A connecting terminal (10) for a busbar is provided and can include an electrically insulated housing (20), in which an electrically conductive clamp body (40) is provided with a first clamp screw (41) for fixing a connector cable (50) and a contact for a terminal lug (60), where the connector cable (50) is insertable into the clamp body (40) through an inlet opening (25) of the housing (20), and where the terminal lug is insertable into the housing (20) through an outlet opening (26a, 26b) of the housing (20), where one hollow cylinder (30, 80) is formed on the housing around the inlet opening (25) for the connector cable (50) and around the outlet opening (26a, 26b) for the terminal lug (60).
|
1. A connecting terminal (10) for a busbar, comprising:
an electrically insulated housing (20), in which an electrically conductive clamp body (40) is provided with a first clamp screw (41) for fixing a connector cable (50) and a contact for a terminal lug (60),
wherein the clamp body (40) is adapted for receiving the connector cable (50) through an inlet opening (25) of the housing (20), and
wherein the housing (20) is adapted to receive the terminal lug (60) through an outlet opening (26a, 26b) of the housing (20),
an electrically insulated hollow cylinder (30) projecting from the electrically insulated housing (20) and leading to the inlet opening (25), and
an electrically insulated hollow cylinder (80) projecting from the electrically insulated housing (20) and leading to the outlet opening (26a, 26b) of the terminal lug (60).
2. The connecting terminal according to
3. The connecting terminal according to
4. The connecting terminal according to
5. The connecting terminal according to
6. The connecting terminal according to
7. The connecting terminal according to
8. The connecting terminal according to
9. The connecting terminal according
10. The connecting terminal according to
11. The connecting terminal according to
12. The connecting terminal according
13. The connecting terminal according to
14. The connecting terminal according to
15. The connecting terminal according to
16. The connecting terminal according to
17. The connecting terminal according to
18. The connecting terminal according to
|
The invention concerns a connecting or connecting terminal for a busbar.
Connecting terminals for busbars with housings are known, comprising a clamp body with a first clamp screw for securing a feeder cable and second clamp screw for a terminal lug for connection to a busbar. One such connecting terminal of this type is known for example from DE 87 14 542. Therein the connector cable is introduced through an inlet opening of the housing into the clamp body, where it is secured by the first clamp screw. To accomplish this however insulation must be stripped from a part of the connector cable, in order to make a conductive connection between the internal conductor of the connector cable and the clamp body. As a rule insulation is removed from the connector cable to the extent that even after connection with the clamp body a part of the uninsulated connector cable extends from the housing. There is thus the danger that a person could contact the internal conductor of the connector cable, and this could lead to injury. Even in the case that the uninsulated part of the connector cable is located exclusively within the housing following connection of the connector cable, the air gap between the uninsulated part of the connector cable and the outer surface of the housing is comparatively small. Further, the terminal lug is also inserted into the housing through the outlet opening. As a rule, the terminal lug includes absolutely no insulation, so that there may be the danger that a user contacts the terminal lug and and injure themselves.
In particular, this type of connecting terminal does not satisfy the standards set forth in American UL 508 or UL 489, which require an air gap of at least one inch and a creepage distance of at least two inches in this type of component. Therein the air gap is defined as the shortest distance in the air between two conductive parts. The creepage distance is defined as the shortest separation along the surface of the one insulated materials between two conductive parts.
It is thus the task of the invention to so improve the known connecting terminals for busbars in the manner that the danger of injury to persons is reliably avoided and further that the connecting terminal satisfies the requirements of UL 508 or UL 489.
The task of the invention is solved by the connecting terminal for busbars as further described herein.
Advantageous embodiments and further the developments of the invention are set forth herein.
The inventive connecting terminal for a busbar includes one hollow cylinder on its housing for respectively each of the inlet opening for the connector cable as well as the outlet opening for the terminal lug. This hollow cylinder increases the separation between the uninsulated part of the connector cable or as the case may be terminal lug situated within the housing and the outer space of the housing of the connecting terminal, so that even in the case that the uninsulated part of the connector cable would project partly out of the housing in the case of a connecting terminal without hollow cylinder, this part is however now covered by the hollow cylinder, so that no contacting of the uninsulated part of the connector cable or, as the case may be, terminal lug is possible. Further, as a result of the hollow cylinder, the air gap between the uninsulated part of the connector cable or as the case may be terminal lug and possible contact points on the outside of the housing is increased.
Preferably the hollow cylinder has an axial length of at least 1.27 cm (½ inch). Thereby the air gap is increased to approximately 2.54 cm (1 inch), whereby the connecting terminal satisfies the requirements of UL 508 or UL 489.
For manufacturing reasons the hollow cylinder extends, in a preferred embodiment of the invention, approximately perpendicular to the housing surface.
Preferably the hollow cylinder exhibits a round, oval or quadratic cross section, whereby the manufacturing of the housing inclusive of the hollow cylinder is further simplified.
In a particularly advantageous embodiment of the invention two openings are situated in the housing in such a manner that the clamp screws can be accessed through them. Thereby, in simple mode and manner, the clamp screws can be located within the housing, however can be actuated from outside the housing. As a result of the location of the clamp screws within the housing all conductive components are protected from contact by the user.
In order to also protect the user against contact even in the case that the clamp screw is screwed in by only a few rotations, and which thus could lie directly on the inner side of the housing below the opening, it is preferred that at one or both of these openings, preferably at both openings, a hollow cylinder is provided, which likewise increases the air gap and the creepage distance.
In a particularly advantageous embodiment of the invention a plug is provided as an alternative in at least one or both openings, preferably in both of the openings. This increases likewise the air gap and creepage distance and protects the user against direct contact with the electrically conducting clamp screws. Besides this, a plug inserted in the opening only slightly increases the component height of the clamp screw by a certain axial length in comparison to the hollow cylinders provided over the openings.
In a preferred embodiment of the invention the two plugs are formed attached via a connecting piece. Therein a separation exists between the two plugs, which corresponds to the distance between the two openings on the housing. Thereby both openings can be closed simultaneously with a single element, so that less component parts are needed, which parts could be lost.
It is particularly preferred when the connector piece is linked to the housing, preferably via a living or flexible hinge. Thereby it is ensured that the connector piece with the two plugs cannot be lost, so that following tightening of the clamp screws the openings can in every case again be closed with the plugs, so that at all times a protection of the user is ensured. Living hinges in particular are simple and economical to produce.
In an advantageous further development of the invention the inner diameter of the inlet opening is smaller than the inner diameter of the hollow cylinder. Thereby an edge or step results in the inlet opening, against which the insulation of the connector cable abuts. Therewith it is possible on the one hand to set a defined penetration depth of the connector cable and on the other hand to ensure that the insulation reaches precisely to the housing such that the air gap between the uninsulated part of the connector cable and the outer surface of the housing is as large as possible.
It is particularly preferred when the inner diameter of the inlet opening corresponds to the outer diameter of the internal conductor of the connector cable. By this dimensioning it is ensured that the insulated part of the connector cable cannot penetrate into the clamp body located in the inner space of the housing, so that only the stripped or uninsulated part of the connector cable is fixed by the first clamp screw and a good contact between the connector cable and the clamp body is ensured.
Preferably the inner diameter of the hollow cylinder is larger than the outer diameter of the connector cable, so that the connector cable can be introduced into the hollow cylinder without effort.
In a particularly preferred embodiment of the invention at least one guide slope is provided in the transition area between the hollow cylinder and the housing. This prevents the situation that the uninsulated part of the connector wire abuts against the edge between the hollow cylinder and the housing, and enables a simple and secure introduction of the internal conductor of the connector wire into the clamp body, without damaging the free end of the internal conductor of the connector wire.
Preferably the at least one guide slope is provided within the inlet opening in the to be assembled direction or orientation of the housing, since at this location of the inlet opening the danger that the internal conductor gets caught or hung up at the edge between hollow cylinder and inlet opening is particularly great. By the arrangement of the guide slope below the connector cable to be introduced this danger is avoided.
In one advantageous further development of the invention the connecting terminal is arranged in series. Thereby multiple connecting terminals can be connected with each other and be located on the busbar in space saving manner.
For this, preferably a groove extending parallel to the upper side of the housing is provided on at least one of the side walls of the housing. In the case that two substantially identical connecting terminals should be provided adjacent to each other, then a projection which is shaped to matingly engage with the groove of a further connecting terminal can be inserted into the groove formed in the adjacent connecting terminal, so that the connecting terminals can be joined to each other and cannot pivot relative to each other. Preferably however both sides of the housing exhibit a groove extending parallel to the upper side of the housing wherein two adjacent connecting terminals can be joined via a separate feather key, which simultaneously engages in both grooves of the side walls situated adjacent to each other. Thereby it is ensured that the width of the connecting terminal is not widened by the shaped projection. In particular, when no further connecting terminal is to be provided next to the connecting terminal, a protruding projection is not present.
It is particularly preferred when the projection is dove-tail shaped in order to ensure a simple yet secure sequential arrangement of connecting terminals.
The invention will be described in greater detail on the basis of the illustrative example shown in the figures. There is shown in
The exploded representation of an illustrative embodiment of a connecting terminal 10 with a housing 20 comprised of an insulating plastic and a clamp body comprised of an electrically conductive metal is shown in
Between the two housing parts 20a, 20b a clamp body 40 is shown in
Around the inlet opening 25 located at the front side 21 there is perpendicular to the front side 21 is provided a first cylindrical hollow cylinder 30 with axial length 1h1 formed unitarily with a housing part 20a. By the provision of the hollow cylinder 30 at the inlet opening 25 the air gap between the stripped part of the connector cable 50, which lies either completely within the inner space of the clamp body 40 or extends or projects slightly from the inlet opening 25, and increases the outer surface of the housing 20 at least by the axial length 1h1 of the hollow cylinder 30 so that a contacting of the uninsulated part 52 of the connector cable 50 is reliably prevented. Preferably the axial length 1h1 of the hollow cylinder 30 is at least 1.27 cm or ½ inch. By this design the connecting terminal 10 satisfies the requirements of UL 508 or UL 489 which required that a air gap of at least one inch and a creepage distance of at least two inches must be provided.
A second cylindrical hollow cylinder 80 with an axial length 1h2 is formed perpendicular to the back side 23 unitarily with a housing part 20b around or about one or both of the outlet openings 26a, 26b located at the back side 23. By the provision of the hollow cylinder 80 at the outer opening 26a, 26b the air gap between the terminal lug and the outer surface of the housing 20 is increased at least by the axial length 1h2 of the hollow cylinder 80, so that a contacting of the terminal lug is reliably prevented. Preferably the axial length 1h2 of the hollow cylinder 80 is 11 mm, or likewise approximately 1.27 cm or ½ inch. By this dimensioning the connecting terminal 10 satisfies the requirements of UL 508 or as the case may be UL 489, which require, that an air gap of at least one inch and a creepage distance of at least two inches must be provided.
The requirements of UL 508 or as the case may be UL 489 are likewise realized thereby, when the openings 26c, 26d are closeable or sealable above the clamp screws 41, 42 by the two plugs 90a, 90b. The plugs 90a, 90b are introduced into the openings 26c, 26d, in order to increase the air gap and creepage distance between the conductor clamp screws 41, 42 and the outer side of the housing 20 and to reliably prevent a contacting of the clamp screws 41, 42 by the user. The two plugs 90a, 90b are connected with each other by a connector piece 91 and namely with that amount of separation which corresponds to the separation between the two openings 26c, 26d in the upper side 27 of the housing 20, so that both openings 26c, 26d can be closed simultaneously with a single element. In particular the two plugs 90a, 90b are linked by a living hinge 92 to the upper side 27 of the housing 20, in particular to a housing part 20b, wherein the pivoting of the two plugs 90a, 90b connected by the connector piece 91 about the living hinge 92 in the direction of the upper side 27 of the housing 20 the plugs 90a, 90b come to lie against the openings 26c, 26d. By the hinged plugs 90a, 90b it is avoided that individual or loose plugs exist, which could be lost. In particular the user is reminded by the presence of the plugs 90a, 90b, to close the openings 26c, 26d using the plugs 90a, 90b.
Both the inlet openings 25 as well as also the first hollow cylinder 30 can have any desired cross section, preferably they are however squared, quadratic, oval or round, particularly preferred is a quadratic or round cross section. The same applies for the cross section of the clamp body 40 as well as the outlet openings 26a, 26b and the second hollow cylinder 80.
The clamp body 40 exhibits, on the end facing the back side 23 of the housing 20, a continuous perpendicular recess 45 along two respective vertical outer edges, which serves to increase the creepage distance between the clamp bodies 40 serially oriented connecting terminals.
In one preferred illustrative embodiment the inner contour of the clamp body 40 corresponds essentially to the outer contour of the inlet opening 25 and is flush in the mounted condition therewith (see
The inner dimension of the inlet opening 25 corresponds preferably to approximately the outer diameter of the internal conductor 52 of the connector cable 50. In the case of a square cross section of the inlet opening 25 at least the inner diameter, for example the height de, corresponds to the cross section of the inlet opening 25 of the outer diameter of the internal conductor 52 of the connector cable 50. By this dimensioning it is ensured that the insulation 54 of the connector cable 50 does not penetrate through the inlet opening 25 into the clamp body 40 located in the internal space of the housing 20, so that only the stripped part of the connector cable 50 can come to lie in the inner space of the clamp body 40 and become fixed by the first clamp screw 41 and therewith ensures contact between the connector cable 50 and the clamp body 40.
In the illustrative embodiment of the connecting terminal 10 represented in the figures the inner diameter de of the inlet opening 25 is smaller than the inner diameter dh of the hollow cylinder 30. As a result an edge 31 is created in the inlet opening 25 (see
In order to facilitate the insertion of the internal conductor 52 of the connector cable 50 into the inlet opening 25 and to prevent that this catches on the edge 31, becomes damaged or cannot be inserted through the inlet opening into the inside of the clamp body 40, a guide slope 35 is provided in the transition area between the hollow cylinder 30 and the inlet opening 25, which extends from the inner surface of the hollow cylinder 30 to the edge 31. Preferably at least one insertion guide slope 35 as shown in
So that the connector cable 50 can be introduced into the hollow cylinder 30 without effort, the inner diameter of the hollow cylinder 30 is larger than the outer diameter of the connector cable 50 inclusive of the insulation 54.
The inner diameter of the inlet opening 25 is so large, that the cross section of the inlet opening 25 is more than 35 millimeter across, preferably approximately 50 millimeter across, so that even a cable with a comparatively large cross section can be simply and reliably connected in the connecting terminal 10. For example the inner diameter de of the inlet opening 25 is approximately 13.5 mm.
In a preferred embodiment the connecting terminal 10 is designed to be provided in series and exhibits for this on the side wall 22 at least one groove 28 running parallel to the upper side 27 of the housing 20. On the opposite lying side wall 22a (not shown in
A further embodiment of the invention is shown
Patent | Priority | Assignee | Title |
10498053, | Feb 19 2019 | Electrical wiring junction box | |
8814609, | Aug 31 2011 | Siemens Aktiengesellschaft | Adapter for a clamping device |
9299523, | Dec 12 2014 | EATON INTELLIGENT POWER LIMITED | Switching device assembly and adapter assembly therefor |
9385517, | Apr 02 2014 | BUSWAY SOLUTIONS, LLC | Busway output box guide/inhibitor system for insertion and removal of a busway output box |
9419353, | Feb 25 2016 | Electrical wire connection strip |
Patent | Priority | Assignee | Title |
2764749, | |||
3124409, | |||
3656086, | |||
3794963, | |||
4603376, | Jun 19 1984 | Westinghouse Electric Corp. | Terminal assembly for circuit breaker and similar apparatus |
4758186, | Jul 25 1985 | Legrand | Side connecting terminal block |
5203716, | Jun 14 1991 | Molex Incorporated | Terminal block for printed circuit boards |
5919057, | Jun 07 1996 | Yazaki Corporation | Removable main connector |
6174199, | Jul 01 1999 | Shaft mounted extension cord set | |
6231405, | Apr 17 1998 | Schneider Electric SA | Connection accessory and terminal equipped with such an accessory |
6649838, | Jul 21 1998 | Safety electrical outlet | |
20060121772, | |||
DE8714542, | |||
DE1765816, | |||
DE8123067, | |||
GB1251112, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 14 2006 | Friedrich Goehringer Elektrotechnik GmbH | (assignment on the face of the patent) | / | |||
Jan 03 2007 | MUELLER, BERNHARD | FRIEDRICH GOEHRINGER ELECKTROTECHNIK GMBH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018795 | /0958 |
Date | Maintenance Fee Events |
Sep 22 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 08 2015 | LTOS: Pat Holder Claims Small Entity Status. |
Oct 22 2015 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 28 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 22 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 29 2011 | 4 years fee payment window open |
Oct 29 2011 | 6 months grace period start (w surcharge) |
Apr 29 2012 | patent expiry (for year 4) |
Apr 29 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 29 2015 | 8 years fee payment window open |
Oct 29 2015 | 6 months grace period start (w surcharge) |
Apr 29 2016 | patent expiry (for year 8) |
Apr 29 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 29 2019 | 12 years fee payment window open |
Oct 29 2019 | 6 months grace period start (w surcharge) |
Apr 29 2020 | patent expiry (for year 12) |
Apr 29 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |