An access control method controls access to a storage medium in a storage apparatus, by obtaining key data valid information which indicates whether or not a key data is valid, and enciphering data to be recorded in the storage medium using the key data only when the key data valid information is turned ON.
|
1. An access control method for controlling access to a storage medium in a storage apparatus, comprising the steps of:
obtaining a key data selected from a group consisting of a key data transferred from a host unit which is coupled to the storage apparatus, a key data reproduced from the storage medium, and a key data read from a recording medium other than the storage medium;
obtaining, from a memory within the storage apparatus, key data valid information which indicates whether or not the obtained key data is valid; and
deciphering without user interaction data reproduced from the storage medium using the key data only when the key data valid information is turned ON to indicate that the key data is valid; and
turning OFF the key data valid information to indicate that the key data is invalid, at an arbitrary timing,
wherein said arbitrary timing is one of a timing when a used time of the storage medium reaches a predetermined time and a timing when a predetermined time elapses from a last time the storage medium is used.
4. A control apparatus for controlling access to a storage medium in a storage apparatus, comprising:
a key data holding circuit configured to obtain a key data selected from a group consisting of a key data transferred from a host unit which is coupled to the storage apparatus, a key data reproduced from the storage medium, and a key data read from a recording medium other than the storage medium;
a microprocessor unit configured to obtain, from a memory within the storage apparatus, key data valid information which indicates whether or not the obtained key data is valid and further configured to turn OFF the key data valid information to indicate that the key data is invalid, at an arbitrary timing; and
a deciphering circuit configured to decipher without user interaction data reproduced from the storage medium using the key data only when the key data valid information is turned ON to indicate that the key data is valid,
wherein said arbitrary timing is one of a timing when a used time of the storage medium reaches a predetermined time and a timing when a predetermined time elapses from a last time the storage medium is used.
2. The access control method as claimed in
holding the key data in a holding circuit within the storage apparatus.
3. The access control method as claimed in
prohibiting at least one of a read access and a write access with respect to the storage medium when the key data valid information is turned OFF to indicate that the key data is invalid.
|
This application claims the benefit of a Japanese Patent Application No. 2002-024236 filed Jan. 31, 2002, in the Japanese Patent Office, the disclosure of which is hereby incorporated by reference.
1. Field of the Invention
The present invention generally relates to access control methods and storage apparatuses, and more particularly to an access control method for controlling access to a storage medium which is recorded with enciphered information and to a storage apparatus which employs such an access control method.
2. Description of the Related Art
In information processing apparatuses such as personal computers, information is recorded in and reproduced from various kinds of storage media. The storage media may roughly be categorized into a fixed type which is fixed within a storage apparatus, and a portable type which is loaded into and unloaded from the storage apparatus. Examples of such storage media include card-shaped or disk-shaped magnetic storage media, optical storage media and magneto-optical storage media, semiconductor memory devices such as RAMs, and the like. The kind of information recorded in and reproduced from such storage media is not limited to a specific kind, and for example, includes document information, image information, audio information, program information or arbitrary combinations of such information.
Conventionally, various methods have been proposed to prevent unauthorized access to the storage medium. For example, there is a proposed method which prohibits access to the storage medium unless the user is confirmed to be a legitimate (or authorized) user by making a password authentication. According to this proposed method, an access to the storage medium cannot be made unless a password input to the personal computer matches a password recorded in the storage medium.
In other words, the information cannot be reproduced from and the information cannot be recorded in the storage medium, unless it is confirmed through password authentication that the user attempting to access this storage medium is the legitimate user. More particularly, if the user is not the legitimate user, a recording and reproducing means for recording information in and reproducing information from the storage medium is controlled to a non-operational state. Accordingly, a third party other than the legitimate user cannot illegally acquire the information recorded in the storage medium. Furthermore, a third party other than the legitimate user cannot illegally record information in the storage medium or erase recorded information from the storage medium.
However, even in the case of the storage medium which requires the password authentication when making access, no measures are taken to prevent reading of the information itself recorded in the storage medium. This is because the access to the storage medium is prohibited by controlling the recording and reproducing means to the non-operational state. For this reason, there is a problem in that, once the storage medium is acquired, a person familiar with physical conditions and the like of the storage medium may read the information recorded in the storage medium using a reading unit or the like with relative ease.
Moreover, there is also another problem in that illegal or unauthorized copies can be created with ease, since the recorded information can be read from the storage medium.
Therefore, with respect to the information recorded in the storage medium, problems related to security or problems related to copyright are generated.
Accordingly, it is a general object of the present invention to provide a novel and useful access control method and storage apparatus in which the problems described above are eliminated.
Another and more specific object of the present invention is to provide an access control method and a storage medium, which make contents of information read from a storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright.
Still another object of the present invention is to provide an access control method for controlling access to a storage medium in a storage apparatus, comprising the steps of obtaining key data valid information which indicates whether or not a key data is valid; and enciphering data to be recorded in the storage medium using the key data only when the key data valid information is turned ON. According to the access control method of the present invention, it is possible to make the contents of information read from the storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright.
A further object of the present invention is to provide an access control method for controlling access to a storage medium in a storage apparatus, comprising the steps of obtaining key data valid information which indicates whether or not a key data is valid; and deciphering data reproduced from the storage medium using the key data only when the key data valid information is turned ON. According to the access control method of the present invention, it is possible to make the contents of information read from the storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright.
Another object of the present invention is to provide a storage apparatus comprising a recording section recording data in a storage medium; an enciphering circuit; and a control unit, responsive to key data valid information which indicates whether or not a key data is valid, carrying out a control to supply data to be recorded in the storage medium to the recording section after enciphering the data by the enciphering circuit using the key data only when the key data valid information is turned ON, and bypassing the enciphering circuit to supply the data to be recorded in the storage medium to the recording section when the key data valid information is turned OFF. According to the storage apparatus of the present invention, it is possible to make the contents of information read from the storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright.
Still another object of the present invention is to provide a storage apparatus comprising a reproducing section reproducing data from a storage medium; a deciphering circuit; and a control unit, responsive to key data valid information which indicates whether or not a key data is valid, carrying out a control to supply the data reproduced from the storage medium by the reproducing section to the deciphering circuit to decipher the reproduced data using the key data only when the key data valid information is turned ON, and bypassing the deciphering circuit so as not to decipher the reproduced data when the key data valid information is turned OFF. According to the storage apparatus of the present invention, it is possible to make the contents of information read from the storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright.
A further object of the present invention is to provide a storage apparatus comprising a recording section recording data in a storage medium; an enciphering circuit; and a switching circuit supplying the data to be recorded to the recording section after enciphering the data by the enciphering circuit using a key data or, supplying the data to be recorded to the recording section by bypassing the enciphering circuit, based on key data valid information which indicates whether or not the key data is valid. According to the storage apparatus of the present invention, it is possible to make the contents of information read from the storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright. In addition, it is possible to secure compatibility with the storage media recorded on existing storage apparatuses, so that the security provided by the present invention may be used to suit the user's needs.
Another object of the present invention is to provide a storage apparatus comprising a reproducing section reproducing data from a storage medium; a deciphering circuit; and a switching circuit supplying the data reproduced from the storage medium by the recording section to the deciphering circuit to be deciphered using a key data or, bypassing the deciphering circuit, based on key data valid information which indicates whether or not the key data is valid. According to the storage apparatus of the present invention, it is possible to make the contents of information read from the storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright. In addition, it is possible to secure compatibility with the storage media recorded on existing storage apparatuses, so that the security provided by the present invention may be used to suit the user's needs.
Still another object of the present invention is to provide a business method for providing a storage medium which is recorded with pay-contents enciphered using a key data, comprising the step of turning OFF at an arbitrary timing key data valid information which must be turned ON when deciphering the enciphered pay-contents from the storage medium, so as to enable deciphering of the enciphered pay-contents only for a predetermined time. According to the business method of the present invention, it is possible to make the contents of information read from the storage medium indecipherable even if one is successful in reading the information recorded in the storage medium, so as to secure security for the information recorded in the storage medium and to positively protect copyright.
Other objects and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings.
A description will be given of various embodiments of an access control method and a storage apparatus according to the present invention, by referring to the drawings.
In
The enciphering and deciphering circuit 3 may of course be replaced by an enciphering circuit and a deciphering circuit which are separately provided.
