An method and apparatus for an adjustable sling for treatment of urinary stress incontinence. The present system includes apparatus and methods for postoperative adjustment of sling tension using adjustable elements in the sling assembly. The present system also provides a number of demonstrative embodiments for an adjustable sling where positioning of the bladder is controlled using the adjustable sling and where coaptation of the urethra is controlled by postoperative inflation of one or more balloons mounted in a sling cup.

Methods and apparatus are provided for adjusting the adjustable sling after surgical implantation. In one embodiment a self sealing septum is located near the skin for convenient filling using a syringe. Multiple port embodiments are also discussed.

Patent
   7395822
Priority
Apr 28 2000
Filed
Apr 28 2000
Issued
Jul 08 2008
Expiry
Apr 28 2020
Assg.orig
Entity
Small
92
100
EXPIRED
21. An implantable device, comprising:
an implantable sling cup comprising a plurality of balloons connected to one or more conduits, each conduit including a port, the plurality of balloons adapted to be expanded by adding flowable material or contracted by withdrawal of flowable material.
11. An implantable device for a body having a urethra, comprising:
a sling having a cup and one or more straps, the one or more straps adapted to be anchored within the body; and
a plurality of expandable elements integral to the cup to change position of the urethra, the plurality of adjustable elements attached to one or more septums.
7. An implantable device for a body having a urethra, comprising:
a sling having a cup and one or more straps, the one or more straps adapted to be anchored within the body; and
at least one expandable element integral to the cup to change position of the urethra, and a hydraulic bellows forming an integral portion of the one or more straps.
17. An implantable, adjustable sling for a body, comprising:
an implantable sling cup connected to a first strap and a second strap, the first strap and the second strap adapted to be anchored within the body; and
at least one adjustable element forming an integral portion of the first strap;
wherein the first strap comprises a plurality of adjustable elements.
19. An implantable, adjustable sling for a body, comprising:
an implantable sling cup connected to a first strap and a second strap, the first strap and the second strap adapted to be anchored within the body; and
at least one adjustable element forming an integral portion of the first strap;
wherein the at least one adjustable element includes a hydraulic bellows.
9. An implantable device for a body having a urethra, comprising:
a sling including a cup including a plurality of adjustable elements attached to one or more septums and the sling having one or more straps, the one or more straps adapted to be anchored within the body;
at least one expandable element integral to the cup to change position of the urethra; and
hydraulic bellows forming an integral portion of the one or more straps.
18. An implantable, adjustable sling for a body, comprising:
an implantable sling cup connected to a first strap and a second strap, the first strap and the second strap adapted to be anchored within the body; and
at least one adjustable element forming an integral portion of the first strap, the at least one adjustable element adapted to be adjusted by adding or subtracting flowable material;
wherein the second strap comprises another adjustable element.
1. An implantable device, comprising:
an anchoring system;
one or more bands including one or more hydraulic bellows, the one or more bands connected to the anchoring system; and
an implantable sling cup, connected to the one or more bands and including an expandable element,
wherein the expandable element is connected to a self sealing port via a conduit and is adjustable by adding or withdrawing flowable material from an external source to affect expansion of the expandable element.
12. An implantable, adjustable sling for a body, comprising:
an implantable sling cup connected to a first strap and a second strap, the first strap and the second strap adapted to be anchored within the body; and
at least one adjustable element forming an integral portion of the first strap;
wherein the sling cup comprises an expandable element connected to a conduit including a self-sealing port, the expandable element adapted to be expanded by adding flowable material or contracted by withdrawal of flowable material.
13. An implantable, adjustable sling for a body, comprising:
an implantable sling cup connected to a first strap and a second strap, the first strap and the second strap adapted to be anchored within the body; and
at least one adjustable element forming an integral portion of the first strap;
wherein the sling cup comprises a plurality of balloons connected to conduits including self-sealing ports, the plurality of balloons adapted to be expanded by adding flowable material or contracted by withdrawal of flowable material.
14. An implantable, adjustable sling for a body, comprising:
an implantable sling cup connected to a first strap and a second strap, the first strap and the second strap adapted to be anchored within the body; and
at least one adjustable element forming an integral portion of the first strap;
wherein the sling cup comprises a plurality of balloons connected to one or more conduits including one or more self-sealing ports, the plurality of balloons adapted to be expanded by adding flowable material or contracted by withdrawal of flowable material.
2. The implantable device of claim 1, wherein the expandable element is adjustable by connection to a source of flowable material.
3. The implantable device of claim 1, wherein the self sealing port is a septum.
4. The implantable device of claim 1, wherein the hydraulic bellows are connected to a septum.
5. The implantable device of claim 1, wherein the sling cup includes a plurality of expandable elements.
6. The implantable device of claim 5, wherein the plurality of expandable elements are attached to one or more septums.
8. The implantable device of claim 7, wherein the hydraulic bellows are connected to a septum.
10. The implantable device of claim 9, wherein the hydraulic bellows are connected to a septum.
15. The implantable, adjustable sling of claim 14, wherein each balloon of the plurality of balloons is connected to a single conduit.
16. The implantable, adjustable sling of claim 14, wherein each balloon of the plurality of balloons is connected to an independent conduit.
20. The implantable device of claim 19, wherein the hydraulic bellows are connected to a septum.
22. The implantable device according to claim 21, wherein each balloon of the plurality of balloons is connected to a single conduit.
23. The implantable device according to claim 21, wherein each balloon of the plurality of balloons is connected to an independent conduit.
24. The implantable device according to claim 21, further comprising a first strap and a second strap.
25. The implantable device according to claim 21, wherein at least one port includes a self sealing port.
26. The implantable device according to claim 21, wherein at least one port includes a septum.
27. The implantable device according to claim 21, further comprising attachment tabs.

The present invention relates generally to treatment of urinary stress incontinence and in particular to a method and apparatus for treatment of stress urinary incontinence using an adjustable sling.

Urinary stress incontinence arises when an increase in abdominal pressure, such as from laughing, coughing, lifting, or exercise, results in urinary leakage. Normally, the urethra, which is the urinary lumen which passes urine from the bladder, will not leak with ordinary increases in abdominal pressure, also referred to as stress. However there are two conditions, referred to as type II and type III that commonly lead to incontinence.

Type II incontinence, also referred to as hypermobility, occurs when the support structures of the pelvic floor have been weakened, for instance from childbirth. This allows the bladder to descend below its normal location in the abdominal cavity and the bladder neck, where it joins the urethra, to funnel open under increased abdominal pressure.

Type II incontinence has most often been treated by a class of surgical procedures called suspensions of which there are many variations. Variations such as the Marshal-Marchetti-Krantz or the Burch procedures are quite invasive, requiring an abdominal incision. Other variations, generally called needle suspensions and including the Stamey and Raz procedures, are less invasive and may be done on an outpatient basis. Generally these procedures place sutures into tissue on either side of the urethra near the bladder neck and then lift or suspend the urethra and bladder from a higher anchoring point such the pubic bone, coopers ligament or the rectus abdominis muscle. This support compensates for weakness of the pelvic floor.

Unfortunately it has been found that these procedures, especially the needle suspensions, often fail over time because the sutures pull through the tissue on either side of the bladder neck or the tissue continues to sag between these points. Another concern is that if the bladder neck is lifted too high the patient may be put into urinary obstruction. Still another concern is that too much elevation may induce urge incontinence where the patient feels a need to urinate even when the bladder is not full. These later conditions may not be detected until after the surgery and the patient is up and around. In order to address some of these problems U.S. Pat. Nos. 4,938,760 and 4,969,892 propose a mechanism for allowing postoperative adjustment to the degree of suspension.

The other common cause of stress incontinence, type III also called intrinsic sphincter deficiency, occurs when the urinary sphincter which controls flow of urine from the bladder is dysfunctional. This may be caused by trauma, urethral scarring or any of a number of neurological conditions. For type III incontinence the most common treatment has been a class of surgical procedures called slings.

Generally a sling or strap of material is placed between the urethra and vagina and the ends are attached to the same selection of higher anchoring points as for a suspension procedure. Pressure of the sling on the underside of the urethra causes closing or coaptation of the urethra to compensate for the dysfunctional sphincter. Another way to achieve coaptation would be to provide an expandable element or elements such as balloons on the sling underneath or alongside the urethra. The sling may be made from artificial material such as polypropylene mesh, autologous tissue harvested from the patient such as rectus fascia, or cadaveric fascia latta.

While originally intended to provide coaptation for treating type III incontinence it has been recognized that slings also provide the support function sought by suspension procedures. While slings are somewhat more invasive than needle suspensions, they provide more reliable support since the sling is a continuous piece of material that goes underneath the urethra rather than being attached to fallible tissue alongside. At the same time it has also been recognized that mast stress incontinent patients do not have pure type II or type III but rather some of both. Often treating one of these conditions will unmask the presence of the other.

For these reasons surgeons are more and more turning to slings to treat both types of stress incontinence. Nevertheless slings are still prone to some of the same problems as suspensions. Often it is not possible to tell if there has been enough coaptation or suspension to provide continence without urinary obstruction before the patient has recovered. Another problematic disorder which may result from the foregoing procedures is called “postsurgical urgency,” which is caused by improperly applied pressure to the periurethral tissues in which innervation is very dense causing hyperactivity of the bladder and urethra. This disorder causes the patient to feel an urgency to void when their bladder does not require voiding. Amelioration of the foregoing problems generally entails a second open surgical procedure to reduce the pressure on the bladder neck and proximal urethra. Thus, there is a need in the art for an improved sling for the treatment of urinary stress incontinence.

The present invention provides a method and apparatus for an adjustable sling for treatment of urinary stress incontinence. The method and apparatus provide for sling adjustment peri-operatively and post-operatively for treatment of different urinary stress incontinence types and provide adjustable urethral positioning and adjustable urethral coaptation. The present system includes apparatus and methods for postoperative adjustment of sling tension using adjustable elements in the sling assembly. The present system also provides a number of demonstrative embodiments for an adjustable sling where positioning of the bladder is controlled using the adjustable sling and where coaptation of the urethra is controlled by postoperative inflation of one or more balloons mounted in a sling cup.

Methods and apparatus are provided for adjusting the adjustable sling after surgical implantation. In one embodiment a self sealing septum is located near the skin for convenient filling using a syringe. Multiple port embodiments are also discussed.

This summary is intended to be an overview of the subject matter of the present system and is not intended to be exhaustive or limiting. The invention is determined by the scope of the appended claims and their equivalents.

FIG. 1 is a side cross sectional drawing of a female anatomy showing the bladder, urethra, vagina, and pubic bone in a patient with pelvic floor dysfunction and loss of support giving rise to urethral hypermobility, thus resulting in the displacement of the bladder.

FIG. 2 is a side cross sectional drawing of the female anatomy demonstrating a sling to lift and support the bladder with respect to the pubic bone and to diminish the curvature of the urethra and the bladder neck.

FIG. 3 shows a top cross sectional drawing of the female anatomy from a view where the urethra is normal to the plane of the drawing and showing a cross section of an adjustable sling with an expandable element according to one embodiment of the present system.

FIG. 4 shows a top view of the adjustable sling according to the one embodiment shown in FIG. 3.

FIG. 5 shows a top cross sectional drawing of the female anatomy from a view where the urethra is normal to the plane of the drawing and showing a cross section of an adjustable sling according to one embodiment of the present system.

FIG. 6 shows a top cross sectional drawing of the female anatomy from a view where the urethra is normal to the plane of the drawing and showing a cross section of an adjustable sling according to one embodiment of the present system.

FIG. 7 is a flow chart showing one example of a procedure for adjusting one embodiment of the adjustable sling.

FIG. 8A is a cross sectional view of an adjustable sling according to one embodiment of the present system to demonstrate an uninflated state.

FIG. 8B is a cross sectional view of the adjustable sling of FIG. 8A demonstrating one inflated state.

FIG. 8C is a top view of the adjustable sling of FIG. 8A according to one embodiment of the present system.

FIG. 9A is a top view of the adjustable sling according to one embodiment of the present system.

FIG. 9B and FIG. 9C show a side cross sectional drawing of the female anatomy demonstrating the adjustable sling of FIG. 9A to lift and support the bladder with respect to the pubic bone and to diminish the curvature of the urethra at the bladder neck, the adjustable sling also providing adjustable urethral coaptation.

FIG. 10A is a cross sectional view of an adjustable sling according to one embodiment of the present system to demonstrate an uninflated state.

FIG. 10B is a cross sectional view of the adjustable sling of FIG. 10A demonstrating one inflated state.

FIG. 10C is a top view of the adjustable sling of FIG. 10A according to one embodiment of the present system.

FIG. 11A is a cross sectional view of an adjustable sling according to one embodiment of the present system to demonstrate an uninflated state.

FIG. 11B is a cross sectional view of the adjustable sling of FIG. 11A demonstrating one inflated state.

FIG. 11C is a top view of the adjustable sling of FIG. 11A according to one embodiment of the present system.

FIG. 12 is a diagram of a one embodiment of a multiple port system.

This detailed description provides a number of different embodiments methods and apparatus related to the present system. The embodiments provided herein are not intended in an exclusive or limited sense, and variations may exist in organization, dimension, chemical composition, and mechanical design and configuration, without departing from the claimed invention, the scope of which is provided by the appended claims and their equivalents.

FIG. 1 is a side cross sectional drawing of a female anatomy showing the bladder, urethra, vagina, and pubic bone in a patient with pelvic floor dysfunction and loss of support giving rise to urethral hypermobility, thus resulting in the displacement of the bladder. When the patient is laughing, coughing, lifting, or exercising, the abdominal pressure is increased momentarily. For patients with type II stress incontinence, the result may be a shifting or “hypermobility” of the bladder near the region of the bladder neck, which results in unwanted urine leakage. This problem is reduced by adding lift and support to the area of the bladder near the bladder neck using a sling.

FIG. 2 is a side cross sectional drawing of the female anatomy demonstrating a sling to lift and support the bladder and to diminish the curvature of the urethra and the bladder neck. The bladder is lifted in FIG. 2, as compared to the bladder position in FIG. 1. The urethra near the bladder neck is also supported by the sling and the tissue near the vagina is no longer compressed by the bladder. Attachment of the sling may be made using bone anchoring or suturing to the pubic bone, by attachment to strong ligaments of the female anatomy, such as the Cooper's ligaments, or by attachment to the rectus abdominous muscle. A variety of attachment apparatus and methods are provided in the present description.

FIG. 3 shows a top cross sectional drawing of the female anatomy from a view where the urethra 8 is normal to the plane of the drawing and showing a cross section of an adjustable sling with an expandable element 10 according to one embodiment of the present system. In this embodiment the expandable element 10 is supported by the attachment straps 14 and is positioned between the vagina 7 and the urethra 8 in the region of the bladder neck. Tightening the attachment straps 14 provides a support of the urethra 8 and bladder neck due to forces on the attachment straps 14 and the expandable element 10. The position of the urethra 8 with respect to the pubic bone is adjusted during surgery by controlling the tension on the attachment straps 14, which are connected to the anchors 13, in this embodiment.

The expandable element 10 is made of any biocompatible material which is suitable for implantation and has the requisite mechanical properties for strength, elasticity, and durability. Some suitable materials include silicone and polyurethane. The element is connected to a conduit 11 which terminates in a port, such as a septum 12. The septum 12 is made of a self sealing material which serves as a port for a source of flowable material for adjusting the size of the expandable element and which self seals upon removal of the source of flowable material. The self-sealing material is silicone in one embodiment, however, other materials may be used without departing from the present system. In some embodiments, the flowable material used is a saline solution. Other flowable materials are used in different embodiments, including, but not limited to x-ray contrast media, and/or hydrophilic particle suspensions. Combinations of flowable materials may be used in certain embodiments.

Fluid communication between the septum 12, conduit 11, and expandable element 10 is such that the expandable element may be expanded by adding a flowable material using a source accessing the port (septum 12) or contracted by withdrawing flowable material from the source accessing the port (septum 12). In one embodiment, this adding or withdrawing is an adjustment to the size of the expandable element which is performed postoperatively. In one embodiment this is performed using a syringe 15 containing a flowable material.

Adjustment of the expandable element is facilitated by positioning the septum under the skin and in a region convenient for access by a syringe, such as the labia majora or mons pubis. Other locations and methods for positioning may be used without departing from the present teachings. Thus, conduit 11 is long enough for positioning the septum in a desirable location and tunneling through the tissue back towards the anterior surface of the pubis. This provides a system in which size of the expandable element is adjustable after the implantation of the device. Therefore, the urethra 8 may be displaced in either direction by adding or subtracting flowable material to the expandable element through the septum after surgery. This postoperative adjustment may be made by locating the septum near its expected location and using the syringe 15 to add or withdraw flowable material, adjusting the position of the urethra 8 and the coaptation of the urethra 8 near the bladder neck.

Although FIG. 3 shows anchoring to the pubic bone 16, other embodiments employ other anchoring points, such as the Cooper's ligaments. The straps 14 are anchored to the pubic bone 16 using bone anchors, sutures, or glue. Other attachments may be used without departing from the present system. In one embodiment, the attachment straps are made of nylon. In other embodiments, stainless steel or polypropylene are used. Attachment of the straps 14 to the expandable element is accomplished by use of surgical needles. Alternatively, the expandable element is integrated into the straps 14, where in one embodiment the straps 14 shown on either side of the expandable element form a single continuous strap on which the expandable element, or elements, is positioned/secured.

The expandable element changes in sizes when flowable material is added or withdrawn. In one embodiment, the expandable element varies in sizes between approximately 8-15 mm in thickness. Other ranges may be used without departing from the present system. The expandable element may change in volume in various ranges. In one embodiment a range of 2-20 cc's is used. Other ranges may be employed without departing from the present system.

FIG. 4 shows a top view of the adjustable sling according to the one embodiment shown in FIG. 3. The figure is not necessarily drawn to scale and the size of the expandable element and straps may vary without departing from the present invention.

FIG. 5 shows a top cross sectional drawing of the female anatomy from a view where the urethra is normal to the plane of the drawing and showing a cross section of an adjustable sling according to one embodiment of the present system. In this embodiment, strap 54 is modified to include an adjustable element 50 for adjusting the tension in strap 54 and for changing the displacement of the urethra 8, accordingly. Adjustment of element 50 is performed by adding or subtracting flowable material to element 50 using septum 52 in fluid communication with conduit 51.

In one embodiment element 50 is a bellows with a length that is a function of the flowable material added to the bellows. This provides an adjustment of the lift or support of the bladder near the bladder neck in this embodiment.

It is understood that element 50 may be located on different portions of strap 54 in some embodiments. Other embodiments include the use of element 50 on both strap 54 and strap 55. Another embodiment includes the use of multiple elements 50 to provide additional displacement of urethra 8. In some embodiments, sling 56 is not adjustable. In some embodiments, sling 56 is a conventional sling. In some embodiments, sling 56 is adjustable, including any of the embodiments provided in this specification.

FIG. 6 shows a top cross sectional drawing of the female anatomy from a view where the urethra is normal to the plane of the drawing and showing a cross section of an adjustable sling according to one embodiment of the present system. In this embodiment, an adjustable anchor 63 is incorporated into a single connection point for straps 64. Sling 66 is connected to the straps 64. The tension on sling 66 is adjustable by changing settings at adjustable anchor 63.

FIG. 7 shows one embodiment of a process for adjusting both the lift and support of the bladder/bladder neck and the coaptation of the urethra near the bladder neck. In this embodiment, an adjustable mount for the sling and an expandable element are used to provide adjustment of the lift and support and to provide adjustment of the coaptation of the urethra. The adjustable sling is implanted and the lift and support provided by the sling is initially adjusted. The expandable element is only partially filled. After implantation, the urethral function is measured. The lift and support of the sling is adjusted first and then the coaptation is adjusted by filling or withdrawing flowable material from the expandable element.

FIG. 8-11 are shown to demonstrate different adjustable slings and are not necessarily drawn to scale. The following discussion is applicable to the remaining figures in different embodiments and is not limited to FIG. 8.

One embodiment of an adjustable sling is demonstrated in FIG. 8. FIG. 8A is a cross sectional view of an adjustable sling according to one embodiment of the present system to demonstrate an uninflated state. In this embodiment, sling cup 120 contains an integrated conduit portion 141 which provides an interface for fluid communication between balloon 110 and conduit 140 which terminates in port 150. In some embodiments, port 150 is a self sealing septum. Attachment tabs 130 are connected to straps (not shown) by suture in one embodiment. In one embodiment, tabs 130 contain a perforation so that straps may be tied to each tab 130. The sling is secured using any of the connection systems and methods described in this specification, including all of the adjustable apparatus and methods taught herein.

When properly tensioned, the sling cup 120 provides support and lift to the bladder neck distributed across face 143 (shown in FIG. 8C). Coaptation of the urethra near the bladder neck is further adjustable using balloon 110 which is inflated to provide force on urethra 8 to assist in providing adequate coaptation for alleviating type III urinary stress incontinence. In one embodiment port 150 is located at a position which is easy to access by a source of flowable material, such as a syringe. Using this embodiment, urethral coaptation is substantially independently adjustable of the lift and support of the bladder by cup 120. FIG. 8B is a cross sectional view of the adjustable sling of FIG. 8A demonstrating one inflated state. In one embodiment, the coaptation of urethra 8 is adjustable after the implantation of device to provide enhanced coaptation without requiring another surgery.

The drawing of the balloon 110 is not necessarily to scale, and the location, size, and maximum size of the balloon 110 may differ without departing from the present system. For example, different shaped balloons may be employed and other variations may be used, such as balloons which expand to a predetermined shape. Several embodiments are possible without departing from the present teachings.

Cup 120 is made of any biocompatible material. In one embodiment cup 120 is flexible for ease of implantation. Implantation of such device may be performed through a vaginal incision method. In another embodiment, cup 120 is semi-rigid to accommodate the integrated conduit portion 141.

FIG. 8C is a top view of the adjustable sling of FIG. 8A according to one embodiment of the present system. The size, shape and position of balloon 110 with respect to surface 143 may change without departing from the present system.

FIG. 9A is a top view of the adjustable sling according to one embodiment of the present system. In this embodiment, multiple balloons 110a and 110b are used to better control the coaptivity of the urethral portion near the bladder. Multiple ports 150a and 150b are also used to independently control the expansion of each balloon. In one embodiment a septum having dual ports is used to provide fluid communication to the plurality of balloons, as is shown in FIG. 12.

FIG. 9B and FIG. 9C show a side cross sectional drawing of the female anatomy demonstrating the adjustable sling of FIG. 9A to lift and support the bladder with respect to the pubic bone and to diminish the curvature of the urethra at the bladder neck, the adjustable sling also providing adjustable urethral coaptation. This figure shows the mechanical forces on the bladder neck portion of the urethra due to the sling straps and due to the effect of the balloons 110a and 110b on the urethra. In one embodiment, the inflation of the balloons is independently adjustable to provide the proper amount of coaptation.

FIG. 10A is a cross sectional view of an adjustable sling according to one embodiment of the present system to demonstrate an uninflated state. In this embodiment all of the balloons are connected to the same conduit, however, other connections may be made without departing from the present system. The additional balloons 111 and 112 provide additional coaptation control by applying force from a plurality of directions. In one embodiment, balloons 111 and 112 are connected to a first common conduit and a first port, and balloon 110 is connected to a separate, second conduit and a separate, second port. This allows balloons 111 and 112 to fill evenly and independently of balloon 110.

FIG. 10B is a cross sectional view of the adjustable sling of FIG. 10A demonstrating one inflated state. Sling cup 120 has a surface 143 (FIG. 10C) which provides the lift and support of the bladder when properly connected to straps (not shown) at tabs 130. The additional coaptive forces on the urethra 8 due to the inflation are shown with arrows.

FIG. 10C is a top view of the adjustable sling of FIG. 10A according to one embodiment of the present system. The shapes, placement, and sizes of the balloons may change without departing from the present system.

FIG. 11A is a cross sectional view of an adjustable sling according to one embodiment of the present system to demonstrate an uninflated state. In this embodiment, a plurality of ports and independent conduits are used to independently fill each balloon. However, it is noted that it may be advantageous in other embodiments to connect conduits to balloons 111 and 112 to provide even filling. Furthermore, in some embodiments a septum having a plurality of ports may be used to have a common position where each balloon may be filled, as is shown in FIG. 12. Additional ports may be added to the structure of FIG. 12.

FIG. 11B is a cross sectional view of the adjustable sling of FIG. 11A demonstrating one inflated state. Sling cup 120 has a surface 143 (FIG. 10C) which provides the lift and support of the bladder when properly connected to straps (not shown) at tabs 130. The additional coaptive forces on the urethra 8 due to the inflation are shown with arrows.

FIG. 11C is a top view of the adjustable sling of FIG. 11A according to one embodiment of the present system. The shapes, placement, and sizes of the balloons may change without departing from the present system.

Upon reading and understanding the present description, those skilled in the art would recognize that minor variations in the apparatus, processes, and applications described herein may exist without departing from the claimed invention and its equivalents. The embodiments described herein are intended to demonstrate the present invention, and are not intended in an exclusive or limited sense. For example, a change in the positioning of adjustable elements, filling fluids, shapes, conduit layout and connectivity, and filling systems may occur without departing from the present system. Furthermore, the shapes, placement, and sizes of the balloons may change without departing from the present system.

Burton, John H., Cook, Timothy C.

Patent Priority Assignee Title
10064714, May 21 2004 Coloplast A/S Implantable device configured to treat pelvic organ prolapse
10076394, Oct 12 2000 Coloplast A/S Method of treating urinary incontinence
10219898, Oct 10 2008 KIRK PROMOTION LTD Artificial valve
10278800, Jul 05 2000 Coloplast A/S Method and device for treating urinary incontinence
10449025, Oct 12 2000 Coloplast A/S Surgical device implantable to treat female urinary incontinence
10583234, Oct 10 2008 KIRK PROMOTION LTD Heart help device, system and method
10639138, Feb 28 2008 Coloplast A/S Method for providing support to a urethra in treating urinary incontinence
10682213, Mar 30 2001 Coloplast A/S Surgical implant consisting of non-absorbable material
10952836, Jul 17 2009 KIRK PROMOTION LTD Vaginal operation method for the treatment of urinary incontinence in women
11123171, Oct 10 2008 KIRK PROMOTION LTD Fastening means for implantable medical control assembly
11510766, Feb 14 2019 UROMEDICA, INC Method and apparatus for monitoring implantable device for urinary continence
11628053, Oct 10 2008 KIRK PROMOTION LTD Variable sling for urinary continence
11690703, Feb 14 2019 UROMEDICA, INC. Method and apparatus for monitoring implantable device for urinary continence
11690704, Feb 14 2019 UROMEDICA, INC. Method and apparatus for monitoring implantable device for urinary continence
7699769, Sep 01 2005 Boston Scientific Scimed, Inc. Adjustable surgical sling
7771346, Oct 11 1999 UROMEDICA, INC. Apparatus and method for inserting an adjustable implantable genitourinary device
7828716, Jun 12 1997 UROMEDICA, INC. Implantable device and method for adjustably restricting a body lumen
8012081, Sep 01 2005 Boston Scientific Scimed, Inc. Adjustable surgical sling
8029434, May 04 2005 Aesculap AG Device for the prevention of incontinence, especially urinary incontinence
8096938, Aug 12 1999 Obtech Medical AG Controlled anal incontinence disease treatment
8096939, Feb 10 2000 Obtech Medical AG Urinary incontinence treatment with wireless energy supply
8118727, Oct 12 2001 Coloplast A/S Method for supporting pelvic anatomy
8118728, Oct 12 2000 Coloplast A/S Method for implanting an adjustable surgical implant for treating urinary incontinence
8123673, Oct 12 2000 Coloplast A/S Adjustable surgical implant for treating urinary incontinence
8126558, Feb 14 2000 Obtech Medical AG Controlled penile prosthesis
8128554, Apr 11 2002 Coloplast A/S System for introducing a pelvic implant
8162818, Oct 12 2001 Coloplast A/S Adjustable surgical implant for pelvic anatomy
8182412, Apr 11 2002 Coloplast A/S Pelvic implant with fibrous anchor
8182413, Apr 11 2002 Coloplast A/S Method for fibrous anchoring of a pelvic support
8215310, May 21 2004 Coloplast A/S Implant for treatment of vaginal and/or uterine prolapse
8273010, Jun 14 2010 Coloplast A/S Incontinence treatment device
8273011, Oct 12 2000 Coloplast A/S Adjustable surgical implant and method for treating urinary incontinence
8287444, Feb 10 2000 Obtech Medical AG Mechanical impotence treatment apparatus
8290594, Feb 11 2000 Obtech Medical AG Impotence treatment apparatus with energy transforming means
8313423, Feb 14 2000 Hydraulic anal incontinence treatment
8449450, Oct 12 2000 Coloplast A/S Pass through introducer and sling
8454492, Oct 12 2000 Coloplast A/S Absorbable anchor and method for mounting mesh to tissue
8469877, Apr 11 2002 Coloplast A/S System for introducing a pelvic implant
8509894, Oct 10 2008 KIRK PROMOTION LTD Heart help device, system, and method
8512223, Oct 12 2000 Coloplast A/S Pelvic implant with selective locking anchor
8545384, Aug 12 1999 Obtech Medical AG Anal incontinence disease treatment with controlled wireless energy supply
8550979, Jun 15 2010 COLOPLAST A S Method of treating incontinence
8556796, Feb 10 2000 Obtech Medical AG Controlled urinary incontinence treatment
8574148, Oct 12 2000 Coloplast A/S System for introducing soft tissue anchors
8600510, Oct 10 2008 KIRK PROMOTION LTD Apparatus, system and operation method for the treatment of female sexual dysfunction
8602966, Feb 10 2000 Obtech Medical, AG Mechanical impotence treatment apparatus
8617050, Jun 08 2009 Coloplast A/S Anatomical augmentation device
8636809, Jan 29 2008 KIRK PROMOTION LTD Device for treating obesity
8668635, Oct 12 2000 Coloplast A/S Pelvic implant with suspending system
8678997, Feb 14 2000 Obtech Medical AG Male impotence prosthesis apparatus with wireless energy supply
8684907, Feb 26 2007 Adjustable incontinence apparatus
8696745, Oct 10 2008 KIRK PROMOTION LTD Heart help device, system, and method
8709471, Mar 27 2003 COLOPLAST A S Medicament delivery device and a method of medicament delivery
8734318, Feb 11 2000 Obtech Medical AG Mechanical anal incontinence
8764627, Feb 14 2000 Obtech Medical AG Penile prosthesis
8784296, Sep 07 2010 COLOPLAST A S Angled surgical introducer
8801596, Oct 12 2000 Coloplast A/S Sling with support and suspending members formed from same polymer
8821369, Oct 12 2000 Colorplast A/S Method for soft tissue anchoring with introducer
8821370, Oct 12 2000 Coloplast A/S Device, system and methods for introducing soft tissue anchors
8852075, Oct 12 2000 Coloplast A/S Pelvic implant systems and methods with expandable anchors
8874215, Oct 10 2008 KIRK PROMOTION LTD System, an apparatus, and a method for treating a sexual dysfunctional female patient
8888678, Oct 12 2000 Coloplast A/S Pelvic implant with suspending system
8911347, Oct 12 2000 Coloplast A/S System and method for treating urinary incontinence
8920303, Sep 01 2005 Boston Scientific Scimed, Inc. Adjustable surgical sling
8920304, Jul 05 2000 Coloplast A/S Method and device for treating urinary incontinence
8920308, Oct 12 2000 Coloplast A/S Surgical implant with anchor introducer channel
8932202, Oct 12 2000 Coloplast A/S Incontinence implant with soft tissue anchors and length not allowing abdominal wall penetration
8961448, Jan 28 2008 KIRK PROMOTION LTD Implantable drainage device
9005222, Aug 02 2002 Coloplast A/S Self-anchoring sling and introducer system
9060771, Jan 29 2008 KIRK PROMOTION LTD Method and instrument for treating obesity
9060838, May 21 2004 Coloplast A/S Tissue supported implantable device
9072907, Oct 10 2008 KIRK PROMOTION LTD Heart help device, system, and method
9089394, Oct 12 2000 Coloplast A/S Pelvic implant with suspending system
9089396, Oct 12 2000 Coloplast A/S Urinary incontinence treatment and devices
9113989, Aug 14 2007 THE BOARD OF TRSUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY Methods and devices for supporting, elevating, or compressing internal structures
9113992, Oct 12 2000 Coloplast A/S Apparatus and method for treating urinary incontinence
9125717, Feb 23 2011 Boston Scientific Scimed, Inc Implant tension adjustment system and method
9186489, Mar 27 2003 Coloplast A/S Implantable delivery device system for delivery of a medicament to a bladder
9211173, Jun 08 2009 Coloplast A/S Incontinence treatment device
9211174, Jun 08 2009 Coloplast A/S Method of treating urinary incontinence with a device having an inflatable bladder
9345867, Mar 27 2003 Coloplast A/S Device implantable in tissue of a prostate gland or a bladder
9370656, Oct 10 2008 System, an apparatus, and a method for treating a sexual dysfunctional female patient
9433485, Aug 23 2011 Boston Scientific Scimed, Inc Implant tension adjustment system and method
9526649, Oct 10 2008 KIRK PROMOTION LTD Method and instrument for treating obesity
9532861, Aug 02 2002 Coloplast A/S Self-anchoring sling and introducer system
9532862, Aug 02 2002 Coloplast A/S Self-anchoring sling and introducer system
9555168, Mar 27 2003 Coloplast A/S System for delivery of medication in treatment of disorders of the pelvis
9694165, Jan 28 2008 Implantable drainage device
9872750, Aug 02 2002 Coloplast A/S Self-anchoring sling and introducer system
9918817, Feb 28 2008 Coloplast A/S Method of post-operatively adjusting a urethral support in treating urinary incontinence of a woman
9949812, Jul 17 2009 KIRK PROMOTION LTD Vaginal operation method for the treatment of anal incontinence in women
9968430, Oct 12 2000 Coloplast A/S Surgical device implantable to treat female urinary incontinence
Patent Priority Assignee Title
3138161,
4019499, Apr 22 1976 Mentor Corporation Compression implant for urinary incontinence
4553959, Jan 27 1982 The Victoria University of Manchester Urethral catheter
4559043, Oct 29 1984 LUTHER MEDICAL PRODUCTS, INC , Assembly with septum fitting for connecting adaptor and fluid tube
4669478, Mar 21 1985 Device for diagnosing and relieving female incontinence
4686962, Jul 03 1986 C R BARD, INC Disposable cartridge assembly for hypodermically implanting a genitourinary prosthesis
4773393, Jul 03 1986 C R BARD, INC Hypodermically implantable genitourinary prosthesis
4784660, Sep 21 1982 The Johns Hopkins University Manually actuated hydraulic sphincter having a mechanical actuator
4802479, Oct 31 1986 C R BARD, INC Hand-held instrument for implanting, dispensing, and inflating an inflatable membrane
4817637, Nov 25 1987 MEDICAL ENGINEERING CORPORATION, A DE CORP Subcutaneous injection and withdrawal site
4832680, Jul 03 1986 C R BARD, INC Apparatus for hypodermically implanting a genitourinary prosthesis
4846784, Jul 01 1987 HABLEY MEDICAL TECHNOLOGY CORPORATION, A CORP OF CA ; C R BARD, INC , 731 CENTRAL AVE , MURRAY HILL, NJ 07974, A CORP OF NJ Manually adjustable sphincteric system
4857041, May 07 1986 British Technology Group Limited Urinary incontinence prostheses
4909785, Mar 25 1986 AMS Research Corporation Method for valving body fluids
4938760, Mar 29 1989 AMS Research Corporation Female suspension procedure
4969474, Oct 11 1988 MARGER, JOHNSON, MCCOLLOM ET AL Incontinence bladder control method and apparatus
4969892, Mar 29 1989 WPAMS ACQUISITION CORP Suturing anchoring device for use in a female suspension procedure
5012822, Oct 11 1988 MARGER, JOHNSON, MCCOLLOM ET AL Method for controlling urinary incontinence
5041136, Oct 27 1989 GENERAL ELECTRIC COMPANY, A NY CORP Implantable artificial soft bladder system
5047055, Dec 21 1990 HOWMEDICA OSTEONICS CORP Hydrogel intervertebral disc nucleus
5064434, Apr 04 1990 Genitourinary implant
5097848, Oct 11 1988 MARGER, JOHNSON, MCCOLLOM ET AL Incontinence bladder control method and apparatus
5112303, May 02 1991 Medtronic, Inc Tumor access device and method for delivering medication into a body cavity
5123428, Oct 11 1988 MARGER, JOHNSON, MCCOLLOM ET AL Laparoscopically implanting bladder control apparatus
5133753, Aug 07 1989 Medical Engineering Corporation Method for expanding a self-sealing tissue prosthesis
5149052, Nov 16 1987 HYMEDIX INTERNATIONAL, INC Precision molding of polymers
5154187, Nov 12 1991 TRUMBULL LAND CO , AN OHIO CORP Abdominal pressure diffuser
5181921, May 25 1990 KOKEN CO , LTD Detachable balloon with two self-sealing valves
5192326, Dec 21 1990 HOWMEDICA OSTEONICS CORP Hydrogel bead intervertebral disc nucleus
5304123, Oct 24 1991 CYSTOMEDIX, INC Detachable balloon catheter for endoscopic treatment of vesicoureteral reflux
5334153, Oct 07 1992 C R BARD, INC Catheter purge apparatus and method of use
5336263, Apr 06 1992 UROPLASTY, INC Treatment of urological and gastric fluid reflux disorders by injection of mmicro particles
5376117, Oct 25 1991 Corvita Corporation Breast prostheses
5383896, May 25 1993 VASCULAR SOLUTIONS, INC Vascular sealing device
5385561, Jan 18 1994 Bard International, Inc.; C R BARD, INC Apparatus and method for injecting a viscous material into the tissue of a patient
5411475, Oct 24 1991 CYSTOMEDIX, INC Directly visualized method for deploying a detachable balloon at a target site in vivo
5437603, Sep 14 1993 C.R. Bard, Inc. Apparatus and method for implanting prostheses within periurethral tissues
5451406, Jul 14 1994 CARBON MEDICAL TECHNOLOGIES, INC Tissue injectable composition and method of use
5480430, Jun 04 1993 INAMED MEDICAL PRODUCTS CORPORATION Shape-retaining shell for a fluid filled prosthesis
5483976, Dec 31 1990 UroMed Corporation Mechanically actuated urethral plug assembly and method for controlling urinary incontinence
5496370, Mar 13 1992 Ideal Implant Incorporated Gel-like prosthetic device
5499994, Jul 30 1993 AMS Research Corporation Dilation device for the urethra
5518504, Dec 28 1993 Boston Scientific Scimed, Inc Implantable sphincter system utilizing lifting means
5520700, Nov 13 1992 AMS Research Corporation Stapler device particularly useful in medical suturing
5534023, Dec 29 1992 Fluid filled prosthesis excluding gas-filled beads
5547472, Jan 20 1994 Terumo Kabushiki Kaisha Catheter with medicament injection pores
5575771, Apr 24 1995 Balloon catheter with external guidewire
5578009, Jul 20 1994 Danforth Biomedical Incorporated Catheter system with push rod for advancement of balloon along guidewire
5634877, Feb 09 1989 OPTICON MEDICAL INC Urinary control with inflatable seal and method of using same
5637074, Sep 14 1993 C R BARD, INC Apparatus and method for implanting prostheses within periurethral tissues
5647836, Sep 28 1995 Method and means for treating female urinary incontinence
5687714, Oct 10 1995 HEALTH AND HUMAN SERVICES, GOVERNMENT OF THE UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT Self-cleaning endotracheal tube apparatus
5749826, Nov 06 1996 Urinary incontinence control device
5830228, May 29 1996 Boston Scientific Scimed, Inc Methods and systems for deployment of a detachable balloon at a target site in vivo
5938669, May 07 1997 Klasamed S.A. Adjustable gastric banding device for contracting a patient's stomach
5964806, Jun 12 1997 UROMEDICA, INC Adjustable implantable genitourinary device
5976186, Sep 08 1994 HOWMEDICA OSTEONICS CORP Hydrogel intervertebral disc nucleus
6005020, Aug 18 1997 LifeShield Sciences LLC Bioresorbable compositions for implantable prostheses
6021781, Mar 18 1998 DEXTERITY SURGICAL, INC Intraurethral pressure monitoring assembly and method of treating incontinence using same
6033413, Apr 20 1998 ENDOCARE, INC Stent delivery system
6039686, Mar 18 1997 Boston Scientific Corporation; Boston Scientific Scimed, Inc System and a method for the long term cure of recurrent urinary female incontinence
6042536, Aug 13 1998 ConSert, LLC Bladder sling
6045498, Jun 12 1997 UROMEDICA, INC Method for adjustably restricting a body lumen
6050937, Sep 21 1998 BASIN MEDICAL, LLC Surgical tension/pressure monitor
6053935, Nov 08 1996 Boston Scientific Corporation Transvaginal anchor implantation device
6095969, Mar 03 1998 Female incontinence control device actuated by abdominal pressure
6099547, Feb 13 1997 Boston Scientific Scimed, Inc Method and apparatus for minimally invasive pelvic surgery
6110101, Aug 13 1998 ConSert, LLC Bladder sling
6110191, Sep 12 1996 W L GORE & ASSOCIATES, INC Endovascular delivery system
6117067, Mar 10 1998 Device for the height-adjustable fixing and support of internal anatomical organs
6120539, May 01 1997 C R BRAD, INC Prosthetic repair fabric
6132465, Jun 04 1998 RAYMEDICA, LLC Tapered prosthetic spinal disc nucleus
6167886, May 28 1997 Medi-Globe Vertriebs GmbH Device for treatment of male and female urinary incontinence
6171231, Dec 19 1994 Urinary incontinence device
6419624, Oct 11 1999 UROMEDICA, INC Apparatus and method for inserting an adjustable implantable genitourinary device
6419701, Jun 12 1997 UROMEDICA, INC Adjustable implantable genitourinary device
6423080, Feb 13 1997 Boston Scientific Scimed, Inc Percutaneous and hiatal devices and methods for use in minimally invasive pelvic surgery
6579224, Oct 11 1999 UROMEDICA, INC.; UROMEDICA, INC Apparatus and method for inserting an adjustable implantable genitourinary device
6645138, Sep 12 1997 UROMEDICA, INC. Adjustable implantable genitourinary device
6752814, Feb 13 1997 Boston Scientific Scimed, Inc Devices for minimally invasive pelvic surgery
6786861, Oct 01 1998 Nicolaas Daniel, Lombard Burger; Rudolf Werner, Ottermann; Adam Jacobus, Von Wielligh; Johannes Jacobus, Pretorius Distensible sling for urinary incontinence
7014606, Oct 11 1999 UROMEDICA, INC. Apparatus and method for inserting an adjustable implantable genitourinary device
20020055748,
20020156342,
20040015045,
20040230206,
20040230207,
20050027161,
20060281964,
CA2022709,
EP639355,
EP7849872,
EP941712,
WO18319,
WO9601597,
WO66030,
WO9100069,
WO9820812,
WO9835632,
WO9856311,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 28 2000UROMEDICA, INC.(assignment on the face of the patent)
Apr 28 2000BURTON, JOHN H UROMEDICA, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0107890439 pdf
Apr 28 2000COOK, TIMOTHY C UROMEDICA, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0107890439 pdf
Date Maintenance Fee Events
Jan 09 2012M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Feb 19 2016REM: Maintenance Fee Reminder Mailed.
Jul 08 2016EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jul 08 20114 years fee payment window open
Jan 08 20126 months grace period start (w surcharge)
Jul 08 2012patent expiry (for year 4)
Jul 08 20142 years to revive unintentionally abandoned end. (for year 4)
Jul 08 20158 years fee payment window open
Jan 08 20166 months grace period start (w surcharge)
Jul 08 2016patent expiry (for year 8)
Jul 08 20182 years to revive unintentionally abandoned end. (for year 8)
Jul 08 201912 years fee payment window open
Jan 08 20206 months grace period start (w surcharge)
Jul 08 2020patent expiry (for year 12)
Jul 08 20222 years to revive unintentionally abandoned end. (for year 12)