A memory module includes a memory hub that monitors utilization of the memory module and directs devices of the memory module to a reduced power state when the module is not being used at a desired level. system utilization of the memory module is monitored by tracking system usage, manifested by read and write commands issued to the memory module, or by measuring temperature changes indicating a level of device activity beyond normal refresh activity. Alternatively, measured activity levels can be transmitted over a system bus to a centralized power management controller which, responsive to the activity level packets transmitted by remote memory modules, direct devices of those remote memory modules to a reduced power state. The centralized power management controller could be disposed on a master memory module or in a memory or system controller.

Patent
   7366920
Priority
Jun 20 2003
Filed
Jun 20 2003
Issued
Apr 29 2008
Expiry
May 19 2024
Extension
334 days
Assg.orig
Entity
unknown
0
277
EXPIRED
53. A method of controlling power used in a plurality of memory modules associated with a system, each of the memory modules containing a plurality of memory devices, the method comprising:
individually measuring activity in each of the memory modules in response to memory commands from the system in at least some of the memory modules;
determining within each of the memory modules when each of the respective memory modules is inactive based on lack of activity in response to nonrefresh memory commands from the system measured in the respective memory modules; and
internally directing the memory devices in at least one of the memory modules into a reduced power state when it is determined that activity of that memory module is not of a desired level.
1. A memory system, comprising:
a memory controller;
a memory bus operably coupled with the memory controller to communicate memory commands from the memory controller and communicate memory output signals to the memory controller; and
a plurality of memory modules operably coupled with the memory bus, the memory modules generating the memory output signals and responsive to the memory commands, at least some of the memory modules comprising:
an insulative substrate supporting a system interface;
a plurality of memory devices disposed on the insulative substrate;
a memory hub disposed on the insulative substrate and operably coupled with the memory devices and the system interface, the memory hub managing communications between the memory devices and the system interface in response to memory commands received via the system interface;
an activity sensing device monitoring activity of the memory module containing the activity sensing device in processing memory commands, the activity sensing device being operable to generate an output corresponding thereto; and
a module power controller coupled to the activity sensing device of the memory module containing the module power controller, the module power controller being operable to direct the memory devices in the memory module containing the module power controller to a reduced power state responsive to the output of the activity sensing device indicating activity of the memory module containing the module power controller is not of a desired level.
78. A memory system, comprising:
a memory controller;
a memory bus operably coupled with the memory controller to communicate memory commands from the memory controller and communicate memory output signals to the memory controller; and
a plurality of memory modules operably coupled with the memory bus, the memory modules generating the memory output signals and responsive to the memory commands, at least some of the memory modules comprising:
an insulative substrate supporting a system interface;
a plurality of memory devices disposed on the insulative substrate;
a memory hub disposed on the insulative substrate and operably coupled with the memory devices and the system interface, the memory hub managing communications between the memory devices and the system interface in response to memory commands received via the system interface;
an activity sensing device monitoring activity of the memory module containing the activity sensing device in processing memory commands, the activity sensing device being operable to generate an output corresponding thereto; and
a module power controller coupled to the activity sensing device of the memory module containing the module power controller, the module power controller being operable to direct the memory module containing the module power controller to a reduced power state responsive to the output of the activity sensing device indicating activity of the memory module containing the module power controller is not of a desired level, the module power controller being operable to direct the memory module containing the module power controller to a reduced power state by limiting the response of the memory module to memory commands.
82. A computer system, comprising:
a processor;
an input device, operably connected to the processor, allowing data to be entered into the computer system;
an output device, operably connected to the processor, allowing data to be output from the computer system; and
a memory system, operably coupled with the processor, the memory system comprising:
a memory controller;
a memory bus operably coupled with the memory controller to communicate memory commands from the memory controller and communicate memory output signals to the memory controller; and
a plurality of memory modules operably coupled with the memory bus, the memory modules generating the memory output signals and responsive to the memory commands, at least some of the memory modules comprising:
an insulative substrate supporting a system interface;
a plurality of memory devices disposed on the insulative substrate;
a memory hub disposed on the insulative substrate and operably coupled with the memory devices and the system interface, the memory hub managing communications between the memory devices and the system interface in response to memory commands received via the system interface;
an activity sensing device monitoring monitors memory commands directed to the memory module, the activity sensing device being operable to generate an output corresponding to module activity based on the monitored memory commands; and
a module power controller coupled to the activity sensing device of the memory module containing the module power controller, the module power controller being operable to direct the memory module containing the module power controller to a reduced power state responsive to the output of the activity sensing device indicating activity of the memory module containing the module power controller is not of a desired level.
27. A computer system, comprising:
a processor;
an input device, operably connected to the processor, allowing data to be entered into the computer system;
an output device, operably connected to the processor, allowing data to be output from the computer system; and
a memory system, operably coupled with the processor, the memory system comprising:
a memory controller;
a memory bus operably coupled with the memory controller to communicate memory commands from the memory controller and communicate memory output signals to the memory controller; and
a plurality of memory modules operably coupled with the memory bus, the memory modules generating the memory output signals and responsive to the memory commands, at least some of the memory modules comprising:
an insulative substrate supporting a system interface;
a plurality of memory devices disposed on the insulative substrate;
a memory hub disposed on the insulative substrate and operably coupled with the memory devices and the system interface, the memory hub managing communications between the memory devices and the system interface in response to memory commands received via the system interface;
an activity sensing device monitoring activity of the memory module containing the activity sensing device in processing memory commands, the activity sensing device being operable to generate an output corresponding thereto; and
a module power controller coupled to the activity sensing device of the memory module containing the module power controller, the module power controller being operable to direct the memory devices in the memory module containing the module power controller to a reduced power state responsive to the output of the activity sensing device indicating activity of the memory module containing the module power controller is not of a desired level.
80. A computer system, comprising:
a processor;
an input device, operably connected to the processor, allowing data to be entered into the computer system;
an output device, operably connected to the processor, allowing data to be output from the computer system; and
a memory system, operably coupled with the processor, the memory system comprising:
a memory controller;
a memory bus operably coupled with the memory controller to communicate memory commands from the memory controller and communicate memory output signals to the memory controller; and
a plurality of memory modules operably coupled with the memory bus, the memory modules generating the memory output signals and responsive to the memory commands, at least some of the memory modules comprising:
an insulative substrate supporting a system interface;
a plurality of memory devices disposed on the insulative substrate;
a memory hub disposed on the insulative substrate and operably coupled with the memory devices and the system interface, the memory hub managing communications between the memory devices and the system interface in response to memory commands received via the system interface;
an activity sensing device monitoring activity of the memory module containing the activity sensing device in processing memory commands, the activity sensing device being operable to generate an output corresponding thereto; and
a module power controller coupled to the activity sensing device of the memory module containing the module power controller, the module power controller being operable to direct the memory module containing the module power controller to a reduced power state responsive to the output of the activity sensing device indicating activity of the memory module containing the module power controller is not of a desired level, the module power controller being operable to direct the memory module containing the module power controller to a reduced power state by limiting the response of the memory module to memory commands.
2. The memory system of claim 1 wherein the module power controller directs the memory module to the reduced power state when the activity sensing device indicates memory module activity has fallen below the desired level.
3. The memory system of claim 1 wherein the module power controller directs the memory module to the reduced power state when the activity sensing device indicates memory module activity has exceeded the desired level.
4. The memory system of claim 1 wherein the module power controller is operable to determine when the memory module should be directed to the reduced power state responsive to the output of the activity sensing device.
5. The memory system of claim 1 wherein the module power controller is operable to direct the memory module to the reduced power state upon receiving an external reduced power signal.
6. The memory system of claim 1 wherein the module power controller of one of the memory modules comprises a master power controller, the master power controller receiving the output of the activity sensing device from at least one other memory module and, responsive to the output of the activity sensing device indicating activity of the memory module is not of the desired level, generates an external reduced power signal to direct the at least one other memory module to the reduced power state.
7. The memory system of claim 1 wherein the memory controller comprises a master power controller, the master power controller receiving the output of the activity sensing device from at least one other memory module and, responsive to the output of the activity sensing device indicating indicating activity of the memory module is not of the desired level, generates an external reduced power signal to direct the at least one other memory module to the reduced power state.
8. The memory system of claim 1 wherein the memory module is directed to the reduced power state by the module power controller responsive to a single indication the activity of the memory module is not of the desired level reflected in the output of the activity sensing device.
9. The memory system of claim 1 wherein the memory module is directed to the reduced power state by the module power controller responsive to a plurality of indications the activity of the memory module is not of the desired level reflected in the output of the activity sensing device.
10. The memory system of claim 1 wherein the memory module is directed to the reduced power state by the module power controller when the output of the activity sensing device indicates the memory module has not received a desired number of memory commands for a predetermined time period.
11. The memory system of claim 1 wherein the activity sensing device comprises an activity monitor that monitors memory commands directed to the memory module.
12. The memory system of claim 11 wherein the activity monitor monitors the memory commands received via the system interface.
13. The memory system of claim 11 wherein the activity monitor comprises part of the memory hub.
14. The memory system of claim 1 wherein the activity sensing device comprises a temperature sensor wherein the temperature sensor is operable to measure when the activity of the memory module is not of the desired level by monitoring temperature.
15. The memory system of claim 14 wherein the temperature sensor is operably coupled with at least one memory device to measure a memory device operating temperature.
16. The memory system of claim 14 wherein the temperature sensor is operably coupled with each of the memory devices to measure an aggregate memory device temperature.
17. The memory system of claim 14 wherein the temperature sensor is operably coupled with the insulative substrate to measure a memory module operating temperature.
18. The memory system of claim 14 wherein the temperature sensor is operably coupled with the memory hub to measure a memory hub operating temperature.
19. The memory system of claim 14 wherein the temperature sensor further comprises an ambient temperature sensor so that a measured temperature of the memory module can be compared to an ambient temperature.
20. The memory system of claim 1 wherein the plurality of memory devices comprise a plurality of DRAM devices.
21. The memory system of claim 20 wherein the reduced power state comprises a reduced refresh state in which memory cells of the DRAM devices are refreshed less frequently.
22. The memory system of claim 21 wherein the reduced refresh state comprises a self-refresh state.
23. The memory system of claim 1 wherein the reduced power state is a reduced response mode in which the module power controller limits response of the memory module to memory commands to control power consumption by the memory module.
24. The memory system of claim 23 wherein the module power controller limits the response of the memory module to memory commands by mandating idle intervals between responses to memory commands by the memory module.
25. The memory system of claim 1 wherein the output of the activity sensing device communicates that the memory devices of the memory module currently store no programming instructions and data, and the power management controller causes a plurality of devices of the memory module to be powered off.
26. The memory system of claim 1 wherein the output of the activity sensing device communicates that the memory devices of the memory module currently store programming information that has not been accessed by the system for an extended period, and the power management controller causes the contents of the memory devices to be saved to a storage device and a plurality of devices of the memory module to be powered off.
28. The computer system of claim 27 wherein the module power controller directs the memory module to the reduced power state when the activity sensing device indicates memory module activity has fallen below the desired level.
29. The computer system of claim 27 wherein the module power controller directs the memory module to the reduced power state when the activity sensing device indicates memory module activity has exceeded the desired level.
30. The computer system of claim 27 wherein the module power controller is operable to determine when the memory module should be directed to the reduced power state responsive to the output of the activity sensing device.
31. The computer system of claim 27 wherein the module power controller is operable to direct the memory module to the reduced power state upon receiving an external reduced power signal.
32. The computer system of claim 27 wherein the module power controller of one of the memory modules comprises a master power controller, the master power controller receiving the output of the activity sensing device from at least one other memory module and, responsive to the output of the activity sensing device activity of the memory module is not of the desired level, generates an external reduced power signal to direct the at least one other memory module to the reduced power state.
33. The computer system of claim 27 wherein the memory controller comprises a master power controller, the master power controller receiving the output of the activity sensing device from at least one other memory module and, responsive to the output of the activity sensing device indicating activity of the memory module is not of the desired level, generates an external reduced power signal to direct the at least one other memory module to the reduced power state.
34. The computer system of claim 27 wherein the memory module is directed to the reduced power state by the module power controller responsive to a single indication activity of the memory module is not of the desired level reflected in the output of the activity sensing device.
35. The computer system of claim 27 wherein the memory module is directed to the reduced power state by the module power controller responsive to a plurality of indications activity of the memory module is not of the desired level reflected in the output of the activity sensing device.
36. The computer system of claim 27 wherein the memory module is directed to the reduced power state by the module power controller when the output of the activity sensing device indicates the memory module has not received a desired number of memory commands for a predetermined time period.
37. The computer system of claim 27 wherein the activity sensing device comprises an activity monitor that monitors memory commands directed to the memory module.
38. The computer system of claim 27 wherein the activity monitor monitors the memory commands received via the system interface.
39. The computer system of claim 27 wherein the activity monitor comprises part of the memory hub.
40. The computer system of claim 27 wherein the activity sensing device comprises a temperature sensor wherein the temperature sensor is operable to measure when the activity of the memory module is not of the desired level by monitoring temperature.
41. The computer system of claim 40 wherein the temperature sensor is operably coupled with at least one memory device to measure a memory device operating temperature.
42. The computer system of claim 40 wherein the temperature sensor is operably coupled with each of the memory devices to measure an aggregate memory device temperature.
43. The computer system of claim 40 wherein the temperature sensor is operably coupled with the insulative substrate to measure a memory module operating temperature.
44. The computer system of claim 40 wherein the temperature sensor is operably coupled with the memory hub to measure a memory hub operating temperature.
45. The computer system of claim 40 wherein the temperature sensor further comprises an ambient temperature sensor so that a measured temperature of the memory module can be compared to an ambient temperature.
46. The computer system of claim 27 wherein the plurality of memory devices comprise a plurality of DRAM devices.
47. The computer system of claim 46 wherein the reduced power state comprises a reduced refresh state in which memory cells of the DRAM devices are refreshed less frequently.
48. The computer system of claim 47 wherein the reduced refresh state comprises a self-refresh state.
49. The computer system of claim 27 wherein the reduced power state is a reduced response mode in which the module power controller limits response of the memory module to memory commands to control power consumption by the memory module.
50. The computer system of claim 27 wherein the module power controller limits the response of the memory module to memory commands by mandating idle intervals between responses to memory commands by the memory module.
51. The computer system of claim 27 wherein the output of the activity sensing device communicates that the memory devices of the memory module currently store no programming instructions and data, and the power management controller causes a plurality of devices of the memory module to be powered off.
52. The computer system of claim 27 wherein the output of the activity sensing device communicates that the memory devices of the memory module currently store programming information that has not been accessed by the system for an extended period, and the power management controller causes the contents of the memory devices to be saved to a storage device and a plurality of devices of the memory module to be powered off.
54. The method of claim 53 wherein the memory module activity has fallen below the desired level.
55. The method of claim 53 wherein the memory module activity has exceeded the desired level.
56. The method of claim 53 wherein evaluating whether the memory module should be directed into the reduced power state and directing the module into the reduced power state occurs within the memory module.
57. The method of claim 53 wherein evaluating whether the memory module should be directed into the reduced power state and directing the module into the reduced power state occurs in an outside control device outside the memory module responsive to activity of the memory module not of the desired level reflected in the output of the activity sensing device.
58. The method of claim 57 wherein the outside control device resides in a memory controller.
59. The method of claim 57 wherein the outside control device resides in a system controller.
60. The method of claim 57 wherein the outside control device resides in a master memory module.
61. The method of claim 57 wherein the outside control device for other memory modules resides within the memory module.
62. The method of claim 53 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to a single occurrence of activity of the memory module not of the desired level reflected in the output of the activity sensing device.
63. The method of claim 53 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to a plurality of occurrences activity of the memory module not of the desired level reflected in the output of the activity sensing device.
64. The method of claim 53 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to activity of the memory module not of the desired level reflected in the output of the activity sensing measured over a predetermined time period.
65. The method of claim 64 wherein activity is measured via a memory hub of the memory module.
66. The method of claim 53 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to monitoring temperature within the memory module.
67. The method of claim 66 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to monitoring temperature of a memory device within the memory module.
68. The method of claim 66 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to monitoring temperature of each of the memory devices within the memory module.
69. The method of claim 66 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to monitoring temperature of an insulative substrate within the memory module.
70. The method of claim 66 wherein evaluating whether the memory module should be directed into the reduced power state is responsive to monitoring temperature of a memory hub.
71. The method of claim 66 further comprising measuring an ambient temperature in comparison with temperature monitored within the memory module.
72. The method of claim 53 wherein the plurality of memory devices comprise a plurality of DRAM devices and the reduced power state comprises a reduced refresh state in which memory cells of the DRAM devices are refreshed less frequently.
73. The method of claim 72 wherein the reduced refresh state is a self-refresh state.
74. The method of claim 53 wherein the reduced power state is a reduced response mode in which the module power controller limits response of the memory module to memory commands to control power consumption by the memory module.
75. The memory module of claim 74 wherein the module power controller limits the response of the memory module to memory commands by mandating idle intervals between responses to memory commands by the memory module.
76. The method of claim 53 wherein the reduced refresh state is powering off a plurality of devices of the memory module when the activity measured no programming instructions and data are stored on the memory module.
77. The method of claim 53 wherein the reduced refresh state is powering off a plurality of devices of the memory module programming information stored on the memory module has not been accessed by the system for an extended period, the contents stored in the memory module are saved to a storage device and a plurality of devices of the memory module are powered off.
79. The memory system of claim 78 wherein the module power controller limits the response of the memory module to memory commands by mandating idle intervals between responses to memory commands by the memory module.
81. The computer system of claim 80 wherein the module power controller limits the response of the memory module to memory commands by mandating idle intervals between responses to memory commands by the memory module.
83. The computer system of claim 82 wherein the memory module is directed to the reduced power state by the module power controller when the output of the activity sensing device indicates the memory module has not received a desired number of memory commands for a predetermined time period.
84. The computer system of claim 82 wherein the activity monitor monitors the memory commands received via the system interface.

This invention relates to computer memory systems. More particularly, the present invention relates to enhancing power management and reducing power consumption in a computer memory system.

Most computers and other digital systems have a system memory which often consists of dynamic random access memory (“DRAM”) devices. DRAM devices are fairly inexpensive because a DRAM memory cell needs relatively few components to store a data bit as compared with other types of memory cells. Thus, a large system memory can be implemented using DRAM devices for a relatively low cost.

Commonly, DRAM devices are arranged on memory modules, such as single in-line memory modules (“SIMMs”) and dual in-line memory modules (“DIMMs”). A representative module is shown in FIG. 1. The module 100 features a number of DRAM devices 104 mounted on an insulative substrate 108 through which the DRAM devices 104 are operably coupled through communications lines 110 such as conductive traces or other similar signal carrying devices to a memory hub 112. The module 100 interfaces with a system (not shown) through a series of conductive terminals 116 or other means through which control, data, and address information is communicated between the system and the module 100. A typical memory module 100 may support a number of DRAM devices 104 which supports an array of single-bit storage devices. A number of these DRAM devices 104 are arrayed in a parallel fashion such that, upon the module 100 receiving a specified address, the memory hub 112 will cause a data bit stored at the same address in each of the array of memory devices 104 to be retrieved to effectively retrieve a full data word. For example, if the memory module 100 features eight DRAM devices 104, each address applied to the module 100, the memory hub 112 will cause an eight-bit byte to be retrieved from the DRAM devices 104.

The proliferation of this modular design has a number of advantages, ranging from the ability to provide a large memory capacity in a relatively small package to greatly simplifying the installation process as compared to the painstaking process of installing individual memory chips. Beyond these more obvious advantages of modular design, however, is the additional functionality which is made possible by the use of the memory hub 112 (FIG. 1). To name one example, the memory hub 112 can include one or more registers, allowing address, data, and/or control information to be latched. The latching of this information allows for synchronous operations using this information without concern for data transiency problems such as race, skew, or synchronization problems which might result if the module had to be perfectly in synchronization with the system bus in receiving and outputting data. In addition, computer systems employing this architecture can have a higher bandwidth because a processor can access one memory device while another memory device is responding to a prior memory access. For example, the processor can output write data to one of the memory devices in the system while another memory device in the system is preparing to provide read data to the processor. Continually, new techniques are being developed to exploit the control permitted by the presence of the memory hub 112 central control logic on these memory modules 100.

Returning to the DRAM devices themselves, while DRAM devices do provide a relatively inexpensive way to provide a large system memory, DRAM devices suffer from the disadvantage that their memory cells must be continually refreshed. Refreshing memory cells consumes an appreciable quantity of power. Because of this drain of power, an important topic in DRAM design is how to reduce the power consumed in refreshing DRAM cells.

Once such technique for reducing power consumption is the implementation of a self-refresh cycle. FIG. 2 depicts a block diagram of a conventional DRAM device 200 enabled to use self-refresh. The DRAM device 200 is accessed through the address lines 210, the data lines 212, and a number of control lines 220-232. These control lines include CKE (clock enable) 220, CK* (clock signal—low) 222, CK (clock signal) 224, CS* (chip select—low enable) 226, WE* (write select—low enable) 228, CAS* (column address strobe—low enable) 230, and RAS* (row address strobe—low enable) 230. The address lines 210, data lines 212, and control lines 220-232, enable the system to read and write data to the actual memory banks 250, as well as control the refreshing of the DRAM device 200. The control logic 260 controls the read, write, and refresh operations of the DRAM device 200. The control logic 260 directs the operations of the DRAM device 200 as a function of the signals received at the control lines 220-232.

A DRAM device 200 typically is refreshed using an auto-refresh cycle, which is triggered by the system and operates synchronously with the system clock. More specifically, with the CKE 220 and WE* 228 control lines driven high, and the CS* 226, RAS* 230 and CAS* 232 control lines driven low, the rising edge of the next clock signal initiates an auto-refresh of the next row of the memory banks 250. Once the system initiates an auto-refresh cycle, the refresh counter 270 is incremented by one, and the row of the memory banks 250 corresponding to the updated count stored in the refresh counter 270 is refreshed. The refresh counter 270 maintains its count to track what row is next to be refreshed when the next auto-refresh cycle is initiated. This process repeats continuously. In a typical DRAM, having 4,096 rows and a maximum refresh interval of 64 milliseconds in its operational mode, a command to refresh one row would have to be issued approximately every 15 to 16 microseconds.

Although the auto-refresh process is a relatively simple one, auto-refresh requires that hundreds or thousands of times per second, thousands of control logic and access transistors within the devices depicted in FIG. 2 and described in the foregoing description must be energized to refresh the array, consuming power. In addition, resistance of the conductors through the memory array to address each and every transistor in each and every row consumes even more power. Still more power is consumed by transistors used in the sense amplifiers which read and refresh the memory cells in respective columns. Moreover, power is needed to actually charge each of the thousands of capacitors storing data bits in the array.

Implementation of a self-refresh cycle saves some of the power consumed as compared with auto-refresh. Initiation of a self-refresh cycle places a DRAM device 200 in a continual, indefinite refresh cycle to preserve the data stored in the DRAM device 200. A self-refresh command typically is issued during a period when useful read and write requests will not be forthcoming, for example, when a user has placed the computing system into a sleep or standby mode. A self-refresh command is triggered by driving the CS* 226, RAS* 230 and the CAS* 232 control lines low, driving the WE* 228 control line high, and, this time, driving the CKE 220 control line low. This command causes the self-refresh control logic 280 to periodically and repeatedly refresh every one of its rows, and also places all data, address, and control lines into a “don't care” state, with the exception of the CKE 220 control line. Driving the CKE 220 control line high ends the self-refresh state, removing the other control lines out of the “don't care” state.

During a self-refresh cycle, with most of the control lines in a don't care state, devices in the DRAM device 200 will not be switching to decode memory addresses and perform read or write commands, thus current and voltage fluctuations in the DRAM device 200 are reduced. This relatively stable condition tends to ameliorate electrical and thermal effects which contribute to current leakage from the capacitors of the memory cells. As a result, while the memory cells still need to be refreshed to preserve the integrity of the data stored therein, the memory cells do not need to be refreshed as frequently as during an operational state. During self-refresh, the contents of the memory cells can be preserved by refreshing a row less frequently than required during normal operation. In self-refresh state, for example, the rows might not need to be refreshed for a period up to twice as long, or perhaps slightly longer, than is permitted during an operational state.

While self-refresh can save an appreciable amount of power, self-refresh traditionally is implemented on a system-wide basis, often along with other power-saving techniques: For example, when a computer is placed in a standby mode, virtually every device in the computer enters a standby mode, i.e., the display is shut down, the hard disk is stopped, the memory is placed in a self-refresh state, and other systems are similarly put to “sleep.”

Operating systems, such as Windows 2000® do allow for more advanced power management options, and a user can select an interval of disuse after which the hard disk, the display, and the entire system will power down. In addition, some operating systems or utilities provide for additional power management choices allowing a user to choose operating parameters ranging between maximum performance at one extreme and maximum power savings at another extreme, or some intermediate compromise choice to suit the user's preferences. Still, while all these options save power, the only means to avoid wasting power in system memory remains an all or nothing, standby or not proposition.

What is needed is a way to save power which might be wasted in system memory. It is to this end that the present invention is directed.

A memory module is equipped with means to monitor utilization of the memory module. Through these devices, system utilization of the memory module can be monitored by tracking actual system usage, such in the form of read and write commands issued to the memory module, or by measuring temperature changes that indicate a nominal level of read and write activity beyond continual refresh activity. According to one aspect of the invention, control logic on the memory module directs the memory module into a power saving mode after determining, responsive to current activity levels, that the module need not remain immediately ready to process memory commands. In accordance with another aspect of the invention, the control logic could throttle activity of the memory module to reduce the responsiveness of the memory module in the face of receiving more than a desired number of system commands per unit time and/or measured temperature levels or changes. In such a mode, the memory module would not be rendered dormant to system operations as in the previously described aspect of the invention, but instead would merely limit memory module usage and allow the memory module to process only a predetermined number of system commands or remain at or below a certain operating temperature. For example, the control logic would cause a number of idle states to be observed to maintain memory module power consumption below a certain level.

According to another aspect of the invention, data packets summarizing the memory module's activity level are transmitted on the memory bus via the memory hub. The memory module activity level packet could be received by a memory controller or by a master memory hub disposed on another memory module. Selectively directing memory modules into a reduced power state can thereby be managed centrally by the system controller, the memory controller, or a master memory module equipped with a master module power management controller. The system controller or master module power management controller may also communicate power control data packets to other memory modules via the system bus and the other memory modules' memory hubs to direct those modules into reduced power states. The system controller or master module power management controller could direct the memory modules into a power saving mode such as a self-refresh mode, could throttle memory module activity to reduce responsiveness and reduce power consumption, or use another reduced power mode.

FIG. 1 is a plan view of a conventional memory module.

FIG. 2 is a block diagram of a conventional memory device equipped with self-refresh circuitry.

FIG. 3 is a plan view of a memory module equipped with power saving facilities of an embodiment of the present invention.

FIG. 4 is a flowchart showing the power saving operations of a memory module equipped with an embodiment of the present invention.

FIG. 5 is a plan view of a plurality of memory modules equipped with activity monitoring capabilities and communicating activity packets on the memory bus to a master power controller of another embodiment of the present invention.

FIG. 6 is a block diagram of a computer system employing an embodiment of the present invention.

FIG. 3 shows a memory module 300 equipped with activity monitoring and power saving capabilities employing a first embodiment of the present invention. The memory module 300 comprises a plurality of memory devices 104 mounted on a substrate 108 through which the DRAM devices 104 are operably coupled to a memory hub 312 through communications lines 110 such as conductive traces or other similar signal carrying devices. The memory module shown in FIG. 3 comprises most of the same components used in the memory module shown in FIG. 1 thus, in the interest of brevity, these components have been provided with the same reference numerals, and an explanation of their functions and operations will not be repeated.

The memory module 300 shown in FIG. 3 comprises three additional devices not included in the conventional memory module of FIG. 1. The memory module 300 includes an activity monitor 350, a power management controller 360, and a temperature sensor 370, the last being connected to the memory devices 104 via a network of connections 380. Generally, the power management controller 360 monitors signals received from the activity monitor 350 and the temperature sensor 370 to determine whether the memory module 300 is active. If the memory module 300 is active, it is maintained at fully operational status. However, if the memory module 300 is not active, and the power management controller 360 can direct the memory module 300 to assume a reduced power consumption state. The activity monitor 350 actually tracks memory commands to the memory module 300, such as read and write requests to that module, to directly gauge whether the system is using the memory module. The temperature sensor 370 tracks the temperature of the memory devices 104 to indirectly measure whether the system is using the memory devices. As is known in the art, memory devices 104 actually being used consume more power and radiate more heat than memory devices 104 not being actively used, because additional circuitry is required to respond to memory commands than to merely continually refreshing the memory devices' own memory cells.

The power management controller 360, acting on input from the activity monitor 350 or the temperature sensor 370, can direct the memory module 300 into a reduced power mode when the memory module is inactive. For example, the memory module 300 might be inactive if it represents a portion of memory configured to be at the upper end of the system memory, and the user is not running applications requiring enough memory to load programs or data into that portion of memory. Alternatively, the memory devices 104 on the memory module 300 might have been loaded with programs and data the user is not actively using. For example, the memory devices 104 on the memory module 300 might have been loaded with a word processing document the user opened and has left idle in an open window, while the user works with a program loaded into memory devices on other memory modules (not shown). In addition, the user may have stopped using the system altogether for a few moments, resulting in none of the contents stored in the memory devices 104 and memory modules actively being used for a time. Such examples of lack of activity may signal that these memory devices 104 could be directed into a power saving state. The activity monitor 350 might count memory commands directed to the memory module 300, and after counting a predetermined number of clock cycles corresponding to a preselected time interval without a memory command, the activity monitor 350 could signal the power management controller 360 that the memory module 300 could assume a lower power consumption state.

In FIG. 3, the activity monitor 350 and the power management controller 360 are shown as being a part of the memory hub 312. Because memory commands would be received by the memory hub 312, it is a logical choice to incorporate the device monitoring system activity, the activity monitor 350, within the memory hub 312 itself. Similarly, because the memory hub 312 is in communication with the memory devices 104, it is a logical choice to include the power management controller 360 in the memory hub as well. However, the activity monitor 350 and/or the power management controller 360 can alternatively be located elsewhere in the memory module 300. The temperature sensor 370 is shown in FIG. 3 as being external to the memory hub 312 and connected to each of the memory devices 104 through the network of connectors 380. This is one of a number of possible designs, as will be further described in connection with describing the operation of the temperature sensor 370.

In one embodiment, the activity monitor 350 (FIG. 3) might be a counter to track the number of clock cycles since the last memory request from the system. After a sufficiently large predetermined number of clock cycles has passed without a memory command, an overflow signal on the counter might signal to the power management controller 360 (FIG. 3) that this threshold has been reached. Reaching this threshold count could be taken as an indication that the system is not using the memory module 300 or, at least, not presently using any contents of the memory module.

In addition to directly monitoring memory commands, a memory module 300 equipped with this embodiment of the present invention also can determine system activity somewhat less directly by measuring the temperature of the memory devices 104. As is well understood in the art, semiconductor devices such as memory devices consume power, some of which is lost to waste heat, with the more activity taking place in the device, the greater the amount of heat generated. As is known in the art, when a device is actively being used, more gates and other circuits in the device will be switching; the more circuits that are switching, the more power the device draws, and more heat is generated. To give an example, in a memory device 104, refreshing the memory array in a system-directed, ordinary auto-refresh mode consumes less power than the same semiconductor device actually processing memory commands, and therefore generates less heat.

The temperature sensor 370 can be deployed in a number of different ways. As shown in FIG. 3, the temperature sensor 370 is connected to each of the memory devices 104 through a network of communicative connections. The memory devices 104 can each be equipped with a temperature sensor device which communicates an electrical signal to the temperature sensor 370, which can discern an average temperature level across the array memory devices 104. Alternatively, the temperature sensor 370 could be connected to one memory device 104 or a number of representative memory devices 104, taking the operating temperature of that sampling of memory devices 104 as being indicative of the operating temperature of each of the memory devices 104. In addition, the temperature sensor 370 could measure the temperature of the substrate 108, which would change in response to the heat generated by the memory devices 104 as their activity level varies.

The temperature sensor 370 will compare the measured temperature to a predetermined threshold temperature. This temperature can be specified as an absolute value, as an absolute value relative to an ambient system temperature which might be measured by or communicated to the temperature sensor 370, or as a differential measured from an operating temperature reached by the memory module 300 once it has become fully operational. Alternatively, the temperature sensor 370 could be programmed to respond to a combination of factors, for example, when the temperature falls below a predetermined threshold and when that temperature represents a predetermined differential from a previously measured operating temperature. Once the temperature sensor 370 detects that the threshold or thresholds have been reached, the temperature sensor 370 might signal the power management controller 360 that the temperature level indicates the memory module 300 has not been actively used, and could assume a reduced power state.

As mentioned above, the power management controller 360 receives signals from the activity monitor 350 and the temperature sensor 370 and, responsive to those signals, determines when the memory module might be directed to a reduced power state and restored to fully operational status. FIG. 4 flowcharts the operation of the invention the power management controller 360 (FIG. 3), the activity monitor 350, and the temperature sensor 370. Starting with the memory module 300 (FIG. 3) at operational status and consuming a full quantity of power from a system start or other fully operational status at 404, the activity monitor 350 (FIG. 3) is engaged to monitor memory commands issued to the memory module 300 (FIG. 3) at 408 (FIG. 4) as previously described. The temperature sensor 370 (FIG. 3) also is engaged to monitor the operating temperature of the memory devices (FIG. 3) at 412 (FIG. 4) on the module as previously described.

From the time these devices are engaged, the power management controller 360 (FIG. 3) continuously monitors the signals received from these devices. If the number of memory commands received continues to indicate that the memory module 300 (FIG. 3) is in regular, active use at 416 (FIG. 4), and the operating temperature of the memory devices 104 (FIG. 3) continues to indicate the same at 424 (FIG. 4), the power management controller 360 (FIG. 3) maintains the memory module at full operational status and power. Nonetheless, as shown in FIG. 4, the memory management controller 360 continues to monitor the status of these signals.

On the other hand, if the activity monitor 350 (FIG. 3) signals that no memory commands have been received for a period reaching an idle threshold at 416, or the temperature level indicates that the memory module 300 (FIG. 3) has not been actively used at 424 (FIG. 4), the power management controller 360 (FIG. 3) may direct the memory module 300 into a reduced power mode at 420 (FIG. 4). As previously described, this power reduction state might be a self-refresh mode during which the memory devices 104 (FIG. 3) are effectively isolated from the system and thus can be refreshed at a reduced rate, saving power. The memory module 300 can continue in this reduced power state until a memory command is received at 428 (FIG. 4) as detected by the activity monitor 350 (FIG. 3). Upon receiving such a memory command, the memory module 300 can resume its fully operational power status at 404 (FIG. 4), resetting the activity monitor 350 (FIG. 3) and/or the temperature sensor 370 to await the next time when the memory module 300 becomes idle and can assume a reduced power mode.

Although power saving techniques for memory systems such as self-refresh are currently known and used in computer systems, one of the advantages of embodiments of the present invention is that such techniques can be applied selectively. Conventionally, power-saving techniques are implemented across the entire system when a system user manually directs the system into a standby mode, or when the system automatically transitions into a standby mode after a predetermined period of inactivity. Embodiments of the present invention, however, allow for reaping these power savings while a system is operating. As a result, embodiments of the present invention can extend the actual operating time of electronic aids employing such memory devices.

It should be understood that use of the self-refresh mode is not the only possible way that embodiments of the present invention can be used to save power in memory systems. To name one example, the power management controller 360 (FIG. 3), through its associated activity monitor 350, might detect that no data has been loaded into the memory devices 104 of the memory module 300. If the memory module 300 is completely idle, as might be the case when the user is not running sufficient applications to fully utilize the system memory, the memory devices 104 could be powered off, along with the temperature sensor 370 and other devices. As long as the memory hub 312 and the power management controller 360 in the present example were left powered on to detect a memory command directed to the memory module 300 and so that the memory devices 104 and other dormant devices can be powered on again, further power can be saved. Similarly, a memory module 300 whose memory devices 104 store contents that have been long dormant could dump their contents to disk storage or other storage, and power down the devices. Upon receiving a memory command, the contents could be restored from disk to memory, allowing the user to continue the application from where she last was. Windows 2000® incorporates a “hibernate” mode that allows the entire system to shut down in this manner, allowing for a quick restart. However, as with other power saving facilities currently in use, the “hibernate” mode is an all-or-nothing, system wide shut down, and not applied selectively to some or all of the memory devices, as could be using embodiments of the present invention.

Alternatively, rather than direct the memory module 300 into an inactive state, the power management controller 360 can “throttle” the activity of the memory module 300 to system commands to limit power consumption. Instead of directing the memory module 300 into a nonfunctional state, such as a self-refresh state, throttling activity of the memory module 300 will reduce the responsiveness of the memory module 300 to keep its power consumption at or below a desired level. The power management controller 360 may be directed to restrict the number of system commands processed by the memory module 300 per unit time, mandating a certain number of idle intervals pass after one or a number of system commands have been processed per unit time. In one embodiment, the power management controller 360 may be programmed to always respond to a first system command or a first number of system commands, then insert a requisite number of idle intervals to contain power consumption. Alternatively, the power management controller 360 might evaluate power consumption by monitoring device temperatures, correlating a certain temperature level or change of temperature with exceeding a desired level of power consumption. As in the case of the power management controller 360 monitoring system requests, after the power management controller 360 measures a certain temperature level or change, the power management controller 360 can mandate a number of idle states, during which power consumption and, therefore, device temperature will decrease. Throttling the activity of the memory module 300 in this way, its power consumption can be reduced without actually rendering the memory module 300 at least temporarily inactive, as in the case of directing the memory module 300 into self-refresh mode.

Another embodiment of the present invention is shown in FIG. 5. FIG. 5 shows a network of two memory modules 504 and 508 coupled with a memory bus 512 to a system controller or memory controller 516. The memory modules 504 and 508 are nearly identical to the memory module 300 shown in FIG. 3, each having one difference. Memory module 504, positioned closest to the system/memory controller 516 is installed as the primary, low address memory module, and its memory hub 528 includes a primary power management controller 520. The memory hub 532 of memory module 508 includes a secondary power management controller 524. The primary power management controller 520 and the secondary power management controller 524 operate in a master/slave arrangement. Information about the activity in the secondary memory module 508 is relayed through the memory hub 532 over the system bus 512 to the primary memory module 504 and the primary power management controller 520. Similar to the operations of the memory module 300 of FIG. 3, the primary power management controller 520 also receives information about its own activity level.

Responsive to information received about its own activity level, the activity level of the secondary memory module 508, and any other memory modules (not shown) associated with the system, the primary power management controller 520 determines whether its own devices, those on the secondary memory module 508, or any other memory modules (not shown) should be directed to a reduced power state. As will be appreciated, these control decisions are made by the primary power management controller 520 just as they were made by the power management controller 360 of the memory module 300 of FIG. 3, which, for example, were based on activity level as reflected in actual system usage of these memory modules or by temperature levels reflecting the level of device activity. The primary power management controller 520 directs devices on the secondary memory module 508 by transmitting a control packet through its memory hub 528 via the system bus 512 to the secondary power management controller 524. On receiving a reduced power directive, the secondary power management controller 524 directs devices on the memory module to a reduced power state, whether that be a self-refresh state, a powered off state, a throttling or reduced response mode as previously described, or another reduced power state.

It will be appreciated that, in such a centralized control system, all the same power saving techniques could be employed. Memory devices 104 could be directed into a reduced power mode. Alternatively, the memory devices 104 and other devices could be powered off entirely if unused, or after having long dormant contents archived, both as previously described. As long as devices on the secondary memory module 508 remain active such that the secondary memory module 508 can be reactivated when memory commands to the secondary memory module are received, power can be saved in avoiding refreshing empty or long-unused and archived data.

A computer system 600 using the memory modules 300 of FIG. 3 or 504 and 508 of FIG. 5 according to examples of the present invention are shown in FIG. 6. The computer system 600 includes a processor 614 for performing various computing functions, such as executing specific software to perform specific calculations or tasks. The processor 614 includes a processor bus 618 that normally includes an address bus, a control bus, and a data bus. The computer system 600 includes a system controller 620 that is coupled to the processor bus 618. The system controller 620 also includes a memory controller 624, which is, in turn, coupled to memory modules 628a, 628b, 628c, and 628d through a system bus 632. It will be appreciated that that the controller 624 may be external to the system controller 620 and coupled to it or some other component in the computer system 600, such as the processor 614.

In addition, the computer system 600 includes one or more input devices 636, such as a keyboard or a mouse, coupled to the processor 614 through the system controller 620 to allow an operator to interface with the computer system 600. Typically, the computer system 600 also includes one or more output devices 640 coupled to the processor 614 through the system controller 620, such output devices typically being a printer or a video terminal. One or more data storage devices 644 are also typically coupled to the processor 614 through the system controller 620 to allow the processor 614 to store data or retrieve data from internal or external storage media (not shown). Examples of typical storage devices 640 include hard and floppy disk drives, removable large capacity disk drives, tape cartridge drives, removable flash EEPROM storage devices, and compact disc (CD) read-only, writeable, and rewriteable drives. The processor 614 is also typically coupled to cache memory 648, which is usually static random access memory (“SRAM”).

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Lee, Terry, Jeddeloh, Joseph M.

Patent Priority Assignee Title
Patent Priority Assignee Title
3742253,
4045781, Feb 13 1976 Digital Equipment Corporation Memory module with selectable byte addressing for digital data processing system
4240143, Dec 22 1978 Unisys Corporation Hierarchical multi-processor network for memory sharing
4245306, Dec 21 1978 Unisys Corporation Selection of addressed processor in a multi-processor network
4253144, Dec 21 1978 Unisys Corporation Multi-processor communication network
4253146, Dec 21 1978 Unisys Corporation Module for coupling computer-processors
4608702, Dec 21 1984 ADVANCED MICRO DEVICES, INC , 901 THOMPSON PLACE, P O BOX 3453, SUNNYVALE, CA 94088 A CORP OF DE Method for digital clock recovery from Manchester-encoded signals
4641249, Jun 22 1983 Kuraray Co., Ltd. Method and device for compensating temperature-dependent characteristic changes in ion-sensitive FET transducer
4707823, Jul 21 1986 Chrysler Motors Corporation Fiber optic multiplexed data acquisition system
4724520, Jul 01 1985 United Technologies Corporation Modular multiport data hub
4831520, Feb 24 1987 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Bus interface circuit for digital data processor
4891808, Dec 24 1987 Tellabs Operations, Inc Self-synchronizing multiplexer
4930128, Jun 26 1987 Hitachi, Ltd. Method for restart of online computer system and apparatus for carrying out the same
4953930, Mar 15 1989 Ramtech, Inc.; RAMTECH, INC , A CORP OF DE CPU socket supporting socket-to-socket optical communications
4989113, Mar 13 1987 Texas Instruments Incorporated Data processing device having direct memory access with improved transfer control
5241506, Nov 15 1989 Kabushiki Kaisha Toshiba Semiconductor memory circuit apparatus
5243703, Apr 18 1990 Rambus, Inc. Apparatus for synchronously generating clock signals in a data processing system
5251303, Jan 13 1989 International Business Machines Corporation System for DMA block data transfer based on linked control blocks
5269022, Mar 28 1990 Kabushiki Kaisha Toshiba Method and apparatus for booting a computer system by restoring the main memory from a backup memory
5313590, Jan 05 1990 KLEINER PERKINS CAUFIELD-BYERS IV System having fixedly priorized and grouped by positions I/O lines for interconnecting router elements in plurality of stages within parrallel computer
5317752, Dec 22 1989 Tandem Computers Incorporated Fault-tolerant computer system with auto-restart after power-fall
5319755, Apr 18 1990 Rambus, Inc. Integrated circuit I/O using high performance bus interface
5327553, Dec 22 1989 Tandem Computers Incorporated Fault-tolerant computer system with /CONFIG filesystem
5355391, Mar 06 1992 RAMBUS INC A CORP OF CALIFORNIA High speed bus system
5388265, Mar 06 1992 Intel Corporation Method and apparatus for placing an integrated circuit chip in a reduced power consumption state
5432823, Mar 06 1992 Rambus, Inc. Method and circuitry for minimizing clock-data skew in a bus system
5432907, May 12 1992 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Network hub with integrated bridge
5442770, Jan 24 1989 RENESAS ELECTRONICS AMERICA, INC Triple port cache memory
5446741, Aug 02 1990 International Business Machines Corporation Fast memory power-on diagnostics using DMA
5461627, Dec 24 1991 Proxim Wireless Corporation Access protocol for a common channel wireless network
5465229, May 19 1992 Sun Microsystems, Inc. Single in-line memory module
5479370, Feb 20 1992 Kabushiki Kaisha Toshiba Semiconductor memory with bypass circuit
5497476, Sep 21 1992 International Business Machines Corporation Scatter-gather in data processing system
5502621, Mar 31 1994 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Mirrored pin assignment for two sided multi-chip layout
5544319, Mar 25 1992 Sun Microsystems, Inc Fiber optic memory coupling system with converter transmitting and receiving bus data in parallel fashion and diagnostic data in serial fashion
5546591, Dec 20 1991 VLSI Technology, Inc. Distributed power management system for battery operated personal computers
5566325, Jun 30 1994 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for adaptive memory access
5577220, Jul 23 1993 LENOVO SINGAPORE PTE LTD Method for saving and restoring the state of a CPU executing code in protected mode including estimating the value of the page table base register
5581767, Jun 16 1993 Nippon Sheet Glass Co., Ltd. Bus structure for multiprocessor system having separated processor section and control/memory section
5606717, Apr 18 1990 Rambus, Inc. Memory circuitry having bus interface for receiving information in packets and access time registers
5621883, Oct 30 1992 SAMSUNG ELECTRONICS CO , LTD Circuit for testing microprocessor memories
5638334, Apr 18 1990 Rambus Inc. Integrated circuit I/O using a high performance bus interface
5638534, Mar 31 1995 Accentus PLC Memory controller which executes read and write commands out of order
5644784, Mar 03 1995 Intel Corporation Linear list based DMA control structure
5659798, Feb 02 1996 TRUSTEES OF PRINCETON UNIVERSITY, THE Method and system for initiating and loading DMA controller registers by using user-level programs
5687325, Apr 19 1996 Intellectual Ventures II LLC Application specific field programmable gate array
5706224, Oct 10 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Content addressable memory and random access memory partition circuit
5710733, Jan 22 1996 Hewlett Packard Enterprise Development LP Processor-inclusive memory module
5715456, Feb 13 1995 Lenovo PC International Method and apparatus for booting a computer system without pre-installing an operating system
5729709, Nov 12 1993 Intel Corporation Memory controller with burst addressing circuit
5748616, Sep 19 1994 LBF ENTERPRISES Data link module for time division multiplexing control systems
5796413, Dec 06 1995 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Graphics controller utilizing video memory to provide macro command capability and enhanched command buffering
5818844, Jun 06 1996 GLOBALFOUNDRIES Inc Address generation and data path arbitration to and from SRAM to accommodate multiple transmitted packets
5819304, Jan 29 1996 AONIX, S A Random access memory assembly
5822255, Aug 13 1996 SOCIONEXT INC Semiconductor integrated circuit for supplying a control signal to a plurality of object circuits
5832250, Jan 26 1996 Unisys Corporation Multi set cache structure having parity RAMs holding parity bits for tag data and for status data utilizing prediction circuitry that predicts and generates the needed parity bits
5875352, Nov 03 1995 Oracle America, Inc Method and apparatus for multiple channel direct memory access control
5875454, Jul 24 1996 International Business Machiness Corporation Compressed data cache storage system
5881072, Jun 28 1996 International Business Machines Corporation Method of detecting error correction devices on plug-compatible memory modules
5887159, Dec 11 1996 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Dynamically determining instruction hint fields
5889714, Nov 03 1997 Hewlett Packard Enterprise Development LP Adaptive precharge management for synchronous DRAM
5893089, Nov 15 1996 Lextron Systems, Inc Memory with integrated search engine
5928343, Apr 18 1990 Rambus Inc. Memory module having memory devices containing internal device ID registers and method of initializing same
5944800, Sep 12 1997 Infineon Technologies AG Direct memory access unit having a definable plurality of transfer channels
5963942, Jan 16 1996 Fujitsu Limited Pattern search apparatus and method
5966724, Jan 11 1996 Micron Technology, Inc Synchronous memory device with dual page and burst mode operations
5973935, Apr 07 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Interdigitated leads-over-chip lead frame for supporting an integrated circuit die
5973951, May 19 1992 Sun Microsystems, Inc. Single in-line memory module
5978567, Jul 27 1994 CSC Holdings, LLC System for distribution of interactive multimedia and linear programs by enabling program webs which include control scripts to define presentation by client transceiver
5987196, Nov 06 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor structure having an optical signal path in a substrate and method for forming the same
6011741, Apr 11 1991 SanDisk Technologies LLC Computer memory cards using flash EEPROM integrated circuit chips and memory-controller systems
6023726, Jan 20 1998 Meta Platforms, Inc User configurable prefetch control system for enabling client to prefetch documents from a network server
6023738, Mar 30 1998 Nvidia Corporation Method and apparatus for accelerating the transfer of graphical images
6029250, Sep 09 1998 Round Rock Research, LLC Method and apparatus for adaptively adjusting the timing offset between a clock signal and digital signals transmitted coincident with that clock signal, and memory device and system using same
6031241, Mar 11 1997 EUV, L L C Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications
6033951, Aug 16 1996 United Microelectronics Corp. Process for fabricating a storage capacitor for semiconductor memory devices
6038630, Mar 24 1998 International Business Machines Corporation Shared access control device for integrated system with multiple functional units accessing external structures over multiple data buses
6061263, Dec 29 1998 Round Rock Research, LLC Small outline rambus in-line memory module
6061296, Aug 17 1998 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Multiple data clock activation with programmable delay for use in multiple CAS latency memory devices
6067262, Dec 11 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Redundancy analysis for embedded memories with built-in self test and built-in self repair
6067649, Jun 10 1998 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for a low power self test of a memory subsystem
6073190, Jul 18 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT System for dynamic buffer allocation comprising control logic for controlling a first address buffer and a first data buffer as a matched pair
6076139, Dec 31 1996 Hewlett Packard Enterprise Development LP Multimedia computer architecture with multi-channel concurrent memory access
6079008, Apr 04 1997 HANGER SOLUTIONS, LLC Multiple thread multiple data predictive coded parallel processing system and method
6092158, Jun 13 1997 Intel Corporation Method and apparatus for arbitrating between command streams
6098158, Dec 18 1997 Lenovo PC International Software-enabled fast boot
6105075, Aug 05 1997 PMC-SIERRA, INC Scatter gather memory system for a hardware accelerated command interpreter engine
6111757, Jan 16 1998 International Business Machines Corp.; International Business Machines Corporation SIMM/DIMM memory module
6125431, Aug 02 1996 OKI SEMICONDUCTOR CO , LTD Single-chip microcomputer using adjustable timing to fetch data from an external memory
6128703, Sep 05 1997 Integrated Device Technology, Inc. Method and apparatus for memory prefetch operation of volatile non-coherent data
6131149, Jun 04 1997 SUNPLUS TECHNOLOGY CO , LTD Apparatus and method for reading data from synchronous memory with skewed clock pulses
6134624, Jun 08 1998 Oracle America, Inc High bandwidth cache system
6137709, Dec 29 1998 Round Rock Research, LLC Small outline memory module
6144587, Jun 23 1998 Longitude Licensing Limited Semiconductor memory device
6167465, May 20 1998 Creative Technology, Ltd System for managing multiple DMA connections between a peripheral device and a memory and performing real-time operations on data carried by a selected DMA connection
6167486, Nov 18 1996 RENESAS ELECTRONICS AMERICA, INC Parallel access virtual channel memory system with cacheable channels
6175571, Jul 22 1994 NETWORK PERIPHERALS, INC Distributed memory switching hub
6185352, Feb 24 2000 Corning Optical Communications LLC Optical fiber ribbon fan-out cables
6185676, Sep 30 1997 Intel Corporation Method and apparatus for performing early branch prediction in a microprocessor
6186400, Mar 20 1998 Symbol Technologies, LLC Bar code reader with an integrated scanning component module mountable on printed circuit board
6191663, Dec 22 1998 Intel Corporation Echo reduction on bit-serial, multi-drop bus
6201724, Nov 12 1998 Longitude Licensing Limited Semiconductor memory having improved register array access speed
6208180, Dec 29 1995 Intel Corporation Core clock correction in a 2/N mode clocking scheme
6219725, Aug 28 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method and apparatus for performing direct memory access transfers involving non-sequentially-addressable memory locations
6223301, Sep 30 1997 Hewlett Packard Enterprise Development LP Fault tolerant memory
6233376, May 18 1999 The United States of America as represented by the Secretary of the Navy Embedded fiber optic circuit boards and integrated circuits
6243769, Jul 18 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Dynamic buffer allocation for a computer system
6243831, Oct 31 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Computer system with power loss protection mechanism
6246618, Jun 30 2000 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit capable of testing and substituting defective memories and method thereof
6247107, Apr 06 1998 Advanced Micro Devices, Inc. Chipset configured to perform data-directed prefetching
6249802, Sep 19 1997 Hewlett Packard Enterprise Development LP Method, system, and computer program product for allocating physical memory in a distributed shared memory network
6256692, Oct 13 1997 Fujitsu Limited CardBus interface circuit, and a CardBus PC having the same
6266730, Sep 26 1997 Rambus Inc. High-frequency bus system
6272609, Jul 31 1998 Round Rock Research, LLC Pipelined memory controller
6275914, Oct 15 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Apparatus for preserving memory request ordering across multiple memory controllers
6285349, Feb 26 1999 Intel Corporation Correcting non-uniformity in displays
6286083, Jul 08 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Computer system with adaptive memory arbitration scheme
6294937, May 25 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and apparatus for self correcting parallel I/O circuitry
6301637, Jun 08 1998 Storage Technology Corporation High performance data paths
6327642, Nov 18 1996 RENESAS ELECTRONICS AMERICA, INC Parallel access virtual channel memory system
6330205, Dec 22 1999 Longitude Licensing Limited Virtual channel synchronous dynamic random access memory
6347055, Jun 24 1999 NEC Corporation Line buffer type semiconductor memory device capable of direct prefetch and restore operations
6349363, Dec 08 1998 Intel Corporation Multi-section cache with different attributes for each section
6356573, Jan 31 1998 Mellanox Technologies Ltd Vertical cavity surface emitting laser
6367074, Dec 28 1998 Intel Corporation Operation of a system
6370068, Jan 05 2000 SAMSUNG ELECTRONICS CO , LTD Semiconductor memory devices and methods for sampling data therefrom based on a relative position of a memory cell array section containing the data
6370601, Sep 09 1998 XILINX, Inc. Intelligent direct memory access controller providing controlwise and datawise intelligence for DMA transfers
6370611, Apr 04 2000 Hewlett Packard Enterprise Development LP Raid XOR operations to synchronous DRAM using a read buffer and pipelining of synchronous DRAM burst read data
6373777, Jul 14 1998 NEC Corporation Semiconductor memory
6381190, May 13 1999 Longitude Licensing Limited Semiconductor memory device in which use of cache can be selected
6389514, Mar 25 1999 Hewlett Packard Enterprise Development LP Method and computer system for speculatively closing pages in memory
6392653, Jun 25 1998 Inria Institut National de Recherche en Informatique et en Automatique Device for processing acquisition data, in particular image data
6401149, May 05 1999 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Methods for context switching within a disk controller
6401213, Jul 09 1999 Round Rock Research, LLC Timing circuit for high speed memory
6405280, Jun 05 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Packet-oriented synchronous DRAM interface supporting a plurality of orderings for data block transfers within a burst sequence
6421744, Oct 25 1999 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Direct memory access controller and method therefor
6430696, Nov 30 1998 Round Rock Research, LLC Method and apparatus for high speed data capture utilizing bit-to-bit timing correction, and memory device using same
6433785, Apr 09 1999 Intel Corporation; INETL CORPORATION Method and apparatus for improving processor to graphics device throughput
6434639, Nov 13 1998 Intel Corporation System for combining requests associated with one or more memory locations that are collectively associated with a single cache line to furnish a single memory operation
6434696, May 11 1998 ANPA INC Method for quickly booting a computer system
6434736, Jul 08 1999 Intel Corporation Location based timing scheme in memory design
6438622, Nov 17 1998 Intel Corporation Multiprocessor system including a docking system
6438668, Sep 30 1999 Apple Inc Method and apparatus for reducing power consumption in a digital processing system
6449308, May 25 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT High-speed digital distribution system
6453393, Sep 18 2000 Intel Corporation Method and apparatus for interfacing to a computer memory
6457116, Oct 31 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method and apparatus for controlling contexts of multiple context processing elements in a network of multiple context processing elements
6460114, Jul 29 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Storing a flushed cache line in a memory buffer of a controller
6462978, Aug 21 1997 Renesas Electronics Corporation Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
6463059, Dec 04 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Direct memory access execution engine with indirect addressing of circular queues in addition to direct memory addressing
6470422, Dec 08 1998 Intel Corporation Buffer memory management in a system having multiple execution entities
6473828, Jul 03 1998 Renesas Electronics Corporation Virtual channel synchronous dynamic random access memory
6477592, Aug 06 1999 Integrated Memory Logic, Inc System for I/O interfacing for semiconductor chip utilizing addition of reference element to each data element in first data stream and interpret to recover data elements of second data stream
6477614, Sep 30 1998 Intel Corporation Method for implementing multiple memory buses on a memory module
6477621, Nov 18 1996 RENESAS ELECTRONICS AMERICA, INC Parallel access virtual channel memory system
6479322, Jun 01 1998 Renesas Electronics Corporation Semiconductor device with two stacked chips in one resin body and method of producing
6487556, Dec 18 1998 International Business Machines Corporation Method and system for providing an associative datastore within a data processing system
6490188, Sep 02 1999 Round Rock Research, LLC Semiconductor devices having mirrored terminal arrangements, devices including same, and methods of testing such semiconductor devices
6493803, Aug 23 1999 GLOBALFOUNDRIES Inc Direct memory access controller with channel width configurability support
6496193, Dec 30 1999 Intel Corporation Method and apparatus for fast loading of texture data into a tiled memory
6496909, Apr 06 1999 Hewlett Packard Enterprise Development LP Method for managing concurrent access to virtual memory data structures
6501471, Dec 13 1999 Intel Corporation Volume rendering
6505287, Dec 20 1999 HTC Corporation Virtual channel memory access controlling circuit
6523092, Sep 29 2000 Intel Corporation Cache line replacement policy enhancement to avoid memory page thrashing
6523093, Sep 29 2000 Intel Corporation Prefetch buffer allocation and filtering system
6526483, Sep 20 2000 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Page open hint in transactions
6526498, Oct 31 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method and apparatus for retiming in a network of multiple context processing elements
6539490, Aug 30 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Clock distribution without clock delay or skew
6552564, Aug 30 1999 Micron Technology, Inc. Technique to reduce reflections and ringing on CMOS interconnections
6553479, Oct 31 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Local control of multiple context processing elements with major contexts and minor contexts
6564329, Mar 16 1999 HANGER SOLUTIONS, LLC System and method for dynamic clock generation
6587912, Sep 30 1998 Intel Corporation Method and apparatus for implementing multiple memory buses on a memory module
6590816, Mar 05 2001 Polaris Innovations Limited Integrated memory and method for testing and repairing the integrated memory
6594713, Sep 10 1999 Texas Instruments Incorporated Hub interface unit and application unit interfaces for expanded direct memory access processor
6594722, Jun 29 2000 Intel Corporation Mechanism for managing multiple out-of-order packet streams in a PCI host bridge
6598154, Dec 29 1998 Intel Corporation Precoding branch instructions to reduce branch-penalty in pipelined processors
6615325, Jan 11 1996 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for switching between modes of operation
6622227, Dec 27 2000 Intel Corporation Method and apparatus for utilizing write buffers in memory control/interface
6628294, Dec 31 1999 Intel Corporation Prefetching of virtual-to-physical address translation for display data
6629220, Aug 20 1999 Intel Corporation Method and apparatus for dynamic arbitration between a first queue and a second queue based on a high priority transaction type
6631440, Nov 30 2000 Hewlett Packard Enterprise Development LP Method and apparatus for scheduling memory calibrations based on transactions
6636110, May 01 1998 Mitsubishi Denki Kabushiki Kaisha Internal clock generating circuit for clock synchronous semiconductor memory device
6646929, Dec 05 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Methods and structure for read data synchronization with minimal latency
6647470, Aug 21 2000 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory device having posted write per command
6658509, Oct 03 2000 Intel Corporation Multi-tier point-to-point ring memory interface
6662304, Dec 11 1998 Round Rock Research, LLC Method and apparatus for bit-to-bit timing correction of a high speed memory bus
6665202, Sep 25 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Content addressable memory (CAM) devices that can identify highest priority matches in non-sectored CAM arrays and methods of operating same
6667895, Dec 06 2001 Samsung Electronics Co., Ltd. Integrated circuit device and module with integrated circuits
6681292, Aug 27 2001 Intel Corporation Distributed read and write caching implementation for optimized input/output applications
6697926, Jun 06 2001 Round Rock Research, LLC Method and apparatus for determining actual write latency and accurately aligning the start of data capture with the arrival of data at a memory device
6715018, Jun 16 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Computer including installable and removable cards, optical interconnection between cards, and method of assembling a computer
6718440, Sep 28 2001 BEIJING XIAOMI MOBILE SOFTWARE CO , LTD Memory access latency hiding with hint buffer
6721195, Jul 12 2001 Micron Technology, Inc. Reversed memory module socket and motherboard incorporating same
6724685, Oct 31 2001 Polaris Innovations Limited Configuration for data transmission in a semiconductor memory system, and relevant data transmission method
6725349, Dec 23 1994 Intel Corporation Method and apparatus for controlling of a memory subsystem installed with standard page mode memory and an extended data out memory
6728800, Jun 28 2000 Intel Corporation Efficient performance based scheduling mechanism for handling multiple TLB operations
6735679, Jul 08 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Apparatus and method for optimizing access to memory
6735682, Mar 28 2002 Intel Corporation Apparatus and method for address calculation
6745275, Jan 25 2000 VIA Technologies, Inc. Feedback system for accomodating different memory module loading
6751113, Mar 07 2002 NETLIST, INC Arrangement of integrated circuits in a memory module
6751703, Dec 27 2000 EMC IP HOLDING COMPANY LLC Data storage systems and methods which utilize an on-board cache
6751722, Oct 31 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Local control of multiple context processing elements with configuration contexts
6754117, Aug 16 2002 Round Rock Research, LLC System and method for self-testing and repair of memory modules
6754812, Jul 06 2000 Intel Corporation Hardware predication for conditional instruction path branching
6756661, Mar 24 2000 PS4 LUXCO S A R L Semiconductor device, a semiconductor module loaded with said semiconductor device and a method of manufacturing said semiconductor device
6760833, Aug 01 1997 Round Rock Research, LLC Split embedded DRAM processor
6771538, Feb 01 1999 TESSERA ADVANCED TECHNOLOGIES, INC Semiconductor integrated circuit and nonvolatile memory element
6775747, Jan 03 2002 Intel Corporation System and method for performing page table walks on speculative software prefetch operations
6782465, Oct 20 1999 Infineon Technologies AG Linked list DMA descriptor architecture
6785780, Aug 31 2000 Round Rock Research, LLC Distributed processor memory module and method
6789173, Jun 03 1999 Hitachi, LTD Node controller for performing cache coherence control and memory-shared multiprocessor system
6792059, Nov 30 2000 Northrop Grumman Systems Corporation Early/on-time/late gate bit synchronizer
6792496, Aug 02 2001 Intel Corporation Prefetching data for peripheral component interconnect devices
6795899, Mar 22 2002 TAHOE RESEARCH, LTD Memory system with burst length shorter than prefetch length
6799246, Jun 24 1993 TALON RESEARCH, LLC Memory interface for reading/writing data from/to a memory
6799268, Jun 30 2000 INTEL CORPORATION, A CORPORATION OF DELAWARE Branch ordering buffer
6804760, Dec 23 1994 Round Rock Research, LLC Method for determining a type of memory present in a system
6804764, Jan 22 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Write clock and data window tuning based on rank select
6807630, Dec 15 2000 International Business Machines Corporation Method for fast reinitialization wherein a saved system image of an operating system is transferred into a primary memory from a secondary memory
6811320, Nov 13 2002 System for connecting a fiber optic cable to an electronic device
6816947, Jul 20 2000 Hewlett Packard Enterprise Development LP System and method for memory arbitration
6820181, Aug 29 2002 Round Rock Research, LLC Method and system for controlling memory accesses to memory modules having a memory hub architecture
6821029, Sep 10 2002 XILINX, Inc. High speed serial I/O technology using an optical link
6823023, Jan 31 2000 Intel Corporation Serial bus communication system
6845409, Jul 25 2000 Oracle America, Inc Data exchange methods for a switch which selectively forms a communication channel between a processing unit and multiple devices
6859856, Oct 23 2001 FLEX-P INDUSTRIES SDN BHD Method and system for a compact flash memory controller
6889304, Feb 28 2001 Rambus Inc. Memory device supporting a dynamically configurable core organization
6910109, Sep 30 1998 Intel Corporation Tracking memory page state
6947050, Dec 30 1997 Round Rock Research, LLC Method of implementing an accelerated graphics/port for a multiple memory controller computer system
6952745, Jan 07 2002 Intel Corporation Device and method for maximizing performance on a memory interface with a variable number of channels
6970968, Feb 13 1998 Intel Corporation Memory module controller for providing an interface between a system memory controller and a plurality of memory devices on a memory module
7007130, Feb 13 1998 Intel Corporation Memory system including a memory module having a memory module controller interfacing between a system memory controller and memory devices of the memory module
20010039612,
20020033276,
20020112119,
20020116588,
20020144027,
20020144064,
20020178319,
20030005223,
20030023840,
20030043158,
20030043426,
20030065836,
20030093630,
20030095559,
20030149809,
20030163649,
20030177320,
20030193927,
20030217223,
20030227798,
20030229762,
20030229770,
20030235099,
20040008545,
20040022094,
20040024959,
20040044833,
20040047169,
20040064602,
20040126115,
20040144994,
20040199730,
20040216018,
20040236885,
20040243769,
20050033874,
20050044327,
20050071542,
20050177755,
20060200620,
EP849685,
JP2001265539,
WO227499,
WO9319422,
WO9857489,
WO9926139,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 20 2003Micron Technology, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Apr 29 20114 years fee payment window open
Oct 29 20116 months grace period start (w surcharge)
Apr 29 2012patent expiry (for year 4)
Apr 29 20142 years to revive unintentionally abandoned end. (for year 4)
Apr 29 20158 years fee payment window open
Oct 29 20156 months grace period start (w surcharge)
Apr 29 2016patent expiry (for year 8)
Apr 29 20182 years to revive unintentionally abandoned end. (for year 8)
Apr 29 201912 years fee payment window open
Oct 29 20196 months grace period start (w surcharge)
Apr 29 2020patent expiry (for year 12)
Apr 29 20222 years to revive unintentionally abandoned end. (for year 12)