A multi-layered, structural, corrosion resistant composite includes, in an exemplary embodiment, a core layer having a first surface and an opposing second surface, a first fiber reinforced layer bonded to the first surface of the core layer, a second fiber reinforced layer bonded to the second surface of the core layer, and a corrosion resistant thermoplastic liner layer bonded to the second fiber reinforced layer. The core layer is formed from a closed cell polymeric foam.

Patent
   7348047
Priority
Oct 29 2004
Filed
Oct 29 2004
Issued
Mar 25 2008
Expiry
Jan 28 2026
Extension
456 days
Assg.orig
Entity
Small
2
32
EXPIRED
1. A multi-layered, structural, corrosion resistant composite comprising:
a core layer having a first surface and an opposing second surface, said core layer comprising a closed cell polymeric foam, said core layer also having a plurality of intersecting slits penetrating said first surface that extend to a depth that is greater than one-half of the thickness of said core layer;
a first fiber reinforced layer being bonded to said first surface of said core layer, said first fiber reinforced layer including a first woven mat of reinforcing fibers and a first non-woven mat of reinforcing fibers, said first woven mat and said first non-woven mat being coated with a first polymeric resin, and said first polymeric resin filling said intersecting slits in said core layer;
a second fiber reinforced layer being bonded to said second surface of said core layer, said second fiber reinforced layer including a second woven mat of reinforcing fibers and a second non-woven mat of reinforcing fibers, said second woven mat and said second non-woven mat being coated with a second polymeric resin; and
a corrosion resistant thermoplastic liner layer being bonded to said second fiber reinforced layer remote from said core layer.

This invention relates generally to laminated multi-layered composites, and more particularly, to multi-layered composites having a liner layer for providing chemical and corrosion protection to concrete structures.

Protection of concrete structures, such as, holding tanks, containment tanks and sumps, and trenches, from exposure to corroding chemicals is an ongoing problem in, for example, the chemical industry. A number of means of protecting concrete structures are currently in use; however, most of the current protection schemes have serious drawbacks. Epoxy coatings have been used for concrete protection. Failure of the coating due to concrete movement can cause leaks that can result in concrete deterioration. Also, Epoxy coatings are brittle and have very little impact and/or structural strength.

Single skin thermoplastic anchor liners have also been used to protect concrete. These liners are anchored into the concrete during the concrete pouring process. They do not have any structural strength and are not self supportive. Because of the single skin construction, these liners can be easily damaged resulting in concrete exposure to corrosive chemicals. Single skin thermoplastic anchor liners require complicated, costly, and time consuming installation. Further, if there are air pockets between the liner and the concrete, there is a high probability of liner failure due to an expansion of the air pocket which can shear the anchor off the liner permitting weld movement and possible weld failure.

Acid bricks have also been used to protect concrete. Acid bricks are costly and very time consuming to install, and require specially trained installers. Acid bricks are brittle and have low impact strength and very low shear strength. Also, the acid bricks can crack due to movement of the concrete foundations.

In one aspect, a multi-layered, structural, corrosion resistant composite is provided. The multi-layered composite includes a core layer having a first surface and an opposing second surface, a first fiber reinforced layer bonded to the first surface of the core layer, a second fiber reinforced layer bonded to the second surface of the core layer, and a corrosion resistant thermoplastic liner layer bonded to the second fiber reinforced layer. The core layer is formed from a closed cell polymeric foam.

In another aspect, a composite material is provided that includes a core formed from a closed cell polymeric foam, a plurality of fiber reinforced skins bonded to opposing surfaces of the core, and a liner bonded to one of the fiber reinforcing skins.

In another aspect, a method of manufacturing a multi-layered composite material is provided. The method includes applying a first fiber reinforced layer to a first surface of a core layer, the core layer including a closed cell polymeric foam, applying a second fiber reinforced layer to a second surface of the core layer, the second surface opposed to the first surface, and applying a thermoplastic liner to the second fiber reinforced layer to form a sandwich construction. The method also includes applying a vacuum to and curing the sandwich construction to form the multi-layered composite article.

FIG. 1 is a cross sectional schematic illustration of a multi-layered composite in accordance with an embodiment of the present invention.

FIG. 2 is a perspective view of the core layer of the multi-layered composite shown in FIG. 1.

FIG. 3 is a cross sectional schematic illustration of a trench formed with the multi-layered composite shown in FIG. 1.

FIG. 4 is an enlarged view of area A shown in FIG. 2.

Multi-layered, structural, corrosion resistant composites are described below in detail. Exemplary composites include a core layer, formed from a structural closed cell foam, sandwiched between two fiber reinforced layers, and a corrosion resistant thermoplastic liner bonded to one of the fiber reinforced layers. The multi-layered composite can be molded into any useful shape to line tanks, trenches, and basins, for example, neutralization tanks, catch basins, digestion towers, trenches, sumps, manholes, sewers, bulk storage vessels, plating tanks, ducts, stacks, and scrubbers. The multi-layered composite can also be used to protect against corrosion of concrete structures, including walls and floors. Because of the structural strength of the core layer, the multi-layered composite provides structural integrity to a liner and continues to function even if the underlying structure fails. The multi-layered composite can be molded to any shape that corresponds to the structure that is to be lined. Because of the structural characteristics of the molded multi-layered composite in conjunction with the thermoplastic liner layer, tank liners and other protective barriers formed from the multi-layered composite have a safety factor to most current single and dual thermoplastic liners.

Referring to the drawings, FIG. 1 is a cross sectional schematic illustration of a multi-layered composite 10. In an exemplary embodiment, composite 10 includes a core layer 12 formed from a closed cell polymeric foam having a first surface 14 and a second surface 16. A first fiber reinforced layer 18 is bonded to first surface 14, and a second fiber reinforced layer 20 is bonded to second surface 16. A thermoplastic liner layer 22 is bonded to second fiber reinforced layer 20.

Referring also to FIG. 2, a plurality of interconnecting slits 24 extend into first surface 14 of core layer 12. Interconnecting slits 24 can extend any depth into first surface 14, in the exemplary embodiment, slits 24 extend into first surface to a depth that is greater than one-half the thickness of core layer 12. Interconnecting slits 24 form a plurality of rectangular portions 26 of core layer first surface 14. In other embodiments, interconnecting slits form triangular and/or other polygonal portions of first surface 14. In further embodiments slits 24 extend through core 12 and rectangular portions 26 are held together by a fiberglass scrim. The separate portions 26 of core 12 facilitate molding composite 10 into non-flat curved shapes using a mold.

Any suitable closed cell polymeric foam can be used to form core layer 12, for example, PVC foams, polyolefin foams, epoxy foams, polyurethane foams, and polyisocyanurate foams, and mixtures thereof. In one embodiment, the closed cell polymeric foam has a density of about one pound per square inch to about 10 pounds per square inch, in another embodiment, the closed cell foam has a density of about 3 pounds per square inch to about 8 pounds per square inch. The thickness of core layer 12 can range, in one embodiment, from about one-half inch to about 5 inches. In another embodiment, the thickness of core layer 12 ranges from about one-half inch to about 3 inches.

First and second fiber reinforced layers 18 and 20 are formed from a resin or mixture of resins and a plurality if reinforcing fibers. Suitable reinforcing fibers include, but are not limited to glass fibers, graphite fibers, carbon fibers, ceramic fibers, aramid fibers (aromatic polyamid fibers), and mixtures thereof. The reinforcing fibers can be chopped reinforcing fibers, a woven mat of reinforcing fibers, and/or a non-woven mat of reinforcing fibers. Fiber reinforced layers 18 and 20 can each include one or more mats 21 of reinforcing fibers. The reinforcing fiber mats 21 can be any suitable weight. Any suitable polymeric resin can be used in forming fiber reinforcing layers 18 and 20, for example, a vinyl ester resin, an unsaturated polyester resin, including isophthalic polyester resin and bisphenol polyester resin, an epoxy resin, 1,4-epoxy-1,3-butadiene (Furan), and mixtures thereof.

In one embodiment the reinforcing fiber mats 21 are pre-preg composite sheets where the reinforcing fiber mat has been pre-impregnated with a polymeric resin. The pre-preg sheets are formed, for example, by impregnating the sheet of fibers with resin by pulling the sheets through a plurality of resin coated heated rollers to coat the fibers and then the resin is permitted to partially cure, or “B-stage”. The resulting pre-preg sheet is malleable and easily formed in a mold.

Thermoplastic liner 22 is formed from any suitable thermoplastic material, for example, polyvinyl chloride, polypropylene, high density polyethylene, polyvinylidene fluoride (Kynar), ethylene-chlorotrifluoro-ethylene (Halar), polytetrafluoroethylene (Teflon), and a thermoplastic elastomeric rubber. The thickness of thermoplastic liner 22 is between about one-eighth inch to about 3 inches. Thermoplastic liner 22, in one embodiment, can include a glass mat backing. In some embodiments thermoplastic liner 22 is chemically treated or etched to improve adhesion to second fiber reinforced layer 20.

Multi-layered composite 10 is fabricated by forming core layer 12 from a closed cell polymeric foam using any known method of forming foam sheets. Interconnecting slits 24 are formed in foam core 12 by any known method, for example slits 24 can be cut into foam core 12 or slits 24 can be molded into foam core 12. First fiber reinforced layer 18 is formed by impregnating a polymeric resin into least one mat 21 of reinforcing fibers and bonding the mats 21 of reinforcing fibers to first surface 14 using the polymeric resin. Second fiber reinforcing layer 20 if also formed by impregnating a polymeric resin into least one mat 21 of reinforcing fibers and bonding the mats 21 of reinforcing fibers to second surface 16 using the polymeric resin. Thermoplastic liner 22 is then bonded to second fiber reinforcing layer 20. A vacuum is applied to the layered structure by any known method, for example, by vacuum bagging, and the polymeric resin is permitted to cure. The vacuum pulls the polymeric resin into slits 24 to provide added strength to core 12.

Multi-layered composite 10 can be fabricated as a flat sheet as shown in FIG. 1. In other embodiments, multi-layered composite 10 is fabricated into contoured articles by using an appropriate shaped mold, including for example a cylindrical pipe or duct structure. FIG. 3 is a cross sectional schematic illustration of a trench structure 50 formed with multi-layered composite 10, and FIG. 4 is an enlarged view of area A. Referring to FIGS. 3 and 4, trench 50 includes a bottom wall 52 and side walls 54 and 56. Trench 50, in another embodiment can also include end walls (not shown) forming a box-like structure, A trench grate 58 is supported by and extends between upper portions 60 and 62 of side walls 54 and 56. Side walls 54 and 56, and bottom wall 52 also include fiber reinforced anchors 64 extending from first fiber reinforced layer 18 of composite 10 that is used to form the walls. Anchors 64 are formed from reinforcing fiber and polymeric resin, and facilitate anchoring trench 50 in concrete poured around the exterior of trench 50.

Multi-layered composite 10 described above can be molded into any useful shape to line tanks, trenches, and basins, for example, neutralization tanks, catch basins, digestion towers, trenches, sumps, manholes, sewers, bulk storage vessels, plating tanks, ducts, stacks, and scrubbers. Articles formed from multi-layered composite 10 include their own containment and structural support such that even if the concrete that composite 10 is covering fails, there is still a containment vessel having structural integrity provided by composite 10. Also, articles formed from composite 10 can be easily repaired by replacing the damaged area or section with a new sheet of composite 10. The new sheet of composite 10 is bonded into place with, for example, an epoxy resin, and the resulting liner seams are welded together. Any air pockets behind the new sheet of composite 10 will not have a deleterious effect on structural integrity because of the integral structural integrity of the new sheet of composite 10. A liner formed from composite 10 can be anchored to an existing concrete structure with anchor bolts with liner bolt head caps, or just placed into the existing concrete structure, or stabilized with sand.

While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.

Snell, Mary Ellen, Sasse, Hans P.

Patent Priority Assignee Title
11009172, Nov 30 2016 SIPP TECHNOLOGIES, LLP Internal lining for pipe surfaces and method of lining pipes
11879568, Jan 04 2019 CANADIAN PRESSURE CONTROL INC. Pipeline-leak-containment apparatus
Patent Priority Assignee Title
3841958,
4101045, Apr 12 1977 Baltek Corporation Cryogenic container
4188428, Aug 16 1977 Board element
4461666, May 12 1980 Baltek Corporation Contoured balsa-core laminate
4584041, Apr 21 1983 MONTREAL TRUST COMPANY OF CANADA, AS TRUSTEE Method of making a containment vessel
4660594, Aug 05 1985 Portable collapsible tank for storing liquid
4828897, Apr 08 1988 Centrite Corporation Reinforced polymeric composites
4925719, Apr 08 1988 Centrite Corp.; CENTRITE CORPORATION, A CORP OF OHIO Reinforced polymeric composites
4976290, Jun 12 1989 FOSS MANUFACTURING CO , INC Tubular member having a liner
5012950, Apr 30 1988 Plastic container for liquids or gases
5143768, Aug 30 1991 Weyerhaeuser Company Laminated dieboard structure
5222769, Feb 26 1992 CHARLES ROBERT KAEMPEN Double-wall composite pipe and coupling structure assembly
5230842, Feb 21 1989 Interior pipeline coating process
5300336, Dec 21 1990 DRESSER-SHAW COMPANY A NOVA SCOTIA UNLIMITED LIABILITY CORPORATION High performance composite coating
5441170, Feb 16 1994 Shipping container with multiple insulated compartments
5476189, Dec 03 1993 Hexagon Technology AS Pressure vessel with damage mitigating system
5511683, Apr 28 1995 Liqui-Green Lawn Care Corporation Portable vehicle wash containment liner system
5567259, May 20 1994 RENEW TECHNOLOGIES, INC Methods of making a portable liquid containment
5678564, Aug 07 1992 CONVATEC TECHNOLOGIES INC Liquid removal system
5698304, Jun 06 1994 Owens Corning Intellectual Capital, LLC Polymer coated glass fiber mat
5743984, May 20 1994 RENEW TECHNOLOGIES, INC Methods of constructing a portable liquid containment
5780721, Jun 03 1996 Minnesota Mining and Manufacturing Company; Minnesota Mining and Maufacturing Company Composite construction for detection chemical leaks
5815853, Apr 04 1994 POLYGROUP MACAU LIMITED BVI Reinforced swimming pool
5868169, May 03 1993 Reinforced lining hose for softlining pipe rehabilitation
6026862, Feb 14 1997 AMERON, INC Double containment pipe sections
6138718, Oct 30 1998 LINK-PIPE H K LTD Apparatus and method for repairing pressure pipes
6630231, Feb 05 1999 3M Innovative Properties Company Composite articles reinforced with highly oriented microfibers
6706406, Nov 13 1996 Fern Investments Limited Composite steel structural plastic sandwich plate systems
6708729, Mar 14 2002 INA Acquisition Corp Fiber reinforced composite liner for lining an existing conduit and method of manufacture
6732763, May 24 2002 APPLIED FELTS, INC Stretch-resistant pipe liner
20030116214,
GB2018384,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Nov 07 2011REM: Maintenance Fee Reminder Mailed.
Mar 25 2012EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 25 20114 years fee payment window open
Sep 25 20116 months grace period start (w surcharge)
Mar 25 2012patent expiry (for year 4)
Mar 25 20142 years to revive unintentionally abandoned end. (for year 4)
Mar 25 20158 years fee payment window open
Sep 25 20156 months grace period start (w surcharge)
Mar 25 2016patent expiry (for year 8)
Mar 25 20182 years to revive unintentionally abandoned end. (for year 8)
Mar 25 201912 years fee payment window open
Sep 25 20196 months grace period start (w surcharge)
Mar 25 2020patent expiry (for year 12)
Mar 25 20222 years to revive unintentionally abandoned end. (for year 12)