The magneto-optical disk apparatus 100 is connected to a host unit 102 via a cable or wireless connecting means 101. The connecting means may be formed by one or more cable networks, one or more wireless networks, or one or more combinations of such cable and wireless networks. For example, the host unit 102 is formed by an information processing apparatus such as a personal computer. The information processing apparatus forming the host unit 102 may be a desk-top type or a portable type apparatus, and is of course not limited to the personal computer. Accordingly, the information processing apparatus forming the host unit 102 may be a portable terminal equipment such as a portable telephone set, a still and/or motion picture digital camera, an intelligent television apparatus or the like.
First, a description will be given of the operation of the system shown in
In a step S1 shown in
On the other hand, if the decision result in the step S3 is YES, in a step S5, the MPU 6 opens the switching circuit 1, so as to encipher the data from the host unit 102 received via the interface 2 within the enciphering and deciphering circuit 3 based on key data held by the key data holding circuit 5. In addition, in a step S6, the MPU 6 stores the enciphered data from the enciphering and deciphering circuit 3 into the data buffer 4, and the process advances to the step S7.
In the step S7, the MPU 6 supplies the data stored in the data buffer 4 to the write circuit 8. In a step S8, the MPU 6 controls the write circuit 8 to modulate the data and to supply the modulated data to the head 10. In a step S9, the MPU 6 controls the head 10 to convert the modulated data from the write circuit 8 into a recording light beam which is supplied to the optical lens system 11. In a step S10, the MPU 6 controls the optical lens system 11 so that the recording light beam is converged on the magneto-optical disk 12, so as to record data by the recording light beam irradiated on the magneto-optical disk 12, and the process ends. After the recording of the data ends, the end of the recording may be notified to the host unit 102 by a known method.
Next, a description will be given of the operation of the system shown in
In a step S11 shown in
In a step S15, the MPU 6 decides whether or not the data is to be deciphered. The basis for making this decision in the step S15 will be described later. For example, enciphering information such as an enciphering flag which indicates that the data is enciphered may be added to the data, and it may be judged that the data is enciphered if the enciphering information is detected. If the decision result in the step S15 is NO, in a step S16, the MPU 6 closes the switching circuit 1, and the process advances to a step S19 which will be described later. On the other hand, if the decision result in the step S15 is YES, in a step S17, the MPU 6 opens the switching circuit 1, so as to supply the data stored in the data buffer 4 to the enciphering and deciphering circuit 3. In addition, in a step S18, the MPU 6 controls the enciphering and deciphering circuit 3 to decipher the data from the data buffer 4 based on the key data held in the key data holding circuit 5, and the process advances to the step S19. In the step S19, the data is transferred to the host unit 102 via the interface 2. The data transferred in the step S19 is the data read from the data buffer 4 in the case where the step S16 is carried out, and is the deciphered data from the enciphering and deciphering circuit 4 in the case where the step S18 is carried out. After the reproduction of the data ends, the end of the reproduction may be notified to the host unit 102 by a known method.
In this embodiment, the data is passed through the enciphering and deciphering circuit 3 or is bypassed the enciphering and deciphering circuit 3, by controlling the switching circuit 1. However, an enable/disable signal which controls the enciphering and deciphering circuit 3 to an operational/non-operational state may be supplied directly from the MPU 6 to the enciphering and deciphering circuit 3 as indicated by a dotted line in
The judgement to determine whether or not to encipher the data to be recorded may be made by issuing an enciphering set command or a no-enciphering set command from the host unit 102, and deciding whether or not the enciphering set command is issued in the step S3 shown in
In a step S21 shown in
If the decision result in the step S23 is NO, in a step S24, the MPU 6 closes the switching circuit 1 or, controls the enciphering and deciphering circuit 3 to the disabled state, so as to bypass the enciphering and deciphering circuit 3, and store the data received from the host unit 102 via the interface 2 directly into the data buffer 4. The process advances to the step S7 shown in
Accordingly, in the case of the write command which is not accompanied by an enciphering set command or, the write command which is accompanied by a no-enciphering set command, the data which is not enciphered, that is, the non-enciphered data, is recorded in a non-enciphered data region 501 on the magneto-optical disk 12 as shown in
Next, a description will be given of the operation for a case where the judgement to determine whether the enciphering is to be made during the recording and whether the deciphering is to be made during the reproduction are based on the data reproduced from the magneto-optical disk 12.
In a step S36, the MPU 6 of the magneto-optical disk apparatus 100 decides whether or not the consent information transferred from the host unit 102 is the correct consent information for the magneto-optical disk 12, by collating the consent information with the consent information recorded on the magneto-optical disk 12. If the user has not paid for the pay-contents, the user cannot receive the correct consent information from the contents provider in the step S34, and the decision result in the step S36 becomes NO. In this case, no operation is made with respect to the enciphering flag within the enciphering control area 511. For this reason, the enciphering flag with respect to the enciphered data region 502 remains turned OFF, and it is impossible to decipher the enciphered data recorded in the enciphered data region 502. Accordingly, the user who has the magneto-optical disk 12 in possession but has not paid for the pay-contents may be able to read the enciphered data recorded in the enciphered data region 502, however, this user cannot decipher the enciphered data recorded in the enciphered data region 502. In other words, the decision result in the step S15 shown in
On the other hand, if the decision result in the step S35 is YES, in a step S37, the MPU 6 of the magneto-optical disk apparatus 100 turns ON the enciphering flag within the enciphering control area 511, which is OFF and correspond to the enciphered data region 502 on the magneto-optical disk 12. As a result, the decision result in the step S15 shown in
Next, a description will be given of judgements as to whether the enciphering or deciphering is necessary based on data read from a non-volatile memory within the magneto-optical disk apparatus 100, by referring to
If the user possesses the magneto-optical disk 12 shown in
On the other hand, when the user uses the magneto-optical disk apparatus 100-1 shown in
Similarly, when recording data on the magneto-optical disk 12 shown in
The enciphering and deciphering enable data and the enciphering and deciphering disable data may be prestored in the non-volatile memory with respect to each user who uses the same magneto-optical disk apparatus 100. In this case, it is possible to enable or disable the enciphering and deciphering of the data in units of users.
The key data held in the key data holding circuit 5 within the magneto-optical disk apparatus may be acquired from the host unit 102 or, reproduced from the magneto-optical disk 12 or, read from the non-volatile memory within the memory 7 or from the non-volatile memory provided separately from the memory 7 within the magneto-optical disk apparatus 100 under the control of the MPU 6.
First, a description will be given of a case where the key data held in the key data holding circuit 5 is acquired from the host unit 102. In this case, it is assumed that in the magneto-optical disk apparatus 100, a key data valid flag indicating whether the key data held within the key data holding circuit 5 is valid or invalid is stored within the memory 7. The host unit 102 first transmits the key data to the key data holding circuit 5, and holds the key data in the key data holding circuit 5 under the control of the MPU 6. Then, the host unit 102 turns ON the key data valid flag stored in the memory 7, in order to validate the key data held in the key data holding circuit 5. In the magneto-optical disk apparatus 100, the enciphering and deciphering of the data using the key data held in the key data holding circuit 5 is enabled and the enciphering and deciphering circuit 3 is enabled, if the key data valid flag is turned ON.
In this case, it is possible to create a magneto-optical disk 12 recorded with contents shown in
Next, a description will be given of a case where the key data held in the key data holding circuit 5 is reproduced from the magneto-optical disk 12, by referring to
In this case, it is possible to create the magneto-optical disk 12 which is recorded with the contents shown in
Next, a description will be given of a case where the key data held in the key data holding circuit 5 is read from the non-volatile memory such as the memory 7 within the magneto-optical disk apparatus 100, by referring to
If the user possesses the magneto-optical disk 12 shown in
On the other hand, when the user uses the magneto-optical disk apparatus 100-1 shown in
Similarly, when recording data on the magneto-optical disk 12 shown in
The key data may be prestored in the nonvolatile memory with respect to each magneto-optical disk apparatus 100 or, with respect to each user who uses the same magneto-optical disk apparatus 100. In the first case, it is possible to enable or disable the enciphering and deciphering of the data in units of magneto-optical disk apparatuses. On the other hand, in the second case, it is possible to enable or disable the enciphering and deciphering of the data in units of users.
Next, a description will be given of a case where the key data valid flag is automatically turned OFF at an arbitrary timing, so that the enciphered data recorded on the magneto-optical disk 12 is only usable for a predetermined time. The timing at which the key data valid flag is turned OFF may be triggered by a predetermined operation carried out by the host unit 102 or, triggered based on the time managed by an internal timer or the like of the MPU within the host unit 102 or within the magneto-optical disk apparatus 100. In the latter case, it is possible to automatically turn OFF the key data valid flag when the used time of the magneto-optical disk 12 counted by the internal timer or the like reaches a predetermined time or, when a predetermined time elapses from the last time the magneto-optical disk 12 is used. In addition, by using a plurality of kinds of key data valid flags, it is possible to set the predetermined time described above depending on the kind of key data valid flag.
Accordingly, even if the legitimate or authorized user leaves his seat in a state where the magneto-optical disk 12 is loaded into the magneto-optical disk apparatus 100, for example, it is possible to prevent illegal or unauthorized use of the magneto-optical disk 12 by a third party. Hence, this is effective in a case where pay-contents such as time-limited information is recorded on the magneto-optical disk 12 and provided to the user. In other words, by recording on the magneto-optical disk 12 the time-limited information which is only usable for a predetermined time, such as movie information, music information and game software information, it is possible to provide a kind of information rental service which does not require the magneto-optical disk 12 to be returned to the provider. In the case of the video rental system, for example, the user must return the rented video tape cassette, DVD or the like to the rental service provider. However, by maintaining the key data valid flag ON for only a predetermined time as described above, it becomes impossible to decipher the enciphered data recorded on the magneto-optical disk 12 after the predetermined time, thereby making it unnecessary for the user to return the magneto-optical disk 12 to the provider.
The host unit 102 cannot be aware of all of the timings at which the key data valid flag is turned OFF. For this reason, if the host unit 102 is not aware of a certain timing at which the key data valid flag is turned OFF, the data which should be enciphered before recording may be recorded on the magneto-optical disk 12 without being enciphered or, the enciphered data reproduced from the magneto-optical disk 12 may be transferred to the host unit 102 without being deciphered. Accordingly, it is desirable to notify the host unit 102 from the magneto-optical disk apparatus 100 when the key data valid flag is turned OFF.
On the other hand, if the decision result in the step S52 is NO, in a step S54, the MPU 6 of the magneto-optical disk apparatus 100 decides whether or not the OFF state of the key data valid flag is already notified to the host unit 102. The process advances to the step S53 if the decision result in the step S54 is YES. If the decision result in the step S54 is NO, in a step S55, the MPU 6 makes an error notification with respect to the host unit 102 only once, and the process ends. Therefore, when viewed from the host unit 102, the host unit 102 receives a notification in the same manner as when the loaded magneto-optical disk 12 within the magneto-optical disk apparatus 100 is changed. In other words, when the key data valid flag is turned OFF, it is as if the loaded magneto-optical disk 12 is changed from that having the corresponding key data which is validated to that having the corresponding data which is invalidated, when viewed from the host unit 102.
Next, a description will be given of an access prohibit process which prohibits access to the magneto-optical disk 12 when the key data valid flag is turned OFF, by referring to
Even when the key data valid flag is turned OFF, it is possible to record data on the magneto-optical disk 12 without enciphering and to transfer the enciphered data reproduced from the magneto-optical disk 12 to the host unit 102 without deciphering. If such operations are permitted and there already exists an deciphered data which is obtained by deciphering the enciphered data reproduced from the magneto-optical disk 12, it becomes possible to compare the already existing deciphered data and the enciphered data which is reproduced from the magneto-optical disk 12. From this comparison, it is not impossible to analyze the enciphering algorithm, and problems may occur from the security point of view. Accordingly, in the access prohibit process shown in
In a step S62 shown in
On the other hand, if the decision result in the step S62 is NO, in a step S64, the MPU 6 of the magneto-optical disk apparatus 100 makes an error notification with respect to the host unit 102, and the process ends. Therefore, when the key data valid flag is turned OFF, the magneto-optical disk unit 100 is prohibited from executing the read/write command from the host unit 102.
Even when the key data valid flag is turned OFF, it is possible to record data on the magneto-optical disk 12 without enciphering and to transfer the enciphered data reproduced from the magneto-optical disk 12 to the host unit 102 without deciphering. If such operations are permitted, the data region of the magneto-optical disk 12 is first read in the case of existing personal computers or the like. However, since the enciphered data read from the data region is not deciphered correctly, the magneto-optical disk 12 will be judged as being an invalid magneto-optical disk with respect to an operating system (OS) of the personal computer. For this reason, a message requesting instructions as to whether or not to perform a logical formatting of the magneto-optical disk will be displayed on the personal computer. If the user erroneously instructs the logical formatting of the magneto-optical disk, the magneto-optical disk 12 will be logically formatted in a non-enciphered state. In order to prevent such an erroneous operation, it is possible to at least prohibit the execution of only the write command when the key data valid flag is turned OFF.
Next, a description will be given of a second embodiment of the storage apparatus according to the present invention.
In
In this second embodiment, the key data is stored in the card 800 which is in the possession of the legitimate or authorized user. The card unit 108 is formed by a card reader having a known construction for reading the key data from the card 800. The key data is read from the card 800 by the card unit 108 and transferred to the magneto-optical disk apparatus 100 under the control of the host unit 102. Accordingly, a third party who does not have the card 800 in his possession cannot correctly reproduce the enciphered data recorded on the magneto-optical disk 12. The recording medium which stores the key data is of course not limited to the card 800, and may be any suitable recording media which are independent from the magneto-optical disk 12.
In each of the embodiments described above, the storage medium used is a magneto-optical disk. However, the present invention is applicable to any suitable computer-readable storage media, including card-shaped and disk-shaped magnetic storage media, optical storage media and magneto-optical storage media, and semiconductor memory devices such as RAMs. In addition, the storage medium may be a fixed type which is fixed within the storage apparatus or, a portable type which is loaded into and unloaded from the storage apparatus.
Moreover, the storage apparatus, such as the magneto-optical disk apparatus, may be provided within the information processing apparatus.
The kinds of information recorded in and reproduced from such storage media, that is, the contents, are not limited to a specific kind, and for example, include document information, image information including movies and the like, audio information including music and the like, program information, software information including games and the like, personal information, various business information, or arbitrary combinations of such information. The contents are not limited to pay-contents, and the contents may be free-contents.
Further, the present invention is not limited to these embodiments, but various variations and modifications may be made without departing from the scope of the present invention.
Patent | Priority | Assignee | Title |
8607073, | Apr 28 2009 | GIESECKE+DEVRIENT MOBILE SECURITY GMBH | Storage medium having an encrypting device |
Patent | Priority | Assignee | Title |
5440631, | Apr 24 1992 | Fijitsu Limited | Information distribution system wherein storage medium storing ciphered information is distributed |
5737413, | Apr 24 1992 | Fujitsu Limited | Information distribution system wherein storage medium storing ciphered information is distributed |
5757908, | Apr 25 1994 | International Business Machines Corporation | Method and apparatus for enabling trial period use of software products: method and apparatus for utilizing an encryption header |
5857021, | Nov 07 1995 | Fujitsu Ltd. | Security system for protecting information stored in portable storage media |
5915025, | Jan 17 1996 | Fuji Xerox Co., Ltd. | Data processing apparatus with software protecting functions |
6351813, | Feb 09 1996 | Digital Privacy, Inc. | Access control/crypto system |
6956950, | Dec 23 1997 | CA, INC | Computer readable medium having a private key encryption program |
20010021926, | |||
20020002706, | |||
EP969667, | |||
EP1037131, | |||
EP1050821, | |||
JP10283263, | |||
JP10283264, | |||
JP11003284, | |||
JP11065934, | |||
JP11265317, | |||
JP200038867, | |||
JP3261987, | |||
JP5298085, | |||
JP5314014, | |||
JP6095871, | |||
WO161591, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 12 2002 | ANZAI, ICHIRO | Fujitsu Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013375 | /0545 | |
Oct 08 2002 | Fujitsu Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 27 2009 | ASPN: Payor Number Assigned. |
Feb 20 2012 | REM: Maintenance Fee Reminder Mailed. |
Jul 08 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 08 2011 | 4 years fee payment window open |
Jan 08 2012 | 6 months grace period start (w surcharge) |
Jul 08 2012 | patent expiry (for year 4) |
Jul 08 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 08 2015 | 8 years fee payment window open |
Jan 08 2016 | 6 months grace period start (w surcharge) |
Jul 08 2016 | patent expiry (for year 8) |
Jul 08 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 08 2019 | 12 years fee payment window open |
Jan 08 2020 | 6 months grace period start (w surcharge) |
Jul 08 2020 | patent expiry (for year 12) |
Jul 08 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |