A spatial light modulator comprises an integrated optical compensation structure, e.g., an optical compensation structure arranged between a substrate and a plurality of individually addressable light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The individually addressable light-modulating elements are configured to modulate light transmitted through or reflected from the transparent substrate. Methods for making such spatial light modulators involve fabricating an optical compensation structure over a substrate and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure. The optical compensation structure may be a passive optical compensation structure. The optical compensation structure may include one or more of a supplemental frontlighting source, a diffuser, a black mask, a diffractive optical element, a color filter, an anti-reflective layer, a structure that scatters light, a microlens array, and a holographic film.
|
1. A spatial light modulator comprising:
a substrate;
a plurality of individually addressable light-modulating elements arranged over the substrate and configured to interferometrically modulate light transmitted through the substrate;
a diffuser; and
an optical compensation structure, the optical compensation structure different from the diffuser;
wherein the diffuser and the optical compensation structure are arranged between the substrate and the plurality of individually addressable light-modulating elements.
17. A spatial light modulator comprising:
a transparent substrate;
a plurality of individually addressable interferometric light-modulating elements arranged over the transparent substrate and configured to modulate light transmitted through the transparent substrate, the interferometric light-modulating elements comprising a cavity and a movable wall; and
a plurality of different optical compensation structures arranged between the transparent substrate and the plurality of individually addressable interferometric light-modulating elements, at least one of the optical compensation structures comprising a diffuser.
18. A spatial light modulator comprising:
a substrate;
a means for interferometrically modulating light transmitted through or reflected from the substrate;
a means for diffusing the light transmitted through or reflected from the substrate; and
a means for compensating the light transmitted through or reflected from the substrate, the means for compensating the light being different from the means for diffusing the light;
wherein the means for diffusing the light and the means for compensating the light are operatively arranged between the substrate and the means for modulating light transmitted through or reflected from the substrate.
22. A spatial light modulator comprising:
a substrate;
a plurality of individually addressable light-modulating elements arranged over the substrate and configured to interferometrically modulate light transmitted through the substrate;
a first optical compensation structure; and
a second optical compensation structure, the second optical compensation structure different from the first optical compensation structure, the second optical compensation structure selected from the group consisting of an anti-reflective layer, a plurality of scattering elements, a microlens array, a holographic film that mitigates a shift in reflected color with respect to an angle of incidence of the light transmitted through the substrate, and a diffractive optical element;
wherein the first and second optical compensation structures are arranged between the substrate and the plurality of individually addressable light-modulating elements.
2. The spatial light modulator of
3. The spatial light modulator of
4. The spatial light modulator of
5. The spatial light modulator of
6. The spatial light modulator of
7. The spatial light modulator of
8. The spatial light modulator of
9. The spatial light modulator of
10. The spatial light modulator of
11. The spatial light modulator of
12. The spatial light modulator of
13. The spatial light modulator of
16. The spatial light modulator of
19. The spatial light modulator of
20. The spatial light modulator of
21. The spatial light modulator of
23. The spatial light modulator of
24. The spatial light modulator of
25. The spatial light modulator of
26. The spatial light modulator of
27. The spatial light modulator of
28. The spatial light modulator of
29. The spatial light modulator of
31. The spatial light modulator of
32. The spatial light modulator of
33. The spatial light modulator of
34. The spatial light modulator of
35. The spatial light modulator of
36. The spatial light modulator of
|
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/541,607, filed Feb. 3, 2004; U.S. Provisional Patent Application Ser. No. 60/613,482, filed Sep. 27, 2004; U.S. Provisional Patent Application Ser. No. 60/613,536, filed Sep. 27, 2004; and U.S. Provisional Patent Application Ser. No. 60/613,542, filed Sep. 27, 2004; all of which are hereby incorporated by reference in their entireties.
1. Field of the Invention
This invention relates to improvements in the manufacturing and performance of spatial light modulators such as interferometric modulators.
2. Description of the Related Art
Spatial light modulators are display devices that contain arrays of individually addressable light modulating elements. Examples of spatial light modulators include liquid crystal displays and interferometric modulator arrays. The light modulating elements in such devices typically function by altering the characteristics of light reflected or transmitted through the individual elements, thus altering the appearance of the display.
As spatial light modulators become increasingly sophisticated, the inventor anticipates that difficulties associated with fabricating them by current manufacturing process flows will also increase. Accordingly, the inventor has developed spatial light modulators having integrated optical compensation structures and methods for making them.
An embodiment provides a spatial light modulator that includes a substrate; a plurality of individually addressable light-modulating elements arranged over the substrate and configured to modulate light transmitted through the substrate; and an optical compensation structure; wherein the optical compensation structure is arranged between the substrate and the plurality of individually addressable light-modulating elements. In certain embodiments, the optical compensation structure is a passive optical compensation structure.
An embodiment provides a spatial light modulator that includes a substrate; a plurality of individually addressable light-modulating elements arranged over the substrate and configured to modulate light transmitted through the substrate; and an optical compensation structure; wherein the plurality of individually addressable light-modulating elements is arranged between the substrate and the optical compensation structure. In certain embodiments, the optical compensation structure is a passive optical compensation structure.
Another embodiment provides a method of making a spatial light modulator that includes fabricating an optical compensation structure over a transparent substrate; and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure, the individually addressable light-modulating elements being configured to modulate light transmitted through the transparent substrate. In certain embodiments, fabricating the optical compensation structure includes fabricating a passive optical compensation structure.
Another embodiment provides a method of making a spatial light modulator that includes fabricating a plurality of individually addressable light-modulating elements over a substrate; and fabricating an optical compensation structure over the plurality of individually addressable light-modulating elements, the individually addressable light-modulating elements being configured to modulate light transmitted through the optical compensation structure. In certain embodiments, fabricating the optical compensation structure includes fabricating a passive optical compensation structure.
Another embodiment provides a spatial light modulator that includes a transparent substrate; a plurality of individually addressable interferometric light-modulating elements arranged over the transparent substrate and configured to modulate light transmitted through the transparent substrate, the interferometric light-modulating elements comprising a cavity and a movable wall; and at least one optical compensation structure arranged between the transparent substrate and the plurality of individually addressable interferometric light-modulating elements, the optical compensation structure comprising a black mask, color filter, or diffuser.
Another embodiment provides a spatial light modulator that includes a substrate; a plurality of individually addressable interferometric light-modulating elements arranged over the substrate and configured to modulate light transmitted through or reflected from the substrate, the interferometric light-modulating elements comprising a cavity and a movable wall; and at least one optical compensation structure, the plurality of individually addressable interferometric light-modulating elements being arranged between the substrate and the optical compensation structure, the optical compensation structure comprising a structure selected from the group consisting of an anti-reflective layer, a diffractive optical element, a structure that scatters light, a black mask, a color filter, a diffuser, a microlens array, and a holographic film.
Another embodiment provides a spatial light modulator that includes a substrate; a means for modulating light transmitted through or reflected from the substrate; and a means for compensating the light transmitted through or reflected from the substrate; wherein the means for compensating the light is operatively arranged between the substrate and the means for modulating light transmitted through or reflected from the substrate. In certain embodiments, the means for compensating the light transmitted through or reflected from the substrate is a means for passively compensating the light transmitted through or reflected from the substrate.
Another embodiment provides a spatial light modulator that includes a substrate; a means for modulating light transmitted through or reflected from the substrate; and a means for compensating the light transmitted through or reflected from the substrate;
wherein the means for modulating light transmitted through or reflected from the substrate is operatively arranged between the substrate and the means for compensating the light. In certain embodiments, the means for compensating the light transmitted through or reflected from the substrate is a means for passively compensating the light transmitted through or reflected from the substrate.
Another embodiment provides a spatial light modulator made by a method that includes fabricating an optical compensation structure over a transparent substrate; and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure, the individually addressable light-modulating elements being configured to modulate light transmitted through the transparent substrate.
Another embodiment provides a spatial light modulator made by a method that includes fabricating a plurality of individually addressable light-modulating elements over a substrate; and fabricating an optical compensation structure over the plurality of individually addressable light-modulating elements, the individually addressable light-modulating elements being configured to modulate light transmitted through the optical compensation structure.
These and other embodiments are described in greater detail below.
These and other aspects of the invention will be readily apparent from the following description and from the appended drawings, which are meant to illustrate and not to limit the invention, and wherein:
A preferred embodiment is an interferometric modulator that includes at least one integrated optical compensation structure. In some configurations, the optical compensation structure is arranged between the substrate and the light-modulating elements of the interferometric modulator. In other configurations, the light-modulating elements are arranged between the substrate and the optical compensation structure.
Various examples of interferometric modulators are described in U.S. Patent Publication No. 2002/0126364 A1.
In general, an interferometric modulator which has either no voltage applied or some relatively steady state voltage, or bias voltage, applied is considered to be in a quiescent state and will reflect a particular color, a quiescent color. As referenced in U.S. Patent Publication No. 2002/0126364 A1, the quiescent color is determined by the thickness of the sacrificial spacer upon which the secondary mirror is fabricated.
Each interferometric modulator 114, 116 is rectangular and connected at its four corners to four posts 118 via support arms such as 120 and 122. In some cases (see discussion in U.S. Patent Publication No. 2002/0126364 A1), the interferometric modulator array will be operated at a selected constant bias voltage. In those cases, the secondary mirror 102 will generally maintain a quiescent position which is closer to corresponding primary mirror 128 than without any bias voltage applied. The fabrication of interferometric modulators with differently sized support arms allows for the mechanical restoration force of each interferometric modulator to be determined by its geometry. Thus, with the same bias voltage applied to multiple interferometric modulators, each interferometric modulator may maintain a different biased position (distance from the primary mirror) via control of the dimensions of the support arm and its resulting spring constant. The thicker the support arm is, the greater its spring constant. Thus different colors (e.g., red, green, and blue) can be displayed by different interferometric modulators without requiring deposition of different thickness spacers. Instead, a single spacer, deposited and subsequently removed during fabrication, may be used while color is determined by modifying the support arm dimensions during the single photolithographic step used to define the arms. For example, in
U.S. Patent Publication No. 2002/0126364 A1also describes various passive optical compensation structures for minimizing color shift as the angle of incidence changes (a characteristic typical of interferometric structures) and active optical compensation structures for supplying supplemental illumination. For example, as illustrated in
In
In
In another example of a passive optical compensation structure, seen in
In another example of a passive optical compensation structure, illustrated in
In an example of an active optical compensation structure, illustrated in
As illustrated in
Manufacturing of the overall display system typically involves producing the various components separately, such as the passive optical compensation structures, the interferometric modulator structures, the driver electronics, the graphics control fimctions, etc., and then integrating them at a later stage in the manufacturing process flow. Producing the various components separately and then integrating them at a later stage simplifies the delicate task of manufacturing the light modulating elements by reducing the need for complex deposition and micro-fabrication schemes.
As spatial light modulators become increasingly sophisticated, it is anticipated that difficulties associated with fabricating them by current manufacturing process flows will also increase. Accordingly, spatial light modulators having integrated optical compensation structures and methods for making them have been developed. An embodiment provides spatial light modulators having an integrated optical compensation structure, e.g., an optical compensation structure located between the substrate and the light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The optical compensation structure may be active or passive, as desired. In this context, a “passive” optical compensation structure is one that does not supply a supplemental frontlighting source.
As discussed above,
Those skilled in the art will also appreciate that the diffuser 41 illustrated in
The use of a color filter may increase the performance of the spatial light modulator by enhancing color saturation. Also, interferometric modulators that produce only black and white may be used in combination with color filters to produce colored light.
Interferometric modulators may be fabricated to produce various colors by varying the size of the cavity. However, varying the size of the cavity may involve varying the manufacturing process, e.g., by manufacturing a different size cavity for an interferometric modulator that produces green light than for an interferometric modulator that produces red light. The use of black and white interferometric modulators in combination with color filters may substantially simplify the manufacturing process. Other improvements in the manufacturing process are realized by integrating the color filter into the interferometric modulator as illustrated in
Spatial light modulators may comprise an optical compensation structure that performs one or more functions (e.g., a color filter and a black mask as illustrated in
Spatial light modulators comprising an optical compensation structure may be fabricated by integrating the fabrication of the optical compensation structure into the process for fabricating the spatial light modulator. An example of such a process is illustrated in
The process illustrated in
The process illustrated in
A spatial light modulator in which a light modulating element is arranged between a substrate and an optical compensation structure (such as that illustrated in
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.
Sampsell, Jeffrey B., Chui, Clarence, Tung, Ming-Hau, Cummings, William J.
Patent | Priority | Assignee | Title |
11693364, | Nov 30 2017 | SAMSUNG ELECTRONICS CO , LTD | Holographic display and holographic image forming method |
7561323, | Sep 27 2004 | SNAPTRACK, INC | Optical films for directing light towards active areas of displays |
7619822, | Jan 30 2007 | QUALCOMM MEMS Technologies, Inc. | Systems and methods of providing a light guiding layer |
7626751, | Sep 27 2004 | IDC, LLC | Display device having an array of spatial light modulators with integrated color filters |
7710632, | Sep 27 2004 | SNAPTRACK, INC | Display device having an array of spatial light modulators with integrated color filters |
7710636, | Sep 27 2004 | SNAPTRACK, INC | Systems and methods using interferometric optical modulators and diffusers |
7719747, | Sep 27 2004 | SNAPTRACK, INC | Method and post structures for interferometric modulation |
7733439, | Apr 30 2007 | SNAPTRACK, INC | Dual film light guide for illuminating displays |
7766498, | Jun 21 2006 | SNAPTRACK, INC | Linear solid state illuminator |
7773289, | Apr 21 2006 | QUALCOMM MEMS Technologies, Inc. | Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display |
7777954, | Jan 30 2007 | SNAPTRACK, INC | Systems and methods of providing a light guiding layer |
7782293, | Sep 27 2004 | QUALCOMM MEMS Technologies, Inc. | Device and method for wavelength filtering |
7807488, | Sep 27 2004 | SNAPTRACK, INC | Display element having filter material diffused in a substrate of the display element |
7813026, | Sep 27 2004 | SNAPTRACK, INC | System and method of reducing color shift in a display |
7845841, | Aug 28 2006 | SNAPTRACK, INC | Angle sweeping holographic illuminator |
7848001, | May 05 1994 | SNAPTRACK, INC | Method and system for interferometric modulation in projection or peripheral devices |
7855824, | Mar 06 2004 | SNAPTRACK, INC | Method and system for color optimization in a display |
7864395, | Oct 27 2006 | SNAPTRACK, INC | Light guide including optical scattering elements and a method of manufacture |
7898521, | Sep 27 2004 | SNAPTRACK, INC | Device and method for wavelength filtering |
7907319, | Nov 06 1995 | SNAPTRACK, INC | Method and device for modulating light with optical compensation |
7911428, | Sep 27 2004 | SNAPTRACK, INC | Method and device for manipulating color in a display |
7928928, | Sep 27 2004 | SNAPTRACK, INC | Apparatus and method for reducing perceived color shift |
7933475, | Feb 17 2006 | SNAPTRACK, INC | Method and apparatus for providing back-lighting in a display device |
7949213, | Dec 07 2007 | SNAPTRACK, INC | Light illumination of displays with front light guide and coupling elements |
8004504, | Sep 27 2004 | SNAPTRACK, INC | Reduced capacitance display element |
8004743, | Apr 21 2006 | SNAPTRACK, INC | Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display |
8040588, | Sep 27 2004 | SNAPTRACK, INC | System and method of illuminating interferometric modulators using backlighting |
8040589, | Feb 12 2008 | SNAPTRACK, INC | Devices and methods for enhancing brightness of displays using angle conversion layers |
8045252, | Feb 03 2004 | SNAPTRACK, INC | Spatial light modulator with integrated optical compensation structure |
8045256, | Sep 27 2004 | SNAPTRACK, INC | Method and device for compensating for color shift as a function of angle of view |
8049951, | Apr 15 2008 | SNAPTRACK, INC | Light with bi-directional propagation |
8054532, | May 05 1994 | SNAPTRACK, INC | Method and device for providing illumination to interferometric modulators |
8061882, | Oct 06 2006 | SNAPTRACK, INC | Illumination device with built-in light coupler |
8068710, | Dec 07 2007 | SNAPTRACK, INC | Decoupled holographic film and diffuser |
8072402, | Aug 29 2007 | SNAPTRACK, INC | Interferometric optical modulator with broadband reflection characteristics |
8111445, | Feb 03 2004 | SNAPTRACK, INC | Spatial light modulator with integrated optical compensation structure |
8111446, | Sep 27 2004 | SNAPTRACK, INC | Optical films for controlling angular characteristics of displays |
8169687, | Oct 05 1999 | QUALCOMM MEMS Technologies, Inc. | Photonic MEMS and structures |
8172417, | Mar 06 2009 | SNAPTRACK, INC | Shaped frontlight reflector for use with display |
8300304, | Feb 12 2008 | SNAPTRACK, INC | Integrated front light diffuser for reflective displays |
8362987, | Sep 27 2004 | SNAPTRACK, INC | Method and device for manipulating color in a display |
8368981, | Oct 10 2006 | SNAPTRACK, INC | Display device with diffractive optics |
8416154, | Sep 27 2004 | SNAPTRACK, INC | Apparatus and method for reducing perceived color shift |
8416487, | Oct 05 1999 | SNAPTRACK, INC | Photonic MEMS and structures |
8422108, | Nov 06 1995 | SNAPTRACK, INC | Method and device for modulating light with optical compensation |
8446674, | May 20 2010 | QUALCOMM MEMS Technologies, Inc. | Method and structure capable of changing color saturation |
8576148, | Aug 29 2007 | SNAPTRACK, INC | Interferometric optical modulator with broadband reflection characteristics |
8670171, | Oct 18 2010 | SNAPTRACK, INC | Display having an embedded microlens array |
8681079, | Aug 29 2007 | QUALCOMM MEMS Technologies, Inc. | Interferometric optical modulator with broadband reflection characteristics |
8736590, | Mar 27 2009 | SNAPTRACK, INC | Low voltage driver scheme for interferometric modulators |
8789996, | Nov 16 2010 | SNAPTRACK, INC | Light guide with diffusive light input interface |
8791897, | Sep 27 2004 | SNAPTRACK, INC | Method and system for writing data to MEMS display elements |
8798425, | Dec 07 2007 | SNAPTRACK, INC | Decoupled holographic film and diffuser |
8848294, | May 20 2010 | SNAPTRACK, INC | Method and structure capable of changing color saturation |
8861071, | Sep 27 2004 | SNAPTRACK, INC | Method and device for compensating for color shift as a function of angle of view |
8872085, | Oct 06 2006 | SNAPTRACK, INC | Display device having front illuminator with turning features |
8902484, | Dec 15 2010 | SNAPTRACK, INC | Holographic brightness enhancement film |
8928967, | Apr 08 1998 | SNAPTRACK, INC | Method and device for modulating light |
8971675, | Jan 13 2006 | SNAPTRACK, INC | Interconnect structure for MEMS device |
8979349, | May 29 2009 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
9019183, | Oct 06 2006 | SNAPTRACK, INC | Optical loss structure integrated in an illumination apparatus |
9019590, | Feb 03 2004 | SNAPTRACK, INC | Spatial light modulator with integrated optical compensation structure |
9025235, | Dec 25 2002 | SNAPTRACK, INC | Optical interference type of color display having optical diffusion layer between substrate and electrode |
9110289, | Apr 08 1998 | SNAPTRACK, INC | Device for modulating light with multiple electrodes |
9121979, | May 29 2005 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
Patent | Priority | Assignee | Title |
5914804, | Jan 28 1998 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Double-cavity micromechanical optical modulator with plural multilayer mirrors |
5933183, | Dec 12 1995 | FUJIFILM Corporation | Color spatial light modulator and color printer using the same |
6381022, | Jan 22 1992 | Northeastern University | Light modulating device |
7002726, | Jul 24 2003 | Texas Instruments Incorporated | Micromirror having reduced space between hinge and mirror plate of the micromirror |
7009754, | Jun 19 1995 | Texas Instruments Incorporated | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
7142347, | Aug 01 2000 | Cheetah Omni, LLC | Method and system for processing photonic systems using semiconductor devices |
7161730, | Sep 27 2004 | SNAPTRACK, INC | System and method for providing thermal compensation for an interferometric modulator display |
20020126364, | |||
20030210363, | |||
DE19622748, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 14 2005 | IDC, LLC | (assignment on the face of the patent) | / | |||
Mar 09 2005 | CHUI, CLARENCE | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016133 | /0931 | |
Mar 09 2005 | CUMMINGS, WILLIAM J | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016133 | /0931 | |
Mar 11 2005 | TUNG, MING-HAU | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016133 | /0931 | |
Mar 15 2005 | SAMPSELL, JEFFREY B | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016133 | /0931 | |
Sep 25 2009 | IDC,LLC | Qualcomm Mems Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023449 | /0614 | |
Aug 30 2016 | Qualcomm Mems Technologies, Inc | SNAPTRACK, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039891 | /0001 |
Date | Maintenance Fee Events |
Feb 02 2011 | ASPN: Payor Number Assigned. |
Feb 02 2011 | RMPN: Payer Number De-assigned. |
Aug 24 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 25 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 28 2019 | REM: Maintenance Fee Reminder Mailed. |
Apr 13 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 11 2011 | 4 years fee payment window open |
Sep 11 2011 | 6 months grace period start (w surcharge) |
Mar 11 2012 | patent expiry (for year 4) |
Mar 11 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 11 2015 | 8 years fee payment window open |
Sep 11 2015 | 6 months grace period start (w surcharge) |
Mar 11 2016 | patent expiry (for year 8) |
Mar 11 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 11 2019 | 12 years fee payment window open |
Sep 11 2019 | 6 months grace period start (w surcharge) |
Mar 11 2020 | patent expiry (for year 12) |
Mar 11 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |