A method for the detection and combating of forest and surface fires includes the steps of observing and detecting fires using an infrared camera on board an observation aircraft; georeferencing image obtained by the infrared camera pixel-wise using location data of the observation aircraft as obtained by a satellite navigation system; testing the georeferenced infrared image for hot points caused by a fire, and transmitting coordinates of the hot points via a data link to a central data processing system on the ground; automatically generating deployment plans for available firefighting vehicles in the central data processing system taking into consideration data relating to the terrain and data on available firefighting equipment; transferring the deployment plans generated in the central data processing system to on-board management systems of deployed vehicles; representing deployment data and coordinates corresponding to the deployment plans with output apparatus by the on-board management systems of the deployed vehicles; and carrying out fire-fighting by the deployed vehicles in accordance with the data displayed by the on-board management systems.

Patent
   7337156
Priority
Feb 06 2004
Filed
Feb 04 2005
Issued
Feb 26 2008
Expiry
Jan 09 2026
Extension
339 days
Assg.orig
Entity
Large
48
12
EXPIRED
1. A method for the detection and combating of forest and surface fires, comprising:
observing and detecting fires using an infrared camera on board an observation aircraft;
georeferencing images obtained by the infrared camera pixel-wise using location data of the observation aircraft obtained by a navigation system;
testing the georeferenced infrared image for hot points caused by a fire, and transmitting coordinates of the hot points via a data link to a central data processing system on the ground;
automatically generating deployment plans for available firefighting vehicles in the central data processing system, taking into consideration data relating to the terrain and data on available firefighting equipment;
transferring the deployment plans generated in the central data processing system to on-board management systems of deployed vehicles;
representing deployment data and coordinates corresponding to the deployment plans via output apparatus of the on-board management systems of the deployed vehicles;
the deployed vehicles carrying out fire-fighting based on the data displayed by the on-board management systems;
detecting actual deployment results and evaluating the effectiveness of the deployment in the central data processing system;
said central data processing system computing simulated results of the generated deployment plans and their effects; and
comparing effectiveness of the detected deployment results with the computed simulated results.
2. The method according to claim 1, further comprising using the central data processing apparatus to reproduce the positions of the hot points on a deployment map to show the overall situation.
3. The method according to claim 2, wherein said step of generating deployment plans takes into consideration coordinated participation of airborne and earth-bound deployment vehicles.
4. The method according to claim 3, further comprising conveying deployment-relative data and locations of the deployment vehicles by the on-board management system via data link to the central data processing apparatus.
5. The method according to claim 4, further comprising obtaining the locations of the deployment vehicles using location data of a satellite navigation system.
6. The method according to claim 5, wherein said step of detecting deployment outcome is performed using the infrared camera in the observation aircraft, and the detected deployment outcome is conveyed to the central data processing system.
7. The method according to claim 1, further comprising using the central data processing apparatus to automatically generate changes in plans to optimize the fire-fighting on the basis of evaluation of the effectiveness of the deployment.
8. The method according to claim 1, further comprising analyzing a deployment by transferring data recorded on board the deployed vehicles after the deployment is completed.
9. The method according to claim 1, wherein said step of generating deployment plans takes into consideration coordinated participation of airborne and earth-bound deployment vehicles.
10. The method according to claim 1, further comprising conveying deployment-relative data and locations of the deployment vehicles by the on-board management system via data link to the central data processing apparatus.
11. The method according to claim 10, further comprising obtaining the locations of the deployment vehicles using location data of a satellite navigation system.
12. The method according to claim 1, wherein said step of detecting deployment outcome is performed using the infrared camera in the observation aircraft, and the detected deployment outcome is conveyed to the central data processing system.
13. The method according to claim 12, further comprising using the central data processing apparatus to automatically generate changes in plans to optimize the fire-fighting on the basis of evaluation of the effectiveness of the deployment.
14. The method according to claim 13, further comprising analyzing a deployment by transferring data recorded on board the deployed vehicles after the deployment is completed.
15. The method according to claim 1, wherein said deployment plans include:
optimized starting and running plans, specification of fire fighting materials, and deployment instructions for direct fire fighting, for deployed land vehicles; and
deployment altitudes, routes for flying to fire fighting points and optimal locations for dumping extinguishing materials, for deployed air vehicles.

This application claims the priority of Federal Republic of Germany Patent Document No. 10 2004 006 033.9-34, filed Feb. 6, 2004, the disclosure of which is expressly incorporated by reference herein.

The invention relates to a method for detecting forest and surface fires, planning to combat them, and combating them.

Great public assets are destroyed worldwide every year by forest and surface fires. Landscapes are damaged for long periods of time, and secondary ecological damage is as a rule inestimable. In combating large fires persons are injured and firefighters are exposed to great harm. It is not rare for fire-fighting crews to become surrounded and killed by the advancing fires.

Combating large fires is carried out as a rule on the ground by fire-fighting vehicles and by aerial fire-fighting. The coordination of the ground forces as well as of aircraft must be conducted over large areas, and is as a rule difficult or even impossible for lack of planning and communication.

The evaluation of large fires, their geographical path and the recognition and evaluation of regions of especially critical growth is performed as a rule from the air, but only with little planning support and coordination with other sources of information, such as up-to-date weather data, local wind information and/or consideration of topographical circumstances.

DE 694 21 200 T2 discloses a method for the detection of fires in open land is disclosed, in which infrared (IR) cameras positioned on the land are employed. The pictures captured by these cameras are transmitted to a central station for digital processing. If necessary, an alarm signal can be generated on the basis of the photography.

EP 0 811 400 A1 discloses a method for fire detection using an infrared camera on board an observation aircraft. The images obtained are examined for potential centers of concern.

The invention is directed to a method by which fires can be reliably detected and effective countermeasures can quickly be initiated.

In the proposed method, fires are detected from the air by means of georeferenced infrared data and these surface data are transferred to a planning and deployment center. The overall situation is appraised with a display and planning computer, and fire-fighting intervention by air and on the ground is derived therefrom and communicated to the individual fire-fighting units.

In one advantageous embodiment, the fire-fighting and effectiveness of the recommended intervention is surveyed from the air, recorded and compared at the center with the computed action, and the plans are improved as necessary. With such improvement, the method constitutes a continuous circuit made up of an appraisal of the fire situation, the reckoning of countermeasures and the monitoring of the effectiveness of these measures.

Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.

The method of the invention is further explained hereinafter in conjunction with FIGS. 1-4.

FIG. 1 shows the individual components of the method of the invention and their interaction.

FIG. 2 shows the component for observing and detecting fires,

FIG. 3 shows the component for deployment and coordination,

FIG. 4 shows the component for mobile air and ground management.

FIG. 1 shows the individual components of a method of the invention and their interaction. The observation and detection of fires is done on board an aircraft 1 using a georeferenced heat image. The coordinates of the hot points on the image caused by a fire are transmitted through a data link to a deployment center 2 for deployment planning, deployment coordination and in some cases deployment supervision. The deployment plans generated in the center 2 are passed on to the on-board management systems of the deployed vehicle, which can be a fire truck 3b and/or aircraft 3a. The current location data of the deployed vehicles as well as other relevant data can be transmitted via the data link to the deployment center 2. The components of the method described are further explained hereinafter.

Component for Observation and Detection of Fires (FIG. 2)

Fire observation from the air that is today practiced is based on visual evaluation by pilots or fire observers. The detection of centers of concern by the observation of smoke is primary. If smoke is observed from the air, the observer sends an estimate of the location to the ground center, where the fire-fighting is then initiated.

In the method of the invention, the fire observer is replaced in a high-altitude observation aircraft by an infrared camera with georeferencing equipment. The camera detects not just smoke but even hot spots which do not directly amount to outright smoking. Plausibility methods employed in the evaluation of the infrared data assure that it does not cause constant false alarms due to temporary hot spots, such as automobile engines. Moreover, the camera provides a definitely greater area of coverage than a human observer can, due to limitations of visibility. The data obtained by the observation camera are continually conveyed to a center on the ground and represented on a supervision and deployment map with the aid of the geographic coordinates in a planning and display system. If heat caused by a fire occurs, a hot spot appears on the map to indicate a possible outbreak. Also, a precise geographic location is associated with the report of the elevated temperatures. Each definitely excessive temperature is as a rule to be related to a fire. Thus, with knowledge of the location of this excessive temperature rise immediate countermeasures can be initiated. As a rule, a countermeasure of this kind can be the sending of an alarm to a fire guard situated near the fire, by whom the appropriate observation and fire-fighting measures can be initiated on the ground.

A fire cannot always be combated directly. If fires spread, the observation camera in the air takes on an additional task. By continuously monitoring the overall situation in a very great area of observation and transmitting the data to the center on the ground, it is possible to indicate and steadily follow up the fire areas and flame fronts and their heading. Thus the effectiveness of the countermeasures is constantly checked and the development of threats to personnel on the ground, such as extremely rapidly shifting flame fronts, restrictions of movement, and escape routes, and possible entrapments, can be detected early and the affected personnel can be warned and protected.

The observation component consists, as shown in FIG. 2, of three elements. On board an observation aircraft is an infrared camera 21 which steadily takes a heat picture of the ground over which the plane is flying and can detect so-called hot spots or hot areas by relative comparison with data on hand. By correlating the heat image with the position of the aircraft in an on-board computer 22, the heat picture can be georeferenced. GPS receivers 23 can be used in flight. An accuracy of location of around 30 meters is sufficient for this referencing. The data obtained are transmitted by a data radio system 24 to a center on the ground. Since the on-board data have already been processed, the transmission bandwidth does not have to satisfy stringent requirements. As a rule a conventional aircraft radio (preferably in the NAV band) can be used in this data system.

Component for Deployment Planning and Coordination (FIG. 3)

A planning computer in the deployment center 2 on the ground (PC) has a data bank including:

Map data of a region to be observed and represented,

Data on the topography and nature of this region,

Data on roads and streets with information of their present loading capacity and suitability for the use of the fire-fighting vehicles,

Data on local availability of water and fire-fighting equipment,

Data on infrastructure for the use of fire-fighting aircraft and helicopters,

Data on vehicles and aircraft regarding technical equipment, fire extinguishers, number of fire extinguishers, specific vehicle and aircraft information such as weight, capacity, power profiles (in the case of fire-fighting aircraft and helicopters for figuring employability, flying range and ability to dump fire-fighting agents), and

Data on location of vehicles (ground and air) in regard to fleet management systems.

These data are supplemented with:

Current weather and wind information,

Infrared surface observation data from the observation aircraft, and

Up-to-date practical data on availability of highways, roads and equipment.

The computer is thus able to produce a clear deployment image on one or more displays. All information relevant to the deployment can be displayed on the map of the area under observation. In addition to the built-up areas and the terrain, this includes roads and highway networks, tactical data, for example on the location of the work forces, data on the infrastructure and, of course, information on the progress of the fire itself correlated with the geographical map.

In addition to the display of data related to the deployment, the computer has a second important task. With knowledge of the specific data on all the deployed vehicles, it is possible to draw up plans for the use of fire-fighting aircraft, fire trucks and helicopters. At the same time, deployment plans and flight profiles optimized on the basis of the various deployment and flying abilities are computed so as to achieve optimum fire-fighting efforts.

In addition to the plans for the individual vehicles, coordinated fleet deployment plans can thus be determined. The calculated data and deployment plans are conveyed to the deployed crews (radios, software media) and are entered into appropriate management systems on board the vehicles. These plans, transferred to the deployment management systems, now permit the coordinated use of the vehicles participating in an action (ground or air) in order to optimize the fire-fighting.

The chain of operations, including monitoring in the deployment center, deployment planning, and coordination, is completed by the element for deployment supervision and for the evaluation of the effectiveness of the deployment. The effect of the deployment can be learned and displayed in real time in the situational view. An optimization of the battle at the fire front can be performed directly. This includes route optimization when the equipment is started up, as well as the decentralization and adjustment of plans for deploying fire-fighting aircraft and helicopters in order to optimize fire-fighting results. This is accompanied by the increase in the safety of the deployment of fire-fighting aircraft and helicopters by coordinating flight paths and profiles.

Effectiveness supervision is assisted by local observation as well as by aerial observation with the use of thermal imaging technology. Thus the proposed process constitutes a complete system for monitoring and planning for combating surface and forest fires over large areas of land.

Component for Managing Mobile Air and Ground Deployment

The deployment plans and data for firefighting with ground and air support which have been estimated and coordinated in the base computer can be transferred to the aircraft and ground vehicles in at least three ways.

The on-board management system of each deployed vehicle (ground and air) has a data link 41 by which the data from the planning computer in the deployment center can be transferred to the particular vehicle. Thus, when adaptations of the planning are necessary, a fast exchange of data between the ground center and the deployed vehicles is assured. Since this data link is a bidirectional connection, it is possible at any time to transmit data from the ground center, such as location and conditions, to the deployed vehicles on the ground and displayed therein or used for updating plans.

The planning data can alternatively be copied onto a data disk by the planning computer on the ground and read from the disk with a reader 42 in the on-board management computer 43. This data transfer can also be used in the opposite direction to transmit on-board data to the deployment center in order, for example, to then evaluate deployment profiles in the deployment center on the ground and display and analyze the entire operation.

In the third case the data from a deployment plan can be transferred by manual entry through an input keyboard 48 into the on-board system. This method of input is especially appropriate whenever, for example, slight changes of plan have to be executed quickly.

For land vehicles these plans contain optimized starting and running plans, data on loading fire-fighting materials and deployment instructions for direct fire-fighting. The deployment data are shown on a graphic display 45 inside the vehicle. Based on these data the vehicle can run and be used in coordination with all other vehicles involved in the deployment. At the same time it steadily transmits its specific location and status obtained from GPS 44 to the center where it can be represented in a deployment overview in association with other vehicles.

For aircraft and helicopters, the deployment plans contain deployment elevations, routes for flying to fire-fighting points and coordinates of the best locations for dumping the extinguishing materials. Furthermore, time data can be made available for the coordination of various aircraft within a restricted airspace. Thus the deployment of several aircraft can be performed to improve fire-fighting actions while avoiding collision. All data relating to the deployment are shown to the crew in the aircraft on an appropriate display 45. Information critical to the deployment, such as the dumping point for the firefighting material, can also be given acoustically if necessary.

By communicating the current location of all aircraft in operation via datalink 41, based on the location obtained by GPS, a comprehensive display of the vehicles deployed and their location can be given in the deployment center.

The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.

Wippich, Heinz-Georg

Patent Priority Assignee Title
10046187, Oct 09 2015 Wildfire aerial fighting system utilizing lidar
10131429, Nov 02 2015 Lockheed Martin Corporation Method and systems of autonomously picking up water in support of fire fighting missions
10260232, Dec 02 2017 M-FIRE SUPPRESSION, INC Methods of designing and constructing Class-A fire-protected multi-story wood-framed buildings
10267034, Dec 02 2017 M-FIRE SUPPRESSION, INC On-job-site method of and system for providing class-A fire-protection to wood-framed buildings during construction
10290004, Dec 02 2017 MIGHTY FIRE BREAKER LLC Supply chain management system for supplying clean fire inhibiting chemical (CFIC) totes to a network of wood-treating lumber and prefabrication panel factories and wood-framed building construction job sites
10311444, Dec 02 2017 M-FIRE SUPPRESSION, INC Method of providing class-A fire-protection to wood-framed buildings using on-site spraying of clean fire inhibiting chemical liquid on exposed interior wood surfaces of the wood-framed buildings, and mobile computing systems for uploading fire-protection certifications and status information to a central database and remote access thereof by firefighters on job site locations during fire outbreaks on construction sites
10332222, Dec 02 2017 MIGHTY FIRE BREAKER LLC Just-in-time factory methods, system and network for prefabricating class-A fire-protected wood-framed buildings and components used to construct the same
10388049, Apr 06 2017 Honeywell International Inc. Avionic display systems and methods for generating avionic displays including aerial firefighting symbology
10430757, Dec 02 2017 MIGHTY FIRE BREAKER LLC Mass timber building factory system for producing prefabricated class-A fire-protected mass timber building components for use in constructing prefabricated class-A fire-protected mass timber buildings
10653904, Dec 02 2017 MIGHTY FIRE BREAKER LLC Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques
10695597, Dec 02 2017 MIGHTY FIRE BREAKER LLC Method of and apparatus for applying fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
10814150, Dec 02 2017 MIGHTY FIRE BREAKER LLC Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
10899038, Dec 02 2017 MIGHTY FIRE BREAKER LLC Class-A fire-protected wood products inhibiting ignition and spread of fire along class-A fire-protected wood surfaces and development of smoke from such fire
10919178, Dec 02 2017 MIGHTY FIRE BREAKER LLC Class-A fire-protected oriented strand board (OSB) sheathing, and method of and automated factory for producing the same
11225326, Dec 14 2017 INCAENDIUM INITIATIVE CORPORATION Fire resistant aerial vehicle for suppressing widespread fires
11395931, Dec 02 2017 MIGHTY FIRE BREAKER LLC Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
11400324, Dec 02 2017 MIGHTY FIRE BREAKER LLC Method of protecting life, property, homes and businesses from wild fire by proactively applying environmentally-clean anti-fire (AF) chemical liquid spray in advance of wild fire arrival and managed using a wireless network with GPS-tracking
11633636, Dec 02 2017 MIGHTY FIRE BREAKER LLC Wireless neighborhood wildfire defense system network supporting proactive protection of life and property in a neighborhood through GPS-tracking and mapping of environmentally-clean anti-fire (AF) chemical liquid spray applied to the property before wild fires reach the neighborhood
11638844, Mar 01 2020 MIGHTY FIRE BREAKER LLC Method of proactively protecting property from wild fire by spraying environmentally-clean anti-fire chemical liquid on property surfaces prior to wild fire arrival using remote sensing and GPS-tracking and mapping enabled spraying
11642555, Dec 02 2017 MIGHTY FIRE BREAKER LLC Wireless wildfire defense system network for proactively defending homes and neighborhoods against wild fires by spraying environmentally-clean anti-fire chemical liquid on property and buildings and forming GPS-tracked and mapped chemical fire breaks about the property
11654313, Dec 02 2017 MIGHTY FIRE BREAKER LLC Wireless communication network, GPS-tracked ground-based spraying tanker vehicles and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
11654314, Dec 02 2017 MIGHTY FIRE BREAKER LLC Method of managing the proactive spraying of environment ally-clean anti-fire chemical liquid on GPS-specified property surfaces so as to inhibit fire ignition and flame spread in the presence of wild fire
11697039, Dec 02 2017 MIGHTY FIRE BREAKER LLC Wireless communication network, GPS-tracked back-pack spraying systems and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
11697040, Dec 02 2017 MIGHTY FIRE BREAKER LLC Wild fire defense system network using a command center, spraying systems and mobile computing systems configured to proactively defend homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces before presence of wild fire
11697041, Dec 02 2017 MIGHTY FIRE BREAKER LLC Method of proactively defending combustible property against fire ignition and flame spread in the presence of wild fire
11707639, Mar 01 2020 MIGHTY FIRE BREAKER LLC Wireless communication network, GPS-tracked mobile spraying systems, and a command system configured for proactively spraying environmentally-safe anti-fire chemical liquid on combustible property surfaces to protect property against fire ignition and flame spread in the presence of wild fire
11730987, Dec 02 2017 MIGHTY FIRE BREAKER LLC GPS tracking and mapping wildfire defense system network for proactively defending homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
11794044, Dec 02 2017 MIGHTY FIRE BREAKER LLC Method of proactively forming and maintaining GPS-tracked and mapped environmentally-clean chemical firebreaks and fire protection zones that inhibit fire ignition and flame spread in the presence of wild fire
11826592, Jan 09 2018 MIGHTY FIRE BREAKER LLC Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire
11836807, Dec 02 2017 MIGHTY FIRE BREAKER LLC System, network and methods for estimating and recording quantities of carbon securely stored in class-A fire-protected wood-framed and mass-timber buildings on construction job-sites, and class-A fire-protected wood-framed and mass timber components in factory environments
11865390, Dec 03 2017 MIGHTY FIRE BREAKER LLC Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire
11865394, Dec 03 2017 MIGHTY FIRE BREAKER LLC Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires
11911643, Feb 04 2021 MIGHTY FIRE BREAKER LLC Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire
8118108, Dec 03 2007 Combustion process stopper
8360343, Apr 30 2010 Caterpillar Inc.; Caterpillar Inc Methods and systems for executing fluid delivery mission
8369567, May 11 2010 The United States of America as represented by the Secretary of the Navy Method for detecting and mapping fires using features extracted from overhead imagery
8599044, Aug 11 2010 The Boeing Company System and method to assess and report a health of a tire
8712634, Aug 11 2010 The Boeing Company System and method to assess and report the health of landing gear related components
8773289, Mar 24 2010 The Boeing Company Runway condition monitoring
8812154, Mar 16 2009 The Boeing Company Autonomous inspection and maintenance
8982207, Oct 04 2010 The Boeing Company Automated visual inspection system
9046892, Jun 05 2009 The Boeing Company Supervision and control of heterogeneous autonomous operations
9117185, Sep 19 2012 The Boeing Company Forestry management system
9251698, Sep 19 2012 The Boeing Company Forest sensor deployment and monitoring system
9418496, Feb 17 2009 The Boeing Company Automated postflight troubleshooting
9463483, Apr 30 2010 Caterpillar Inc. Methods and systems for executing fluid delivery mission
9541505, Feb 17 2009 The Boeing Company Automated postflight troubleshooting sensor array
9671314, Aug 11 2010 The Boeing Company System and method to assess and report the health of landing gear related components
Patent Priority Assignee Title
5160842, Jun 24 1991 RAM SYSTEMS LLC Infrared fire-perimeter mapping
5557260, Feb 10 1993 IZAR CONSTRUCCIONES NAVALES, S A System for the monitoring and detection of heat sources in open areas
5832187, Nov 03 1995 Lemelson Medical, Education & Research Foundation, L.P. Fire detection systems and methods
5878356, Jun 14 1995 Agrometrics, Inc. Aircraft based infrared mapping system for earth based resources
5927648, Oct 17 1996 1281329 ALBERTA LTD Aircraft based sensing, detection, targeting, communications and response apparatus
5936245, Jun 03 1996 Institut Francais du Petrole Method and system for remote sensing of the flammability of the different parts of an area flown over by an aircraft
6084510, Apr 18 1997 Danger warning and emergency response system and method
6281970, Mar 12 1998 SYNERGISTIX, LLC Airborne IR fire surveillance system providing firespot geopositioning
20020026431,
DE69421200,
EP811400,
WO9736433,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 04 2005Eads Deutschland GmbH(assignment on the face of the patent)
Apr 06 2005WIPPICH, HEINZ-GEORGEads Deutschland GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0165380798 pdf
Jul 01 2014Eads Deutschland GmbHAirbus Defence and Space GmbHCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0404180890 pdf
Date Maintenance Fee Events
Apr 04 2008ASPN: Payor Number Assigned.
Aug 19 2011M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Aug 12 2015M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 14 2019REM: Maintenance Fee Reminder Mailed.
Mar 30 2020EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 26 20114 years fee payment window open
Aug 26 20116 months grace period start (w surcharge)
Feb 26 2012patent expiry (for year 4)
Feb 26 20142 years to revive unintentionally abandoned end. (for year 4)
Feb 26 20158 years fee payment window open
Aug 26 20156 months grace period start (w surcharge)
Feb 26 2016patent expiry (for year 8)
Feb 26 20182 years to revive unintentionally abandoned end. (for year 8)
Feb 26 201912 years fee payment window open
Aug 26 20196 months grace period start (w surcharge)
Feb 26 2020patent expiry (for year 12)
Feb 26 20222 years to revive unintentionally abandoned end. (for year 12)