person skilled in the art, the preferred embodiments of the present invention are illustrative of the present invention rather than limiting of the present invention. Revisions and modifications may be made to materials, structures and dimensions used in forming an MRAM cell, or an array of such cells, with flat topography in which the separation between the bit line and free layer, the word line and free layer or the bit and word lines and the free layer is well controlled, while still forming an MRAM cell, or an array of such cells, with flat topography in which the separation between the bit line and free layer, the word line and free layer or the bit and word lines and the free layer is well controlled, in accord with the spirit and scope of the present invention as defined by the appended claims.
Patent | Priority | Assignee | Title |
10026892, | Jun 16 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current structure for MRAM |
10032978, | Jun 27 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | MRAM with reduced stray magnetic fields |
10141499, | Dec 30 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Perpendicular magnetic tunnel junction device with offset precessional spin current layer |
10147872, | Apr 21 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Spin transfer torque structure for MRAM devices having a spin current injection capping layer |
10163479, | Aug 14 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method and apparatus for bipolar memory write-verify |
10199083, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Three-terminal MRAM with ac write-assist for low read disturb |
10211396, | Sep 18 2015 | Samsung Electronics Co., Ltd. | Semiconductor device having magnetic tunnel junction structure and method of fabricating the same |
10229724, | Dec 30 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Microwave write-assist in series-interconnected orthogonal STT-MRAM devices |
10236047, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM |
10236048, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | AC current write-assist in orthogonal STT-MRAM |
10236439, | Dec 30 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Switching and stability control for perpendicular magnetic tunnel junction device |
10255962, | Dec 30 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Microwave write-assist in orthogonal STT-MRAM |
10270027, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Self-generating AC current assist in orthogonal STT-MRAM |
10319900, | Dec 30 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density |
10339993, | Dec 30 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching |
10347314, | Aug 14 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method and apparatus for bipolar memory write-verify |
10360961, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | AC current pre-charge write-assist in orthogonal STT-MRAM |
10360962, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with individually trimmable sense amplifiers |
10360964, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device |
10366774, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Device with dynamic redundancy registers |
10366775, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory device using levels of dynamic redundancy registers for writing a data word that failed a write operation |
10367139, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Methods of manufacturing magnetic tunnel junction devices |
10381553, | Jan 28 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory cell having magnetic tunnel junction and thermal stability enhancement layer |
10388861, | Mar 08 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
10395711, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Perpendicular source and bit lines for an MRAM array |
10395712, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with horizontal source line and sacrificial bitline per virtual source |
10411185, | May 30 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for creating a high density magnetic tunnel junction array test platform |
10424393, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of reading data from a memory device using multiple levels of dynamic redundancy registers |
10424723, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction devices including an optimization layer |
10424726, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for improving photoresist pillar adhesion during MRAM fabrication |
10437491, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register |
10437723, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device |
10438995, | Jan 08 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Devices including magnetic tunnel junctions integrated with selectors |
10438996, | Jan 08 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Methods of fabricating magnetic tunnel junctions integrated with selectors |
10446210, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers |
10446744, | Mar 08 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
10460781, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank |
10468588, | Jan 05 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer |
10468590, | Apr 21 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory |
10481976, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers |
10489245, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them |
10516094, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for creating dense pillars using multiple exposures for MRAM fabrication |
10529439, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects |
10529915, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer |
10546624, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-port random access memory |
10546625, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of optimizing write voltage based on error buffer occupancy |
10553787, | Jun 16 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current structure for MRAM |
10559338, | Jul 06 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-bit cell read-out techniques |
10580827, | Nov 16 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching |
10593396, | Jul 06 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
10600478, | Jul 06 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
10615335, | Apr 21 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Spin transfer torque structure for MRAM devices having a spin current injection capping layer |
10615337, | May 30 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for creating a high density magnetic tunnel junction array test platform |
10628316, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register |
10643680, | Jan 28 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory cell having magnetic tunnel junction and thermal stability enhancement layer |
10650875, | Aug 21 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | System for a wide temperature range nonvolatile memory |
10656994, | Oct 24 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques |
10665777, | Feb 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current structure with non-magnetic insertion layer for MRAM |
10672976, | Feb 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current structure with high in-plane magnetization for MRAM |
10679685, | Dec 27 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Shared bit line array architecture for magnetoresistive memory |
10692569, | Jul 06 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Read-out techniques for multi-bit cells |
10699761, | Sep 18 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Word line decoder memory architecture |
10734573, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Three-dimensional arrays with magnetic tunnel junction devices including an annular discontinued free magnetic layer and a planar reference magnetic layer |
10734574, | Apr 21 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method of manufacturing high annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory |
10777736, | Jul 30 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Polishing stop layer(s) for processing arrays of semiconductor elements |
10784437, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
10784439, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current magnetic tunnel junction devices and methods of manufacture |
10811594, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Process for hard mask development for MRAM pillar formation using photolithography |
10818331, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi-chip module for MRAM devices with levels of dynamic redundancy registers |
10840436, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture |
10840439, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction (MTJ) fabrication methods and systems |
10886330, | Dec 29 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch |
10891997, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with horizontal source line and a virtual source line |
10930332, | Dec 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory array with individually trimmable sense amplifiers |
10971680, | Oct 01 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi terminal device stack formation methods |
10991410, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Bi-polar write scheme |
11107974, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer |
11107978, | Mar 23 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
11107979, | Dec 28 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Patterned silicide structures and methods of manufacture |
11119910, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments |
11119936, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Error cache system with coarse and fine segments for power optimization |
11151042, | Sep 27 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Error cache segmentation for power reduction |
11271149, | Feb 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current structure with nonmagnetic insertion layer for MRAM |
11355699, | Feb 28 2017 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current structure for MRAM |
11621293, | Oct 01 2018 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Multi terminal device stack systems and methods |
7531367, | Jan 18 2006 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Utilizing sidewall spacer features to form magnetic tunnel junctions in an integrated circuit |
8133809, | Aug 11 2010 | Taiwan Semiconductor Manufacturing Company, Ltd | Method to fabricate thin metal via interconnects on copper wires in MRAM devices |
8334213, | Jun 05 2009 | Taiwan Semiconductor Manufacturing Company, Ltd | Bottom electrode etching process in MRAM cell |
9263667, | Jul 25 2014 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method for manufacturing MTJ memory device |
9337412, | Sep 22 2014 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Magnetic tunnel junction structure for MRAM device |
9406876, | Jul 25 2014 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Method for manufacturing MTJ memory device |
9728712, | Apr 21 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Spin transfer torque structure for MRAM devices having a spin current injection capping layer |
9741926, | Jan 28 2016 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Memory cell having magnetic tunnel junction and thermal stability enhancement layer |
9773974, | Jul 30 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Polishing stop layer(s) for processing arrays of semiconductor elements |
9853206, | Jun 16 2015 | INTEGRATED SILICON SOLUTION, CAYMAN INC | Precessional spin current structure for MRAM |
9997699, | Sep 18 2015 | Samsung Electronics Co., Ltd. | Semiconductor device having magnetic tunnel junction structure and method of fabricating the same |
Patent | Priority | Assignee | Title |
6174737, | Aug 31 1998 | Everspin Technologies, Inc | Magnetic random access memory and fabricating method thereof |
6548849, | Jan 31 2002 | Sharp Laboratories of America, Inc.; Sharp Laboratories of America, Inc | Magnetic yoke structures in MRAM devices to reduce programming power consumption and a method to make the same |
6744608, | May 14 2002 | Western Digital Technologies, INC | Method and system for making TMR junctions |
20020196647, | |||
20040109339, | |||
20060138576, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 20 2003 | HAN, CHERNG-CHYI | Headway Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047317 | 0643 | |
Nov 20 2003 | HONG, LIUBO | Headway Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047317 | 0643 | |
Jul 12 2005 | Headway Technologies, Inc. | (assignment on the face of the patent) | ||||
Feb 04 2019 | Headway Technologies, Inc | Taiwan Semiconductor Manufacturing Company, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048692 | 0917 |
Date | Maintenance Fee Events |
Jul 07 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 24 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 26 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 26 2011 | 4 years fee payment window open |
Aug 26 2011 | 6 months grace period start (w surcharge) |
Feb 26 2012 | patent expiry (for year 4) |
Feb 26 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 26 2015 | 8 years fee payment window open |
Aug 26 2015 | 6 months grace period start (w surcharge) |
Feb 26 2016 | patent expiry (for year 8) |
Feb 26 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 26 2019 | 12 years fee payment window open |
Aug 26 2019 | 6 months grace period start (w surcharge) |
Feb 26 2020 | patent expiry (for year 12) |
Feb 26 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |